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On cocoloring of corona of graphs
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Abstract
A k-cocoloring of a graph G is a partition of the vertex set into k subsets such that each set induces either a
clique or an independent set in G. The cochromatic number z(G) of a graph G is the least k such that G has a
k-cocoloring of G. In this paper, we give exact bounds of the cochromatic number for the corona product of Path
graph with Pn,Kn,Cn,K1,n.
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1. Introduction
In this paper, a graph G = (V,E) is considered to be finite,

simple and undirected. For definition not give in this paper,
readers may kindly refer to [[4],[5]]. For S⊂V,〈{S}〉 denotes
the subgraph of G induced by S. A coloring of vertices of a
graph G = (V,E) is a partition {I1, I2, · · · , Ir} of V such that
for each 1 ≤ j ≤ r, I j is an independent set. The chromatic
number χ(G) the minimum size of such a partition. Clique
cover number θ(G) of a graph G is the minimum size of
a partition into cliques. The above two partition is based
only one condition that either all the sets are independent or
all the sets are cliques. Combining these two types, a new
partition was introduced by Lesinak and Straight [[6]]. They
call this as a cocoloring. A cocoloring of G is a partition
of V into independent sets and cliques. In other words, if
{I1, I2, · · · , Ir,C1,C2, · · · ,Cs} is a partition of V such that for
each i,1 ≤ i ≤ r, Ii is an independent set and for each j,1 ≤
j ≤ s,C j is a clique. The smallest size of a cocoloring is
the cochromatic number z(G). Research works were done
on finding the bounds of the cochromatic number of various
classes of graphs. In the case graph product, cocoloring of
lexicographic product some classes of graph were studied
under certain conditions. In graph product GpH will be taken

as Cartesian product V (G)×V (H) of the vertex sets of G
and H. Corona is not exactly a graph product. Here |V (G)|
copies of the second graph H is taken and each vertex of G
is adjacent to all the vertices of one of the copies of H. This
graph construction was introduced by Harary and Frucht in
1970[[2]]. In this paper, we have studied the corona of any two
graphs of the graph families of path, cycle, complete graph
and star. One general upper and lower bound of a particular
case and exact bounds of the products of graphs mentioned
above were also obtained.

2. Preliminaries
In this section, we give some prior results.

Proposition 2.1 ([3]). For any graph G,z(G) ≤
min{χ(G),θ(G)}.

Proposition 2.2 ([3]).
i. For n≥ 3,z(Pn) = 2

ii. For n≥ 1,z(Kn) = 1

iii. For n≥ 4,z(Cn) =

{
2, i f n is even
3, i f n is odd

iv. For m,n≥ 1,z(Km,n) = 2

3. Main Results
In this section, we have obtained (i) the lower and upper

bound of cochromatic number of corona of a trivial graph with
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any non trivial incomplete graph, (ii) an upper bound of z(G)
based on the chromatic number of G is obtained where G is
corona of a complete graph with any non trivial incomplete
connected graph. Some exact bounds of cochromatic number
of corona of combinations of any two graphs of Km,Pm,Cm
and K1,n are obtained. Throughtout this paper we follow the
notations given below.
Let G and H be any two graphs. Then in G◦H

(i) G and H are of order m and n respectively.

(ii) H i denotes the ith copy of H

(iii) V (G) = {u1,u2, · · · ,um},V (H) = {v1,v2, · · · ,vn},vi =
V (H i) = {vi1,vi2, · · · ,vin} where 1≤ i≤ m

(iv) If I is an independent set and C is clique in H, then IiCi

denote the corresponding independent and clique in H
respectively.

(v) The set V and E respectively denote V (G ◦H) and
E(G◦H)

observation 3.1. If I is an independent set in H, then
⋃m

j=1 I j
is an independent set in G◦H.

Theorem 3.2. Let H(6= Kn) be any non-trivial connected
graph. Then z(H)≤ z(K1 ◦H)≤ z(H)+1.

Proof. Since H is a non-trivial connected incomplete graph
z(H)≥ 2.
Let z(H) = k. Then the minimum cocoloring is obtained by
one of the following

(i) k independent sets or

(ii) k cliques

(iii) l independent sets and r cliques such that l + r = k.

we discuss the above three cases.
Case (i):
The minimum cocoloring is obtained only by partitioning into
k-independent sets. Then z(H) = χ(H).
Let S = {I1, I2, · · · , Ik} be a minimum cocoloring then there
can be atmost one Ii is singleton, otherwise union of two such
Ii and I j gives either 2K1 or K2. Hence z(H) can be reduced
to k−1, a contradiction.
Subcase (i) : |Ii|> 1∀i
Since u1 is adjacent to each v j’s, 〈Ii∪{u1}〉= K1, |Ii|, which
is neither a null graph nor a clique. Hence u1 cannot be com-
bined with any Ii. Hence S∪{u1} is a minimum cocoloring
of K1 ◦H.
∴ z(K1 ◦H) = z(H)+1
Subcase (ii): |Ii|= 1 for some i.
Then 〈Ii ∪{ui}〉 = K2. Hence {I1, I2, · · · Ii ∪{ui}, Ik} is a co-
coloring of K1 ◦H
∴ z(K1 ◦H) = z(H).
Case (ii): The minimum cocoloring is obtained only by parti-
tioning into k-cliques. Then z(H) = θ(H)

Let s = {C1,C2, · · ·Cs} be a minimum cocoloring. Clearly
Ci∪{ui} induces a clique of size |ci|+1.
Then {C1,C2, · · ·Ci∪{ui}, · · ·Cs} is a minimum clique parti-
tion of K1 ◦H.
z(K1 ◦H) = z(H).
Case (iii): The minimum cocoloring is obtained by partition-
ing into l-independent sets and r cliques, where l,r ≥ 1. As
in case (ii), u can be combined with any one of the r-cliques.
Here z(K1 ◦H) = z(H).

Corollary 3.3. If (H 6= Kn) is any non-trivial connected
graph. Then z(K1 ◦H) = z(H) + 1 if and only if z(H) =
χ(H)< θ(H) such that in every chromatic partition, each set
is of size atleast 2.

Theorem 3.4. For m,n≥ 1,z(Km ◦Kn) = min{m,n+1}

Proof. For 1≤ j ≤ n. Let I j = {v1 j,v2 j, · · · ,vi j, · · · ,vm j}.
Clearly I j contains exactly one vertex from each vi and hence
independent.
Claim: I j is maximal.
For any i,1≤ i≤ m,uivi j ∈ E. Hence no ui can be added to
I j. Consider any vrs. By notation vrs ∈ Vr. I j contains one
element vr j ∈Vr. Hence no vrs can be added to I j. Hence I j is
maximal. As the factor graphs are complete, no other way an
independent set can be formed. Hence I j is maximum. Here a
minimum cocoloring can be obtained in one of the following
ways.

(i) {ui}∪Vi induces a clique of size n+ 1. Hence V can
be partitioned into m-cliques of size n+1.

(ii) {I1, I2, · · · , In,V (Km)} is a cocoloring containing n in-
dependent sets and a set inducing a clique.

∴ z(Km ◦Kn) = min{m,n+1}

Theorem 3.5. Let H(6= Kn) be any non-trivial connected
graph with z(H) = χ(H) such that every minimum cocoloring
contain only independent sets. Then for m≥ 2,z(Km ◦H) =
z(H)+1

Proof. Let z(H) = χ(H) = k and I1, I2, · · · , Ik be a chromatic
partition of H. Then {Ii

1, I
i
2, · · · , Ii

k} is a chromatic partition of
H i. For 1≤ r ≤ k
Let Jr =

⋃m
i=1 Ii

r. Then Jr is an independent set in Km ◦H,
Whose union is

⋃m
i=1 V (H i).

Here {J1,J2, · · · ,Jk,V (Km)} is a cocoloring of Km ◦H.
z(Km ◦H)≤ z(H)+1.
Suppose for some j, |I j|= 1. Then ui∪ I j induce a star. Then a
cocoloring with respect to this partitioning gives a cocoloring
with k−1 independent sets and a clique.
z(Km ◦H)≤ k−1+m.
z(Km ◦H) = k if and only if m = 1, a contradiction.
Hence any cocoloring containing clique has atleast k−1,m−1
elements.
Hence z(Km ◦H) = z(H)+1.
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Corollary 3.6. If H is any bipartite, H 6= K2 , then z(Km ◦
H) = 3.

Theorem 3.7. For m≥ 2,n≥ 2,

z(Pm ◦Pn) =

{
2, i f m = n = 2
3,otherwise

Proof. For m,n≥ 2,Pm ◦Pn is 3-chromatic.
∴ z(Pm ◦Pn)≤ 3
If m = n = 2, then Pm ◦Pn is obtained by joining 2K3 by an
edge.
∴ z(Pm ◦Pn) = 2.
Suppose m≥ 3 or n≥ 3. Removal of a maximal independent
set gives a bipartite graph which is not K2. Removal of K3
gives a 3-chromatic graph which is not K3. Hence Pm ◦Pn
cannot have a 2-cocoloring.
Hence z(Pm ◦Pn) = 3.

Theorem 3.8. z(Pm ◦Cn) =


2, i f n≥ 3
3, i f n is even
4, i f n is odd

Proof. If m = 2 and n = 3. Then Pm ◦Cn = K2 ◦K3
By Theorem (3.4), z(Pm ◦Cn) = 2
For m≥ 2 or n≥ 3.

z(Pm ◦Cn) =

{
3, i f n is even
4, i f n is odd

By similar argument as in theorem (3.4), z(Pm ◦Cn)≥ 3 .
Now, let m≥ 2,n≥ 4 and n is even then as z(Pm ◦Cn) = 3
z(Pm ◦Cn) = 3.
Suppose m ≥ 2,n ≥ 4 and n is odd. Suppose Pm ◦Cn has a
3-cocoloring {I1, I2, I3}. Clearly all Ii’s cannot be indepen-
dent. To cover {ui∪V (ci

n)} 3-cliques are needed. Hence all
Ii’s cannot be cliques. Since n≥ 5, |V (Pm ◦Cn)| ≥ 10.
Removal of 2K3, gives a graph which contain 2P3 as a sub-
graph, a contradiction.
Hence Pm ◦Cn cannot have a 3-cocoloring with 2-cliques and
one independent. Now removal of one clique leaves a 4-
chromatic graph which is not K4 which cannot be partite into
two independent sets.
Hence Pm ◦Cn cannot have a 3-cocoloring since χ(Pm ◦Cn) =
4
z(Pm ◦Cn) = 4.

Theorem 3.9. For m,n≥ 3,z(Pm ◦Kn) = {m,n+1}

Proof. Since {ui}∪Ki
n induce Kn+1 and Pm is bipartite χ(Pm◦

Kn) = n+1. By similar discussion as in theorem(3.4),Pm ◦Kn
can be either partitioned into m-cliques of size n+1 or into
n+1 independent sets of size m.
Hence z(Pm ◦Kn) = min{m,n+1}.

Theorem 3.10. For m≥ 3,n≥ 2,χ(Cm ◦Pn) = 3

Proof. For m≥ 3,n≥ 2,χ(Cm ◦Pn) = 3.
Further Cm ◦Pn has atleast 3 disjoint K3’s. Hence Cm ◦Pn
cannot have 2-cocoloring. Hence the theorem.

Theorem 3.11. z(Pm ◦K1,n) = 3

Proof. In Pm ◦K1,n, {ui}∪K1,n induces the complete 3-partite
graph K1,1,n. Since Pm is bipartite and χ(K1,1,n) = 3.
By similar argument as before, z(Pm ◦K1,n) = 3.

4. Conclusion
In this paper, a general lower and upper bound of cochro-

matic number of corona of a trivial graph with any non trivial
incomplete graph is obtained. Also exact bounds of cochro-
matic number of corona of graphs G and H, where G and H
are complete graph, Path, cycle or a star are obtained.
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