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On ve-quasi and secured ve-quasi independent sets
of a graph
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Abstract
In this paper, we have defined the concepts of ve-quasi independent set and secured ve-quasi independent set.
In order to define these concepts we have used the concept of a vertex which m-dominates an edge. We prove
a characterization of a maximal ve-quasi independent set. We also prove that the complement of a ve-quasi
independent set is a ve-dominating set. We prove a necessary and sufficient condition under which a ve-quasi
independent set is a secured ve-quasi independent set. Also we prove a necessary and sufficient condition
under which the ve-quasi independence number and secured ve-quasi independence number decrease when a
vertex is removed from the graph. Some examples have also been given.
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1. Introduction
The domination related results have been appeared in

several articles. The concepts of vertices dominate edges
and edges dominate vertices are studied by several authors.
The concept of a vertex-edge dominating set (ve-dominating
set) is defined by E. Sampathkumar and S. S. Kamath in
[2]. A vertex v ∈ V (G) m-dominates an edge x ∈ E (G) if
x ∈ 〈N [v]〉. A set S ⊆ V (G) is a ve-dominating set if every
edge in G is m-dominated by a vertex in S [2]. We introduce
the concept of ve-quasi independent sets using the concept
of ve-domination in graphs. We call a set S of vertices to be
a ve-quasi independent set if whenever u,v ∈ S are adjacent
vertices, there is a vertex x in V (G)\S which m-dominates
the edge uv in G. We also introduce the concept of secured
ve-quasi independent set. A ve-quasi independent set S is
a secured ve-quasi independent set if for each v ∈ S, there

is a vertex u in V (G)\S which is adjacent to v such that
(S\{v})∪{u} is a ve-quasi independent set.

We also introduce maximal ve-quasi independent set and
maximum ve-quasi independent set as well as maximal se-
cured ve-quasi independent set and maximum secured ve-
quasi independent set.

2. Preliminaries and Notations
If G is a graph then E (G) denotes the edge set and V (G)

denotes the vertex set of the graph. If v is a vertex of G then
G\v denotes the subgraph of G obtained by removing the
vertex v and all the edges incident to v. N (v) denotes the set
of vertices which are adjacent to v. N [v] = N (v)∪{v} . If G
is a graph then β0 (G) denotes the independence number of a
graph G. If G is a graph then the induced subgraph denoted
as 〈S〉 is the graph whose vertex set is S and whose edge set
consists of all the edges that have both end points in S.

3. Main Results
Definition 3.1. Let G be a graph. A set S of vertices is said to
be a ve-quasi independent set if whenever u,v∈ S are adjacent
vertices, N (u)∩N (v)∩ (V (G)\S) 6= φ .
i.e. u and v have a common neighbor in V (G\S) if u and v
are adjacent vertices of S.
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We can also characterize a ve-quasi independent set as
follows:
A subset S of V (G) is a ve-quasi independent set if and only
if whenever u,v ∈ S are adjacent vertices, there is a vertex x
in V (G)\S which m-dominates the edge uv in G.

Theorem 3.2. Let G be a graph and S ⊂ V (G) then S is
a ve-quasi independent set if and only if V (G\S) is a ve-
dominating set.

Proof. First suppose that S is a ve-quasi independent set. Let
e = uv be any edge of G. If u ∈ V (G\S) or v ∈ V (G\S),
then e is m-dominated by some vertex of V (G\S). Suppose
u /∈V (G\S) and v /∈V (G\S). Then u and v are adjacent ver-
tices of S. Since S is a ve-quasi independent set, there is some
vertex x in N (u)∩N (v)∩ (V (G)\S). Then x ∈V (G\S) and
e is m-dominated by x. Thus, we have proved that any edge
of G is m-dominated by some vertex of V (G\S). Therefore,
V (G\S) is a ve-dominating set.
Conversely, suppose that V (G\S) is a ve-dominating set. Sup-
pose u,v are adjacent vertices of S. Now, e = uv is an edge
of G and V (G\S) is a ve-dominating set of G. Therefore,
there is a vertex x in V (G\S) which m-dominates e. This
means that u is adjacent to x or v is also adjacent to x. There-
fore, x∈N (u)∩N (v)∩(V (G)\S). Therefore, N (u)∩N (v)∩
(V (G)\S) 6= φ . Hence, S is a ve-quasi independent set.

Remark 3.3. (i) Every independent set is a ve-quasi inde-
pendent set but the converse is not true in general.

(ii) A ve-quasi independence is a hereditary property.

Example 3.4. Consider the graph C3 with vertices {v1,v2,v3}

Figure 1. C3

Let S = {v2,v3}. Then S is a ve-quasi independent set but
it is not an independent set.

Definition 3.5. Let G be a graph. S⊂V (G) and v ∈ S. Then
v is said to be a ve-quasi isolated vertex of S if whenever u is
adjacent to v, N (v)∩N (u)∩ (V (G)\S) 6= φ .

Proposition 3.6. Let G be a graph and S⊂V (G). Then S is
a ve-quasi independent set if and only if every vertex of S is a
ve-quasi isolated vertex of S.

Proof. First suppose that S is a ve-quasi independent set.
From the definition, it is clear that each vertex of S is a ve-
quasi isolated vertex of S.

Conversely, suppose each vertex of S is a ve-quasi isolated
vertex of S. Let u,v be adjacent vertices of S. Now, v is a
ve-quasi isolated vertex of S and u is adjacent to v. There-
fore, N (v)∩N (u)∩ (V (G)\S) 6= φ . This proves that S is a
ve-quasi independent set.

Definition 3.7. Let G be a graph and S ⊂ V (G) be a ve-
quasi independent set then S is said to be a maximum ve-quasi
independent set if its cardinality is maximum among all ve-
quasi independent subsets of G.
The cardinality of a maximum ve-quasi independent set is
called the ve-quasi independence number of the graph G and
it is denoted as βq (G).

Note that for any graph G, β0 (G)≤ βq (G).

Example 3.8. Consider the figure 1
Here, S = {v2,v3} is a maximum ve-quasi independent set

and βq (G) = 2. Also β0 (G) = 1.
Thus for this graph, β0 (G)< βq (G).

Example 3.9. Consider the graph G with vertices {v1,v2,v3,
v4,v5,v6}

Figure 2. G

Obviously, β0 (G) = 3. Let S = {v1,v2,v6}. Then S is
a maximum ve-quasi independent set of G and therefore,
βq (G) = 3. Thus for this graph, β0 (G) = βq (G).

Proposition 3.10. Let G be a graph and v ∈ V (G). Then
βq (G\v)≤ βq (G).

Proof. Let S be a maximum ve-quasi independent subset of
G\v. Obviously, S is a ve-quasi independent subset of G.
Therefore, βq (G)≥ |S|= βq (G\v).
Therefore, βq (G\v)≤ βq (G).

Theorem 3.11. Let G be a graph and v∈V . Then βq (G\v)<
βq (G) if and only if for every maximum ve-quasi independent
subset S of G not containing v, there are adjacent vertices x
and y of S such that N (x)∩N (y)∩ (V (G)\S) = {v}.

Proof. First suppose that βq (G\v)< βq (G). Let S be a max-
imum ve-quasi independent subset of G not containing v.
Since βq (G\v)< βq (G), S can not be a ve-quasi independent
subset of G\v. Therefore, there are adjacent vertices x and
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y of S such that N (x)∩N (y)∩ (V (G\v)\S) = φ . However,
N (x)∩N (y)∩(V (G)\S) 6= φ because S is a ve-quasi indepen-
dent subset of G. Therefore, N (x)∩N (y)∩ (V (G)\S) = {v}.
Thus, the condition is satisfied.
Conversely, suppose the condition is satisfied.
Suppose, βq (G\v) ≮ βq (G). Therefore, βq (G\v) = βq (G).
Let S be a maximum ve-quasi independent subset of G\v.
Then S is also a maximum ve-quasi independent subset of
G not containing v. Let x and y be adjacent vertices of S.
Since S is a ve-quasi independent subset of G\v, x and y
have a common neighbor in V (G\v)\S say u. Therefore,
u ∈ N (x)∩N (y)∩ (V (G)\S) and u 6= v. Therefore, N (x)∩
N (y)∩ (V (G)\S) 6= {v} for any two adjacent vertices x and
y of S which contradicts the given condition.
Therefore, βq (G\v)< βq (G)

Definition 3.12. Let G be a graph and S ⊂ V (G) be a ve-
quasi independent set. Then S is said to be a maximal ve-quasi
independent set if S is not properly contained in any ve-quasi
independent subset of G.
We may note that a ve-quasi independent set S is a maximal
ve-quasi independent set if and only if for each v ∈V (G)\S,
S∪{v} is not a ve-quasi independent set.

Theorem 3.13. Let G be a graph and S⊂V (G) be a ve-quasi
independent set then S is a maximal ve-quasi independent set
if and only if for each v ∈V (G)\S, one of the following two
conditions is satisfied.

(i) There are adjacent vertices x and y of S such that v is the
only common neighbor of x and y in V (G)\S.

(ii) There is a vertex x in S adjacent to v such that x and v do
not have a common neighbor in V (G)\S.

Proof. Suppose, S is a maximal ve-quasi independent set.
Let v ∈ V (G)\S. Now, S∪ {v} is not a ve-quasi indepen-
dent set. Therefore, there are adjacent vertices x and y of
S∪{v} such that x and y do not have a common neighbor in
V (G)\(S∪{v}).
Case (i): x 6= v and y 6= v
Then x,y ∈ S. Now x and y do not have a common neighbor in
V (G)\(S∪{v}). However x and y have a common neighbor
in V (G)\S. Therefore, v is the only common neighbor of x
and y in V (G)\S. Thus condition (i) is satisfied.
Case (ii): x = v or y = v
We may assume that y = v. Then x and v are adjacent ver-
tices and they do not have any common neighbor in V (G)\
(S∪{v}). Therefore, x and v do not have a common neighbor
in V (G)\S. Thus condition (ii) is satisfied.
Conversely, suppose S is ve-quasi independent set for which
condition (i) and (ii) are satisfied for each v ∈V (G)\S. Let
v ∈ V (G)\S. Suppose condition (i) is satisfied. Then x and
y are two vertices of S∪{v} which are adjacent and they do
not have a common neighbor in v ∈ V (G)\(S∪{v}). Sup-
pose condition (ii) is satisfied. Let x be a vertex of S such
that x is adjacent to v and x. And v do not have a common

vertex in v ∈ V (G)\S. Then x and v are adjacent vertices
of S∪{v} such that they do not have a common neighbor in
v ∈V (G)\(S∪{v}).
From both the above cases it follows that S is a maximal
ve-quasi independent set.

Obviously, every maximum ve-quasi independent set is a
maximal ve-quasi independent set. However, the converse is
not true.

Example 3.14. Consider the following graph G with vertices
{v1,v2,v3,v4,v5}

Figure 3. G

Let T = {v1,v2,v3,v4}. Then T is a maximum ve-quasi
independent set of G. Let S= {v1,v3,v5}. Then S is a maximal
ve-quasi independent set and |S| < |T |. Therefore, S is a
maximal ve-quasi independent set which is not a maximum
ve-quasi independent set.

Definition 3.15. Let G be a graph and S ⊂ V (G) be a ve-
quasi independent set. Then S is said to be a secured ve-
quasi independent set if for each v ∈ S, there is u in V (G)\S
which is adjacent to v such that (S\{v})∪{u} is a ve-quasi
independent set.

Example 3.16. Consider the following graph G with vertices
{v1,v2,v3,v4}

Figure 4. G

Let S = {v1,v3}. Then S is a secured ve-quasi independent
set of G.

Example 3.17. Consider the figure 3
Let S = {v1,v2,v3,v4}. Then S is not a secured ve-quasi

independent set of G.

Definition 3.18. Let G be a graph and S⊂V (G) be a secured
ve-quasi independent set then S is said to be a maximum
secured ve-quasi independent set if its cardinality is maximum
among all secured ve-quasi independent subsets of G.
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The cardinality of a maximum secured ve-quasi independent
set is called the secured ve-quasi independence number of the
graph G and it is denoted as βsq (G).

Proposition 3.19. Let G be a graph and suppose {M1,M2, ...,
Mk}, k ≥ 2 is the set of all maximum ve-quasi independent
sets of G. Suppose atleast one of them is a secured ve-quasi
independent set then M1∩M2∩ ...∩Mk = φ .

Proof. Suppose, M1∩M2∩ ...∩Mk 6= φ . Let v ∈M1∩M2∩
...∩Mk. Suppose for some j ( j ∈ {1,2, ...,k}), M j is a se-
cured ve-quasi independent set. Then v ∈ M j. There is a
neighbor u of v such that u /∈M j and N = (M j\{v})∪{u} is
a ve-quasi independent set. Now, |N| = |M j|. Therefore,
M is a maximum ve-quasi independent set and therefore
N ∈ {M1,M2, ...,Mk} and therefore v ∈ N which is a con-
tradiction. Thus, M1∩M2∩ ...∩Mk = φ .

Now, we give a necessary and sufficient condition un-
der which a ve-quasi independent set is a secured ve-quasi
independent set.

Theorem 3.20. Let G be a graph and S⊂V (G) be a ve-quasi
independent set. Then S is a secured ve-quasi independent
set if and only if for each v ∈ S there is a neighbor u of v in
V (G)\S, for each x,y in (S\{v})∪{u} one of the following
two conditions is satisfied

(i) v is a common neighbor of x and y.

(ii) There is a common neighbor of x and y in V (G)\S which
is different from u.

Proof. Suppose S is a secured ve-quasi independent set. Let
v ∈ S. Then there is a neighbor u of v in V (G)\S such that
(S\{v})∪{u} is a ve-quasi independent set.
Let x,y ∈ (S\{v})∪{u}.
Since (S\{v})∪{u} is ve-quasi independent set, x and y have
a common neighbor w outside (S\{v})∪{u}.
If w = v then condition (i) is satisfied. If w 6= v then x and
y have a common neighbor outside (S\{v})∪{u} which is
different from u. Thus condition (ii) is satisfied.
Conversely, suppose for each v ∈ S there is a neighbor u of v
in V (G)\S such that (i) or (ii) is satisfied.
Let v ∈ S and u ∈V (G)\S be a neighbor of v such that (i) or
(ii) is satisfied. Now, we prove that (S\{v})∪{u} is a ve-quasi
independent set. Let x,y ∈ (S\{v})∪{u}. Suppose condition
(i) is satisfied then v is a common neighbor of x and y outside
(S\{v})∪{u}. Suppose condition (ii) is satisfied. Then there
is a common neighbor w of x and y outside (S\{v})∪{u}
which is different from u.
This proves that (S\{v})∪{u} is a ve-quasi independent set.
Thus the theorem is proved.

Note that for any graph G, βsq (G)≤ βq (G).

Corollary 3.21. Let G be a graph. Then

(i) If βq (G) = 1 then βsq (G) = βq (G).

(ii) If βq (G)≥ 2 and if the intersection of all maximum ve-
quasi independent sets of G is non empty then βsq (G)<
βq (G).

Proof. (i) If βq (G)= 1 and βsq (G)≤ 1 it follows that βsq (G)
= 1 = βq (G).

(ii) Suppose, βq (G)≥ 2 and suppose the intersection of all
maximum ve-quasi independent sets of G is non-empty
then none of these maximum ve-quasi independent sets
can be a secured ve-quasi independent set.(by the above
property). Therefore, the cardinality of any maximum
secured ve-quasi independent set is strictly less than
βq (G). Thereofre, βsq (G)< βq (G).

Example 3.22. Consider the figure 3
In this graph, S = {v1,v2,v3,v4} is a maximum ve-quasi

independent set and therefore βq (G) = 4. Let T = {v1,v3,v5}.
Then T is a maximum secured ve-quasi independent set of G
and |T |= 3. Thus for this graph βsq (G)< βq (G).

Example 3.23. Consider the figure 1
Here, S1 = {v1,v2}, S2 = {v2,v3} and S3 = {v1,v3} are

all the maximum ve-quasi independent sets of C3 and S1 ∩
S2 ∩ S3 = φ . Also βq (C3) = 2 and the above sets are also
maximum secured ve-quasi independent sets and therefore
βsq (C3) = 2. Thus for this graph, βsq (C3)≮ βq (C3) although
βq (C3)≥ 2 .

Example 3.24. Consider the graph K2 with vertices {v1,v2}

Figure 5. P2

Here, βq (K2) = 1 and βsq (K2) = 1.

Proposition 3.25. Let G be a graph and v ∈ V (G). Then
βsq (G\v)≤ βsq (G).

Proof. Let S be a maximum secured ve-quasi independent set
of G\v. Let u ∈ S. Then there is a vertex u′ of G\v such that
u′ /∈ S. u′ is adjacent to u and (S\{u})∪{u′} is a ve-quasi
independent set of G\v. Note that (S\{u})∪{u′} is also a
ve-quasi independent set of G and u′ ∈ V (G)\S. Thus we
have proved that for each u in S there is a neighbor u′ of u in
V (G)\S such that (S\{u})∪{u′} is a ve-quasi independent
set of G. Thus, S is a secured ve-quasi independent set of G
also. Therefore, βsq (G)≥ |S|= βsq (G\v).

Theorem 3.26. Let G be a graph and v ∈V . Then βsq (G\v)
< βsq (G) if and only if for every maximum secured ve-quasi
independent set S of G not containing v atleast one of the
following two conditions holds

(i) There are adjacent vertices x and y of S such that v is the
only common neighbor of x and y in V (G)\S.
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(ii) There is a vertex u in S such that for every u′ in V (G\v)
\S, (S\{u})∪{u′} is not a ve-quasi independent set of
G\v.

Proof. First suppose that βsq (G\v)< βsq (G).
Let S be a maximum secured ve-quasi independent set of G
not containing v. Since |S|> βsq (G\v), S can not be a secured
ve-quasi independent set of G\v. Then one of the following
two possibilities arises.
Case (i): S is not a ve-quasi independent set of G\v.
In this case, there are adjacent vertices x and y of S such that
x and y have no common neighbor in (V (G\v)\S). However,
x and y have a common neighbor in V (G)\S. Therefore, v is
the only common neighbor of x and y in V (G)\S.
Case (ii): S is not a secured ve-quasi independent set of G\v.
Therefore, there is a vertex u of S such that for every neighbor
u′ of u in (V (G\v)\S), S\{u}∪{u′} is not a ve-quasi inde-
pendent set of G\v.
Thus, condition (i) or (ii) is satisfied.
Conversely, suppose for any maximum secured ve-quasi inde-
pendent set S of G not containing v, (i) or (ii) is satisfied.
Suppose, βsq (G\v) = βsq (G). Let T be a maximum secured
ve-quasi independent set of G\v. Now, T is a secured ve-quasi
independent set of G also. Since |T | = βsq (G\v) = βsq (G),
T is a maximum secured ve-quasi independent set of G not
containing v. Note that for any two adjacent vertices x and y
of S, x and y have a common neighbor in (V (G\v)\S). Thus
condition (i) is violated. Since S is a secured ve-quasi inde-
pendent set of G\v, for each u ∈ S there is a neighbor u′ of
u in (V (G\v)\S) such that (S\{u})∪{u′} is a ve-quasi inde-
pendent set of G\v. Therefore, condition (ii) is also violated.
Thus if we assume that βsq (G\v) = βsq (G) then both the con-
ditions (i) and (ii) are violated for some maximum secured
ve-quasi independent set S of G not containing v. This is a
contradiction.
Therefore, βsq (G\v)< βsq (G)

Example 3.27. Consider the figure 3
Here, S = {v1,v3,v5} is a secured ve-quasi independent

set of G. Therefore βsq (G) = 3. Consider the subgraph
G\{v5}. Then T = {v1,v3} is a secured ve-quasi independent
set of G\{v5}. Therefore βsq (G\v5) = 2. Thus, βsq (G\v5)<
βsq (G).
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