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Abstract
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1. Introduction and Preliminaries
Present century saw various generalizations of metric

spaces raised in several ways. For example, S. G. Matthews
[12] defined partial metric space, Bakhtin [4] introduced b-
metric spaces, S. Shukla [15] Partial-b metric spaces and gen-
eralization of many results related to fixed point theories have
been studied in those spaces([3],[16],[17]). Nizar Souayah [9]
introduced partial Sb metric space as an extension of partial
b-metric spaces and studied few fixed point theorems. This
paper is a modification of [9] as well as an extension of the
study of partial Sb-metric spaces. Let’s provide few definitions
as ready references,

Definition 1.1. [13] An S-metric on a nonempty X is a func-
tion S : X3 −→ [0,∞) that satisfies the following conditions:
for all x,y,z,a ∈ X,

(s1) S(x,y,z) = 0⇔ x = y = z;

(s2) S(x,y, ,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a);

The pair (X ,S) is called an S-metric space.

Definition 1.2. [8] A mapping Sp : X3 −→ [0,∞), where X is
a non empty set, is said to be partial S-metric if whenever x, y,
z, t ∈ X the following conditions hold:

(i) x = y if and only if Sp(x,x,x) = Sp(y,y,y) = Sp(x,x,y);

(ii) Sp(x,x,x)≤ Sp(x,y,z);

(iii) Sp(x,x,y) = Sp(y,y,x);

(iv) Sp(x,y,z)≤ Sp(x,x, t)+Sp(y,y, t)+Sp(z,z, t)
−Sp(t, t, t)

The pair (X ,Sp) is called partial S-metric space.

Definition 1.3. [9] A mapping Sb : X3 −→ [0,∞), where X is
a non empty set, is said to be partial Sb-metric with coefficient
s≥ 1 if whenever x, y, z, t ∈ X the following conditions hold:

(i) x = y = z iff Sb(x,y,z) = Sb(x,x,x) = Sb(y,y,y)
= Sb(z,z,z);

(ii) Sb(x,x,x)≤ Sb(x,y,z);

(iii) Sb(x,x,y) = Sb(y,y,x);

(iv) Sb(x,y,z)≤ s[Sb(x,x, t)+Sb(y,y, t)+Sb(z,z, t)]
−Sb(t, t, t)

The pair (X ,Sb) is called partial Sb-metric space with coeffi-
cient s≥ 1.

Definition 1.4. [9] In a partial Sb-metric space (X ,Sb) a se-
quence {xn} is said to be convergent to x if lim

n→∞
Sb(xn,xn,x) =
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Sb(x,x,x). A Sequence {xn} is said to be a Cauchy sequence
in X if lim

n,m→∞
Sb(xn,xn,xm) exists. A partial Sb-metric space

(X ,Sb) is said to be complete if for every Cauchy sequence
{xn} in X there exists x ∈ X such that lim

n→∞
Sb(xn,xn,x) =

Sb(x,x,x) = lim
n,m→∞

Sb(xn,xn,xm)

2. Modification of the Results Appeared
in [9]

Let’s begin with the following example

Example 2.1. Let X = {0,1,2,3} and Sb(x,y,z) =| x− y |2
+ | y− z |2 + | z− x |2 +x. Define T : X −→ X by T 0 = 0,
T 1 = 0, T 2 = 1, T 3 = 2 which satisfies all the conditions
of Theorem 2.1 [9]. Clearly 0 is the unique fixed point of T
though Sb does not satisfy the partial symmetric condition
((iii) of Definition 1.3)[9] as seen in particular Sb(1,1,2) 6=
Sb(2,2,1)

Actually it is seen that all the results in the paper [9] can
be proved without using partial symmetric condition. Just for
simplicity of writing let’s call the revised metric weak partial
Sb-metric which is a generalization of Sb-metric. So,

Definition 2.2. A mapping Sb : X3 −→ [0,∞), where X is
a non empty set, is said to be weak partial Sb-metric with
coefficient s≥ 1 if the conditions (i), (ii) and (iv) of Definition
1.3 [9] hold.

Example 2.3. There is only one example in [9] (Example 1.5)
which is NOT for that the author CLAIMED for; it is a weak
partial Sb-metric space.

Example 2.4. Let X = {0,1,2,3} and define Sb : X3 −→ R+

by
Sb(x,y,z) =| x− y |2 + | y− z |2 + | z− x |2 +x. Then (X ,Sb)
is a weak partial Sb-metric space with coefficient s = 2 which
is neither partial Sb-metric space nor an S metric space
(since Sb(1,1,1) 6= 0) nor a partial S-metric space (since
Sb(0,0,3)> Sb(0,0,1)+Sb(0,0,1)+Sb(3,3,1)−Sb(1,1,1)).

It is noticed that in the Theorem 2.1 [9] (line 14 of page
355 and line 4 of page 356 ) author assumed T xn−1 = xn and
T xn = xn+1 respectively though he defined Fkx0 = xk for all
k ∈ N, where x0 is an arbitrary point of X and T n0 ≡ F for
some n0 ∈ N (line 8 of page 354) which is absurd.

Now few lines back the Example 2.1 shows that it is not
necessary for the space in Theorem 2.1 [9] to be a partial Sb-
metric space it may be weak partial Sb-metric space to ensure
existence and uniqueness of fixed point for such mappings.
The following theorem proves the fact in general.

Theorem 2.5. Let (X ,Sb) be a complete weak partial Sb-
metric space with coefficient s ≥ 1 and T : X −→ X be a
mapping satisfying the following condition

Sb(T x,Ty,T z)≤ λSb(x,y,z) ∀x,y,z∈ X , λ ∈ [0,1). (2.1)

Then T has a unique fixed point u ∈ X with Sb(u,u,u) = 0.

Proof. First we show that the fixed point of T is unique and
if u be a fixed point of T then Sb(u,u,u) = 0. Let u,v be
two distinct fixed point of T . i.e., Tu = u and T v = v. Let if
possible Sb(u,u,u)> 0. Then from equation (2.1),

Sb(u,u,u) = Sb(Tu,Tu,Tu)≤ λSb(u,u,u)< Sb(u,u,u), a
contradiction. Hence Sb(u,u,u) = 0. Similarly Sb(v,v,v) = 0.
Now

Sb(u,u,v) = Sb(Tu,Tu,T v)≤ λSb(u,u,v)< Sb(u,u,v).
Hence Sb(u,u,v) = 0⇒ u= v. Therefore T has a unique fixed
point.

Since λ ∈ [0,1), we can choose n0 ∈ N such that for a
given 0 < ε < 1, we have λ n0 < ε

8s . Let T n0 ≡ F and Fkx0 =
xk ∀k ∈ N, where x0 ∈ X . Then for all x,y,z ∈ X ,

Sb(Fx,Fy,Fz) = Sb(T n0x,T n0y,T n0z)≤ λ
n0Sb(x,y,z) (2.2)

Using inequality (2.2) for any k ∈ N, we have
max{Sb(xk+1,xk+1,xk),Sb(xk,xk,xk+1)}−→ 0 as k−→∞.

So we can choose l ∈ N such that
max{Sb(xl+1,xl+1,xl),Sb(xl ,xl ,xl+1)}< ε

8s .
Let us define a relation ρ on X by

yρx⇔ max{Sb(x,x,y),Sb(y,y,x)}−Sb(x,x,x)< ε

2 .
Let A = {y ∈ X : yρxl}. Since xlρxl , A 6= φ . Let xz ∈ A. Then
max{Sb(xl ,xl ,xz),Sb(xz,xz,xl)}−Sb(xl ,xl ,xl)<

ε

2 .
Using equation (2.2)

Sb(Fxz,Fxz,Fxl) <
ε

8s
[1+Sb(xl ,xl ,xl)].

Therefore

Sb(xl ,xl ,Fxz) ≤ s[2Sb(xl ,xl ,Fxl)+Sb(Fxz,Fxz,Fxl)]

−Sb(Fxl ,Fxl ,Fxl)

<
ε

2
+Sb(xl ,xl ,xl).

Similarly, Sb(Fxz,Fxz,xl)<
ε

2 +Sb(xl ,xl ,xl). Hence Fxz ρ xl
and consequently Fxz ∈ A. Since xl ∈ A therefore Fxl ∈ A.
Repeating this above process Fnxl ∈ A ∀n ∈ N. i.e., xm ∈ A
∀m≥ l. Let m > n≥ l and n = l + i. Then

Sb(xn,xn,xm) = Sb(Fxn−1,Fxn−1,Fxm−1)

≤ λ
in0Sb(xn−i,xn−i,xm−i)

< Sb(xl ,xl ,xm−i)

<
ε

2
+Sb(xl ,xl ,xl)< ε.

Thus {xn} is a Cauchy sequence in (X ,Sb). By completeness
of (X ,Sb) there exists u ∈ X such that

lim
n→∞

Sb(xn,xn,u)= lim
n,m→∞

Sb(xn,xn,xm)= Sb(u,u,u)= 0 (2.3)

Now we show that u is a fixed point of T . First,
Sb(u,u,xn)≤ s[2Sb(u,u,u)+Sb(xn,xn,u)]−Sb(u,u,u)

Passing limits we have lim
n→∞

Sb(u,u,xn) = 0 (2.4)
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For all n ∈ N,

Sb(u,u,Fu) ≤ s[2Sb(u,u,xn+1)+Sb(Fu,Fu,xn+1)]

−Sb(xn+1,xn+1,xn+1)

≤ s[2Sb(u,u,xn+1)+λ
n0Sb(u,u,xn)]

Using equation (2.3) and (2.4) we have Sb(u,u,Fu) = 0.
Also from equation (2.1) Sb(Fu,Fu,Fu) = 0. Hence Fu =
u. i.e., T n0u = u. Since {T nu} is a Cauchy sequence with

lim
n,m→∞

Sb(un,un,um) = 0, we have Tu = u.

Example 2.6. Let X = {0,1,2,3} and
Sb(x,y,z) = [max{x,y}]2+ | max{x,y} − z |2 as in the Ex-
ample 1.5 in [9]. Then (X ,Sb) is a complete weak par-
tial Sb-metric space which is not partial Sb-metric space
as Sb(1,1,2) 6= Sb(2,2,1). Define T : X −→ X by T 0 = 0,
T 1 = 0, T 2 = 1, T 3 = 2. Then T satisfies the condition of
Theorem 2.5 and T has a unique fixed point namely 0.

Now let’s look into the Theorem 2.2 [9]. The proof of
this theorem is confusing because the statement allows λ to
be any real number in [ 1

4 ,
1
3 ) and s = 2 but then 1−2sλ ≤ 0

and 1− 3sλ < 0 which does not allow the transition from
line number 5 to 6 of page 358 [9]. Here is a variant of the
Theorem 2.2 [9] as follows:

Theorem 2.7. Let (X ,Sb) be a complete weak partial Sb-
metric space with coefficient s such that 2s > 3 and T : X −→
X be a mapping satisfying the following condition

Sb(T x,Ty,T z)≤ λ [Sb(x,x,T x)+Sb(y,y,Ty)+Sb(z,z,T z)]

(2.5)

for all x,y,z∈ X, where λ ∈ [0, 1
2s ). Then T has a unique fixed

point u ∈ X with Sb(u,u,u) = 0.

Proof. Define a sequence xn+1 = T xn ∀n ∈ N. Using the
contraction principle (2.5) lim

n,m→∞
Sb(xn,xn,xm) = 0. i.e., {xn}

is a Cauchy sequence in (X ,Sb). By completeness of (X ,Sb)
there exists u ∈ X such that

lim
n→∞

Sb(xn,xn,u)= lim
n,m→∞

Sb(xn,xn,xm)= Sb(u,u,u)= 0 (2.6)

Now, Sb(u,u,xn)≤ s[2Sb(u,u,u)+Sb(xn,xn,u)]−Sb(u,u,u).
Taking limit and using (2.6) we have lim

n→∞
Sb(u,u,xn) = 0.

Claim: u is a fixed point of T . For

Sb(u,u,Tu) ≤ s[2Sb(u,u,xn+1)+Sb(Tu,Tu,xn+1)]

= s[2Sb(u,u,xn+1)+Sb(Tu,Tu,T xn)]

≤ s[2Sb(u,u,xn+1)+λ (2Sb(u,u,Tu)+

Sb(xn,xn,xn+1))]

Taking limit Sb(u,u,Tu) ≤ 2sλSb(u,u,Tu) < Sb(u,u,Tu), a
contradiction. Hence Sb(u,u,Tu) = 0. Also from (2.5)
Sb(Tu,Tu,Tu)≤ 3λSb(u,u,Tu) and consequently
Sb(Tu,Tu,Tu) = 0. Hence Tu = u. The uniqueness of the
fixed point u follows from the contraction principle.

Theorem 2.8. Let (X ,Sb) be a complete weak partial Sb-
metric space with coefficient s ≥ 1 and T : X −→ X be a
mapping satisfying the following condition for all x,y,z ∈ X,

Sb(T x,Ty,T z)≤ λ max{Sb(x,y,z),Sb(x,x,T x),

Sb(y,y,Ty),Sb(z,z,T z)} (2.7)

where λ ∈ [0, 1
2s ). Then T has a unique fixed point u ∈ X with

Sb(u,u,u) = 0.

Proof. For existence of fixed point let x0 ∈ X be arbitrary and
define a sequence {xn} by xn+1 = T xn ∀n ∈ N. Now for all
n ∈ N from (2.7) we obtain

Sb(xn,xn,xn+1)≤ λ
nSb(x0,x0,x1) (2.8)

Now for all n ∈ N,
Sb(T xn,T xn,T xn−1)
≤ λ max{Sb(xn,xn,xn−1),Sb(xn,xn,T xn),Sb(xn−1,xn−1,
T xn−1)}
= λ max{Sb(xn,xn,xn−1),Sb(xn,xn,xn+1),Sb(xn−1,xn−1,xn)}.

If max{Sb(xn,xn,xn−1),Sb(xn,xn,xn+1),Sb(xn−1,xn−1,xn)}
= Sb(xn,xn,xn−1)
Then Sb(xn+1,xn+1,xn)≤ λSb(xn,xn,xn−1)

⇒ Sb(xn+1,xn+1,xn)≤ λ
nSb(x1,x1,x0) (2.9)

If max{Sb(xn,xn,xn−1),Sb(xn,xn,xn+1),Sb(xn−1,xn−1,xn)}
= Sb(xn,xn,xn+1) then using (2.8) we have

Sb(xn+1,xn+1,xn)≤ λ
n+1Sb(x0,x0,x1) (2.10)

Similarly for the rest case

Sb(xn+1,xn+1,xn)≤ λ
nSb(x0,x0,x1) (2.11)

Using (2.10) and (2.11) we have for m,n ∈ N with m > n,

Sb(xn,xn,xm) ≤ 2sλ
n 1

1−2sλ
max{Sb(x0,x0,x1),

Sb(x1,x1,x0)}.

Passing through limits we have lim
n,m→∞

Sb(xn,xn,xm) = 0. Thus

{xn} is a Cauchy sequence in (X ,Sb). Since (X ,Sb) is com-
plete there exists u ∈ X such that

lim
n→∞

Sb(xn,xn,u) = lim
n,m→∞

Sb(xn,xn,xm) = Sb(u,u,u) = 0

(2.12)

It follows from (2.12)

lim
n→∞

Sb(u,u,xn) = 0. (2.13)

Now we will show u is a fixed point of T . For all n ∈ N,

Sb(u,u,Tu) ≤ s[2Sb(u,u,xn+1)+Sb(Tu,Tu,T xn)]

−Sb(xn+1,xn+1,xn+1)

≤ s[2Sb(u,u,xn+1)+λ max{Sb(u,u,xn),

Sb(u,u,Tu),Sb(xn,xn,xn+1)}]

146



Fixed point theorems in partial Sb-metric spaces — 147/150

⇒ Sb(u,u,Tu) ≤ λ sSb(u,u,Tu) < Sb(u,u,Tu), a contradic-
tion.
⇒ Sb(u,u,Tu) = 0.

Sb(Tu,Tu,Tu) ≤ 3sSb(Tu,Tu,T xn)

≤ 3sλ max{Sb(u,u,xn),Sb(u,u,Tu),

Sb(xn,xn,xn+1)}

Passing through limits we have Sb(Tu,Tu,Tu) = 0. Hence
Tu = u. Uniqueness of the fixed point directly follows from
the contraction principle.

Example 2.9. Let X = {0,1,2,3} and
A = {(x,y,z) : x,y,z ∈ {0,2}} \ (0,0,0). Define Sb : X3 −→
R+ by

Sb(x,y,z) = 5 | x− y |2 +5 | y− z |2 +5 | z− x |2 +x4

if(x,y,z) /∈ A

= 2 if (x,y,z) ∈ A.

Then (X ,Sb) is a complete weak partial Sb-metric space with
coefficient s = 2. Define T : X −→ X by

T 0 = 0, T 1 = 2, T 2 = 0, T 3 = 0
T satisfies all the conditions of Theorem 2.8 and T has a fixed
point namely 0. But, since Sb(1,1,2) 6= Sb(2,2,1) Theorem
2.3 of [9] is not applicable.

3. Fixed point Theorem using
F-contraction

As in [18], Let (X ,d) be a metric space. A mapping
T : X −→ X is said to be F-contraction if there exists a τ > 0
such that
∀x,y∈X ,d(T x,Ty)> 0⇒ τ+F(d(T x,Ty))≤F(d(x,y))

where F : R+ −→ R is a mapping satisfying the following
conditions:
(1) F is strictly increasing, (2) For each sequence {αn} of pos-
itive real numbers, lim

n→∞
αn = 0 if and only if lim

n→∞
F(αn) =−∞

and (3) there exists k ∈ (0,1) such that lim
α→0+

αkF(α) = 0.

In 2016 Piri and Kumam [3] describe a large class of
function by taking an additional condition that F is continuous
on (0,∞) and neglecting condition (2) and (3). Let F be the
family of all functions F : R+ −→ R such that

(F1) F is srtictly increasing.

(F2) F is continuous on (0,∞).

and U be the set of all function ψ : [0,∞)−→ [0,∞) such that
ψ is continuous and ψ(t) = 0 if and only if t = 0.

Definition 3.1. A mapping f : (X ,Sb) −→ (Y,Sb) is said to
be continuous at a point x if for every sequence {xn} in X
convergent to x, then lim

n→∞
f (xn) = f (x) and a function f is

continuous on X if every f is continuous at every point x ∈ X.

Lemma 3.2. If a sequence {xn} in (X ,Sb) converges to two
different limits x and y with Sb(x,x,x) = 0 and Sb(y,y,y) =
0 then x = y. Moreover if {yn} be a sequence in X with
Sb(xn,xn,yn) = 0 then {yn} also converges to x.

Lemma 3.3. [11] Let (X ,Sb) be a partial Sb-metric space
with the coefficient s≥ 1. Let {xn} and {yn} be two sequences
in X converges to x and y respectively. Then 1

s2 Sb(x,x,y)−
2
s Sb(x,x,x)−2Sb(y,y,y)≤ lim

n→∞
in f Sb(xn,xn,yn)

≤ lim
n→∞

supSb(xn,xn,yn)≤ 2sSb(x,x,x)+2s2Sb(y,y,y)

+ s2Sb(x,x,y). Moreover for all z ∈ X,
1
s Sb(x,x,z)−2Sb(x,x,x)≤ lim

n→∞
in f Sb(xn,xn,z)

≤ lim
n→∞

supSb(xn,xn,z)≤ sSb(x,x,z)+2sSb(x,x,x).

Theorem 3.4. Let (X ,Sb) be a complete partial Sb-metric
space with coefficient s ≥ 1. Let S, T be mappings on X
satisfying the following:

(a) S is continuous;

(b) T (X) subset of S(X);

(c) S and T commute, i.e., ST = T S ∀x ∈ X;

and for all x,y ∈ X with Sx 6= T x or Sy 6= Ty
1
3s Sb(Sx,Sx,T x)≤ Sb(Sx,Sx,Sy)
⇒ F(s4Sb(T x,T x,Ty))≤ F(GS,T (x,y))−ψ(GS,T (x,y)),
where GS,T (x,y) = max{Sb(Sx,Sx,Sy),Sb(Sx,Sx,T x),
Sb(Sy,Sy,Ty), Sb(Sx,Sx,Ty)+Sb(Sy,Sy,T x)

4s3 }, F ∈ F and ψ ∈ U .
Then there exists a common fixed point of S and T .

Proof. By condition (b), we can define a mapping I on X
satisfying SIu = Tu ∀u ∈ X and I commutes with S. Let
x0 = x and xn = Inx0 ∀n ∈ N. Then xn+1 = Ixn and Sxn+1 =
T xn ∀n ∈ N. Let for all n ∈ N, Sb(Sxn,Sxn,Sxn+1) 6= 0. Now

1
3s

Sb(Sxn,Sxn,T xn) =
1
3s

Sb(Sxn,Sxn,Sxn+1)

< Sb(Sxn,Sxn,Sxn+1).

So by the hypothesis

F(Sb(Sxn+1,Sxn+1,Sxn+2)) = F(Sb(T xn,T xn,T xn+1))

≤ F(GS,T (xn,xn+1))

−ψ(GS,T (xn,xn+1))

Now max{Sb(Sxn,Sxn,Sxn+1),Sb(Sxn+1,Sxn+1,Sxn+2)}

≤ GS,T (xn,xn+1)

= max{Sb(Sxn,Sxn,Sxn+1),Sb(Sxn+1,Sxn+1,Sxn+2),

Sb(Sxn,Sxn,Sxn+2)+Sb(Sxn+1,Sxn+1,Sxn+1)

4s3 }

= max{Sb(Sxn,Sxn,Sxn+1),Sb(Sxn+1,Sxn+1,Sxn+2)}
So we have

F(Sb(Sxn+1,Sxn+1,Sxn+2)≤ F(max{Sb(Sxn,Sxn,Sxn+1),

Sb(Sxn+1,Sxn+1,Sxn+2)})−ψ(max{Sb(Sxn,Sxn,Sxn+1),

Sb(Sxn+1,Sxn+1,Sxn+2)}). (3.1)
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max{Sb(Sxn,Sxn,Sxn+1),Sb(Sxn+1,Sxn+1,Sxn+2)}
= Sb(Sxn+1,Sxn+1,Sxn+2) leads to a contradiction. Therefore
from equation (3.1)

F(Sb(Sxn+1,Sxn+1,Sxn+2))≤ F(Sb(Sxn,Sxn,Sxn+1))

−ψ(Sb(Sxn,Sxn,Sxn+1)).

Using monotonocity of F we have Sb(Sxn+1,Sxn+1,Sxn+2)≤
Sb(Sxn,Sxn,Sxn+1), for all n ∈ N. So, {Sb(Sxn,Sxn,Sxn+1)}
is a non increasing sequence. So there exists a α > 0 such
that lim

n→∞
Sb(Sxn,Sxn,Sxn+1) = α .

So from (3.1) we have F(α)≤ F(α)−ψ(α)⇒ ψ(α) = 0
⇒ α = 0. i.e.,

lim
n→∞

Sb(Sxn,Sxn,Sxn+1) = 0 (3.2)

Now we will show that lim
n,m→∞

Sb(Sxn,Sxn,Sxm) = 0. Suppose

the contrary, i.e., lim
n,m→∞

Sb(Sxn,Sxn,Sxm) 6= 0. Let ε > 0 and

{pn} and {qn} be two sequence of natural numbers such that
for all n ∈ N, p(n)> q(n)> n,

Sb(Sxp(n),Sxp(n),Sxq(n))≥ ε,
Sb(Sxp(n)−1,Sxp(n)−1,Sxq(n))< ε

}
(3.3)

Observe

ε ≤ Sb(Sxq(n),Sxq(n),Sxp(n)−1)

≤ s[2Sb(Sxq(n),Sxq(n),Sxq(n))

+Sb(Sxp(n)−1,Sxp(n)−1,Sxq(n))]

< sε.

ε ≤ Sb(Sxp(n),Sxp(n),Sxq(n))

≤ s[2Sb(Sxp(n),Sxp(n),Sxp(n)−1)

+Sb(Sxq(n),Sxq(n),Sxp(n)−1)]

≤ s2
ε.

So,

ε ≤ lim
n→∞

sup Sb(Sxp(n),Sxp(n),Sxq(n))≤ s2
ε (3.4)

In a similar way using (3.4)

ε

s
≤ lim

n→∞
sup Sb(Sxp(n),Sxp(n),Sxq(n)+1)≤ 2s3

ε (3.5)

Similarly we can show that

ε

s
≤ lim

n→∞
sup Sb(Sxq(n),Sxq(n),Sxp(n)+1)≤ 2s4

ε (3.6)

lim
n→∞

sup Sb(Sxp(n)+1,Sxp(n)+1,Sxq(n)+1)≥
ε

s2 (3.7)

For each positive integer n≥ N

1
3s

Sb(Sxp(n),Sxp(n),T xp(n)) < Sb(Sxp(n),Sxp(n),Sxp(n)+1)

< ε

< Sb(Sxp(n),Sxp(n),Sxq(n))

Then for all n≥ N, by the hypothesis we have
F(s4Sb(T xp(n),T xp(n),T xq(n))

≤ F(GS,T (xp(n),xq(n)))−ψ(GS,T (xp(n),xq(n))) (3.8)

Now Sb(Sxp(n),Sxp(n),Sxq(n))

≤ GS,T (xp(n),xq(n))

= max{Sb(Sxp(n),Sxp(n),Sxq(n)),

Sb(Sxp(n),Sxp(n),Sxp(n)+1),

Sb(Sxq(n),Sxq(n),Sxq(n)+1),

Sb(Sxp(n),Sxp(n),Sxq(n)+1)

4s3

+
Sb(Sxq(n),Sxq(n),Sxp(n)+1)

4s3 }

⇒ ε ≤ lim
n→∞

sup GS,T (xp(n),xq(n))≤ s2ε (using (3.2)-(3.7)).

⇒ F(s2ε)≤ F(s2ε)−ψ(ε), a contradiction.
Hence, lim

n,m→∞
Sb(Sxn,Sxn,Sxm) = 0. Hence {Sxn} is a Cauchy

sequence in (X ,Sb). Similarly, lim
n,m→∞

Sb(SSxn,SSxn,SSxm) =

0. By completeness of (X ,Sb) there exists z ∈ X such that
{Sxn} converges to z. Since S is continuous, {SSxn} conver-
gent to Sz. Now we will prove Sz = z. We consider two cases.
In the first case when the set

{n : Sb(Sxn,Sxn,T xn)> Sb(Sxn,Sxn,SSxn)}

is infinite, there exists a subsequence {xn j} of {xn} such that
Sb(Sxn j ,Sxn j ,T xn j)> Sb(Sxn j ,Sxn j ,SSxn j).

lim
j→∞

Sb(SSxn j ,SSxn j ,Sxn j) ≤ lim
j→∞

Sb(Sxn j ,Sxn j ,T xn j)

= 0.

So by Lemma 3.2 we have Sz = z.
In the second case when the set {n : Sb(Sxn,Sxn,T xn)>

Sb(Sxn,Sxn,SSxn)} is finite, there exists M1 ∈ N such that
Sb(Sxn,Sxn,T xn) ≤ Sb(Sxn,Sxn,SSxn) ∀n ≥ M1. So by the
assumption
1
3s Sb(Sxn,Sxn,T xn)≤ Sb(Sxn,Sxn,T xn)≤ Sb(Sxn,Sxn,SSxn)
∀n≥M1. So from the hypothesis

F(s4Sb(T xn,T xn,T Sxn) ≤ F(GS,T (xn,Sxn))

− ψ(GS,T (xn,Sxn)) (3.9)

Now Sb(Sxn,Sxn,SSxn)

≤ GS,T (xn,Sxn)

= max{Sb(Sxn,Sxn,SSxn),Sb(Sxn,Sxn,T xn),

Sb(SSxn,SSxn,T Sxn),

Sb(Sxn,Sxn,T Sxn)+Sb(SSxn,SSxn,T xn)

4s3 }
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⇒ 1
s2 Sb(z,z,Sz)≤ lim

n→∞
sup GS,T (xn,Sxn)≤ s2Sb(z,z,Sz).

From (3.9) we have

F(s4 1
s2 Sb(z,z,Sz)) ≤ F(s2Sb(z,z,Sz))

−ψ(
1
s2 Sb(z,z,Sz))

⇒ Sb(z,z,Sz) = 0⇒ z = Sz.
Now we will show that z is a fixed point of T . First prove
for all n ∈ N

1
3s

Sb(SSxn,SSxn,T Sxn)≤ Sb(SSxn,SSxn,z) (3.10)

or

1
3s

Sb(ST xn,ST xn,T 2xn)≤ Sb(ST xn,ST xn,z) (3.11)

holds. Contrapositively let there exists m ∈ N such that
1
3s Sb(SSxm,SSxm,T Sxm)> Sb(SSxm,SSxm,z)
and 1

3s Sb(ST xm,ST xm,T 2xm)> Sb(ST xm,ST xm,z)
Then,

3sSb(SSxm,SSxm,z) < Sb(SSxm,SSxm,T Sxm)

≤ s[2Sb(SSxm,SSxm,z)

+Sb(T Sxm,T Sxm,z)]

⇒ Sb(SSxm,SSxm,z)< Sb(T Sxm,T Sxm,z). Now

Sb(ST xm,ST xm,T 2xm) = Sb(SSxm+1,SSxm+1,SSxm+2)

≤ Sb(SSxm,SSxm,SSxm+1)

≤ s[2Sb(SSxm,SSxm,z)

+Sb(SSxm+1,SSxm+1,z)]

< 3sSb(T Sxm,T Sxm,z)

< Sb(ST xm,ST xm,T 2xm)

This is a contradiction. So (3.10) or (3.11) holds. From (3.10)
F(s4Sb(T Sxn,T Sxn,T z))≤F(GS,T (Sxn,z))−ψ(GS,T (Sxn,z))
⇒ Sb(z,z,T z) = 0⇒ T z = z. Similarly from (3.11) we have
T z = z.

Example 3.5. Let X = {0,1,2,3}. Let A= {(1,1,0),(0,0,1),
(1,0,0)}, B = {(x,x,y) : ∀x,y ∈ X}rAr (0,0,0) and
C = {(x,x,x) : ∀x 6= 0 ∈ X}.

Sb(x,y,z) =
1

500
if x = y = z = 0

=
1
16

if (x,y,z) ∈ A

=
3
2

if(x,y,z) ∈ B

=
1
20

if(x,y,z) ∈C

= 4 otherwise.

Then Sb is a partial-S-b metric on X with coefficient 2. Let
F(x) = logx and ψ(t) = 0.01t

10+t . we define S,T : X −→ X by

S =

(
0 1 2 3
0 0 1 2

)
and T =

(
0 1 2 3
0 0 0 1

)
. Then

ST = TA and S is continuous. Also T (X) ⊂ S(X). S and T
satisfies the assumption of Theorem 3.3 and 0 is the common
fixed point of S and T .

4. Conclusion
All the results of the article [9] were done using symmetric

condition, whereas the same results have been produced in the
present article in less condition, i.e., without using symmetric
condition with necessary modifications and corrections. In
this article we define weak partial metric space and established
a fixed point theorem using F- contraction which can be stud-
ied further more for more characterization of completeness of
this space.
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