

Vague positive implicative filter of BL- algebras

S. Yahya Mohamed 1* and P. Umamaheswari 2

Abstract

In this paper, the concept of vague positive implicative filter (VPIF) of *BL*-algebra is introduced. Investigate some important properties of vague positive implicative filter (VPIF) of *BL*-algebras with illustrations. Further, we discuss some equivalent conditions of vague filter (VF) of *BL*-algebras. Finally, we obtain the necessary condition of vague Boolean filter (VBF) is a vague positive implicative filter (VPIF).

Keywords

BL-algebra; Filter; Vague set (VS); Vague Filter (VF); Vague Boolean Filter (VBF); Vague positive implicative filter (VPIF).

AMS Subject Classification

03B47, 03G25, 03E70, 03E72.

©2020 MJM.

Contents

1	Introduction	. 166
2	Preliminaries	. 166
3	Vague positive implicative filter	. 167
4	Conclusion	. 170
	References	. 170

1. Introduction

L.A. Zadeh [12] introduced the notion of fuzzy set (FS) theory in 1965. The concept of intuitionistic fuzzy sets was introduced by Atanassov [1, 2] in 1986 as an extension of fuzzy set(FS). Hajek [4] introduced the concept of BL-algebras as the structures for Basic Logic. Gau and Buehrer [3] proposed the concept of vague set(VS) in 1993, by replacing the value of an element in a set with a subinterval of [0, 1]. Thus, the grade of membership in vague set S is subinterval $[t_{\delta}(x), 1 - f_{\delta}(x)]$ of [0, 1]. The authors [8], [9], and [10] introduced the notions of vague filter (VF), vague prime (VP), Boolean filters (BFs) and vague implicative filter (VIF) of BL-algebras and investigate some of their related properties with exemplifications. The aim of this paper, we introduce the definition of vague positive implicative filter(VPIF) of BL-algebras, and investigate some important properties with exemplifications.

2. Preliminaries

In this section, we recall some basic knowledge of *BL*-algebras, vague sets and vague filters and their properties which are helpful to develop the main results.

Definition 2.1. [4] The A BL-algebras is an algebra $(A, \vee, \wedge, *, 0, 1)$ of type (2, 2, 2, 2, 0, 0) such that

- (i) $(A, \vee, \wedge, 0, 1)$ is a bounded lattice,
- (ii) (A, *, 1) is a commutative monoid,
- (iii) * and \mapsto form an adjoint pair, that is, $w \le u \mapsto v$ if and only if $u * w \le v$,
- (iv) $u \wedge v = u * (u \mapsto v)$,
- (v) $(uv) \lor (v \mapsto u) = 1$ for all $u, v, w \in A$.

Definition 2.2. [4] In a BL-algebra A, the following properties hold for all $u, v, w \in A$,

(i)
$$v \mapsto (u \mapsto w) = u \mapsto (v \mapsto w) = (u * v) \mapsto w$$
,

- (ii) $1 \mapsto u = u, u \mapsto u = 1, u \mapsto (v \mapsto u) = 1,$ $u \mapsto 1 = 0 \mapsto u = 1,$
- (iii) $u \le v$ if and only if $u \mapsto v = 1$,
- (iv) $u \lor v = ((u \mapsto v) \mapsto v) \land ((v \mapsto u) \mapsto u),$

¹PG and Research Department of Mathematics, Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli-620020, Tamil Nadu. India.

² Research Scholar, PG and Research Department of Mathematics, Government Arts College, Affiliated to Bharathidasan University, Tiruchirappalli-620020, Tamil Nadu, India.

^{*}Corresponding author: 1 yahya_md@yahoo.com; 2 umagactrichy@gmail.com Article History: Received 12 August 2019; Accepted 06 December 2019

- (v) $u \le v$ implies $v \mapsto w \le u \mapsto w$,
- (vi) $u \le v$ implies $w \mapsto u \le w \mapsto v$,
- (vii) $u \mapsto v \leq (w \mapsto u) \mapsto (w \mapsto v)$,
- (viii) $u \mapsto v \le (v \mapsto w) \mapsto (u \mapsto w)$,

Definition 2.3. [3] Let D[0,1] denote the family of all closed subintervals of [0,1]. Now we define refined maximum (rmax) and " \geq " on elements $D_1 = [p_1,q_1]$ and $D_2[p_2,q_2]$ of D[0,1] as $rmax(D_1,D_2) = [max\{p_1,p_2\},max\{q_1,q_2\}]$. Similarly, we can define " \leq ", = and rmin.

Definition 2.4. [8] Let S be VS of a BL-algebra A is called a vague filter(VF) of A if it satisfies the following axioms.

- (i) $V_S(1) \ge V_S(u)$,
- (ii) $V_S(v) \ge rmin\{V_S(u \mapsto v), V_S(u)\}\ for\ all\ u, v \in A.$

Proposition 2.5. [8] Every VF Sof BL-algebra A is order preserving.

Proposition 2.6. [8] Let S be a vague set of BL-algebra A. Let S be a VF of A. Then the following hold if for all $u, v, w \in A$,

- (i) If $V_S(u \mapsto v) = V_S(1)$ then $V_S(u) \le V_S(v)$,
- (ii) $V_S(u \wedge v) = rmin\{V_S(u), V_S(v)\},\$
- (iii) $V_S(u * v) = rmin\{V_S(u), V_S(v)\},\$
- (iv) $V_S(0) = rmin\{V_S(u), V_S(u^-)\},\$
- (v) $V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto v), V_S(v \mapsto w)\},$
- (vi) $V_S(u \mapsto v) \leq V_S(u * w \mapsto v * w)$,
- (vii) $V_S(u \mapsto v) < V_S((v \mapsto w) \mapsto (u \mapsto w)),$
- (viii) $V_S(u \mapsto v) \leq V_S((w \mapsto u) \mapsto (w \mapsto v)),$
- (ix) $u \mapsto v^- = v \mapsto u^- = u^{--} \mapsto v^- = (u * v)^-$.

3. Vague positive implicative filter

In this part, we introduce a notion of VPIF and investigate some related properties with exemplifications.

Definition 3.1. Let S be a VF of BL-algebra A. S is called a VPIF, if it satisfies,

- (i) $V_S(1) \ge V_S(u)$,
- (ii) $V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto (v \mapsto w), V_S(u \mapsto v)\}\ for\ all\ u, v, w \in A.$

Example 3.2. Let $A = \{0, p, q, r, 1\}$. Define $u \land v = min\{u, v\}$, $u \lor v = max\{u, v\}$ and "*" and " \mapsto " given by the following tables I and II.

*	0	p	q	1
0	0	0	0	0
p	0	p	p	p
q	0	p	q	q
1	0	p	q	1

Table I:"*" operator

\mapsto	0	p	q	1
0	1	1	1	1
p	0	1	1	1
q	0	p	1	1
1	0	p	q	1

Table II:" \mapsto " operator

Then $(A, \lor, \land, *, \mapsto, 0, 1)$ is a BL-algebra. Define VSS of A as follows:

$$S = \{(0, [0.2, 0.5]), (p, [0.2, 0.5]), (q, [0.2, 0.5]),$$
$$(r, [0.4, 0.7]), (1, [0.7, 0.7])\}.$$

It is easily verify that S is a VPIF of A.

Proposition 3.3. Every VPIF is a vague filter.

Proof. Let *S* be a VPIF of *A*. Then taking u=1 in (ii) of definition 3.1, we have $V_S(1 \mapsto w) \ge rmin\{V_S(1 \mapsto (v \mapsto w), V_S(1 \mapsto v)\}$ for all $u, v, w \in A$.

$$V_S(w) \ge rmin\{V_S((v \mapsto w), V_S(v))\}$$

From (ii) proposition 2.6 and (i) of definition 3.1 is exist. Thus, S be a VF of A.

Converse of the proposition 3.3 may not be true. We prove this by the example as shown below

Example 3.4. Let $A = \{0, p, q, r, 1\}$. Define $u \land v = min\{u, v\}$, $u \lor v = max\{u, v\}$ and "*" and " \mapsto " given by the following tables III and IV

*	0	p	q	r	1
0	0	0	0	0	0
p	0	0	0	p	p
q	0	p	q	p	q
r	0	0	0	r	r
1	0	p	\overline{q}	r	1

Table III:"*" operator

\mapsto	0	p	q	r	1
0	1	1	1	1	1
p	r	1	1	1	1
q	r	r	1	r	1
r	0	q	q	1	1
1	0	p	q	r	1

Table IV:" \mapsto " operator

Then, $(A, \lor, \land, *, \mapsto, 0, 1)$ is a BL-algebra. Define a VSS of A as follows:

$$S = \{(0, [0.1, 0.2]), (p, [0.3, 0.4]), (q, [0.3, 0.4]), (1, [0.5, 0.9])\}$$

. It is easily verify that S is a VF, but S is not a VPIF of A. Since

$$V_S(q \mapsto p) = V_S(q)$$
= [0.3, 0.4]
< $rmin\{V_S(q \mapsto (q \mapsto p)), V_S(q \mapsto q)\}$
= $V_S(1) = [0.5, 0.9].$

Next, we obtain some characteristics of VPIFs as follows.

Proposition 3.5. Let S be VF of A. The following are equivalent for all $u, v, w \in A$.

- (i) S is a VPIF,
- (ii) $V_S(u \mapsto v) \ge V_S(u \mapsto (u \mapsto v))$,
- (iii) $V_S(u \mapsto v) = V_S(u \mapsto (u \mapsto v)),$
- (iv) $V_S(u \mapsto (v \mapsto w)) \leq V_S((u \mapsto v) \mapsto (u \mapsto w)),$
- (v) $V_S(u \mapsto (v \mapsto w)) = V_S((u \mapsto v) \mapsto (u \mapsto w)),$
- (vi) $V_S((u * v) \mapsto w) = V_S((u \land v) \mapsto w)$.

Proof. $(i) \Rightarrow (ii)$

Let S be a VPIF of A.

Then from (ii) definition 3.1, we have

$$V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto (v \mapsto w)), V_S(u \mapsto v)\}$$
(3.1)

for all $u, v, w \in A$.

Put
$$w = v$$
 and $v = u$ in (3.1), we get

$$V_S(u \mapsto v) \ge rmin\{V_S(u \mapsto (u \mapsto v), V_S(u \mapsto u)\}$$
[From (ii) of Proposition 2.5]
$$= rmin\{V_S(u \mapsto (u \mapsto v), V_S(1)\}\}$$
[From (ii) of Proposition 2.5]
$$= V_S(u \mapsto (u \mapsto v)$$
[From Definition 2.2]

Thus, we have

$$V_S(u \mapsto v) > V_S(u \mapsto (u \mapsto v)).$$

$$(ii) \Rightarrow (iii)$$

Since $u \mapsto v \leq u \mapsto (u \mapsto v)$, from proposition 2.6, we have $V_S(u \mapsto v) \leq V_S(u \mapsto (u \mapsto v))$ for all $u, v \in A$, and from (ii), we get

$$V_S(u \mapsto v) = V_S(u \mapsto (u \mapsto v)).$$

$$(iii) \Rightarrow (i)$$

If S is a VF of A.

The from (v) of proposition 2.6 and (i) of Prop. 2.5, we have

$$V_S(u \mapsto (u \mapsto w)) \ge rmin\{V_S(u \mapsto v), V_S(v \mapsto (u \mapsto w))$$

= $rmin\{V_S(u \mapsto v), V_S(u \mapsto (v \mapsto w))\}.$

Then from (iii), we have $V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto v), V_S(u \mapsto (v \mapsto w))\}$ and from (i) of definition 3.1, we get S is a VPIF. (i) \Rightarrow (iv)

If S is a VPIF of A. Then from (ii) of definition 3.1, we have

$$V_S(u \mapsto ((u \mapsto v) \mapsto w))$$

$$\geq rmin\{(wV_S(u \mapsto (v \mapsto w) \mapsto (((u \mapsto v) \mapsto w))), V_S((u \mapsto (v \mapsto w)))\}.$$

From (i), (vii) and (viii) of the proposition 2.5, we have

$$V_S(u \mapsto ((u \mapsto v) \mapsto w))$$

$$= V_S((u \mapsto v) \mapsto (u \mapsto w)) \text{ and }$$

$$V_S(u \mapsto (v \mapsto w) \mapsto ((u \mapsto v) \mapsto w))))$$

$$= V_S((u \mapsto v) \mapsto ((u \mapsto v) \mapsto (u \mapsto w)))$$

$$= V_S(1)$$

It follows that,

$$V_{S}((u \mapsto v) \mapsto (u \mapsto w))$$

$$\geq rmin\{V_{S}(1), V_{S}(u \mapsto (v \mapsto w))\}$$

$$= V_{S}(u \mapsto (v \mapsto w))$$

[From the Definition 2.3]

 $(iv) \Rightarrow (v)$ Since

$$u \mapsto (v \mapsto w) = v \mapsto (u \mapsto w)$$
$$= (1 \mapsto v) \mapsto (u \mapsto w)$$
$$\geq (u \mapsto v) \mapsto (u \mapsto w),$$

From the proposition 2.6, we have

$$V_S(u \mapsto (v \mapsto w)) \ge V_S((u \mapsto v) \mapsto (u \mapsto w))$$

From (iv), we get

$$V_S(u \mapsto (v \mapsto w)) = V_S((u \mapsto v) \mapsto (u \mapsto w)).$$

 $(v) \Rightarrow (vi)$ Since

$$u \mapsto (v \mapsto w) = u * v \mapsto w \text{ and}$$

 $(u \land v) \mapsto w = (u * (u \mapsto v)) \mapsto w$
 $= (u \mapsto v) \mapsto (u \mapsto w)$

From (v) we have

$$V_S((u * v) \mapsto w) = V_S((u \wedge v) \mapsto w).$$

$$(vi) \Rightarrow (i)$$

If *S* is a VF of *A*, then $V_S(1) \ge V_S(u)$. From (v) of proposition 3.3 and (i) of proposition 2.5, we have

$$V_S(u \mapsto (u \mapsto w))$$

$$\geq rmin\{V_S(u \mapsto v), V_S(v \mapsto (u \mapsto w))\}$$

$$= rmin\{V_S(u \mapsto v), V_S(u \mapsto (v \mapsto w))\}$$

Since

$$V_S(u \mapsto (u \mapsto w)) = V_S(u * u \mapsto w),$$

$$V_S((u * u) \mapsto w) = V_S((u \wedge u) \mapsto w) \text{ [From (vi)]}$$

$$= V_S(u \mapsto w).$$

Thus,

$$V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto (v \mapsto w), V_S(u \mapsto v)\}.$$

Proposition 3.6. Let S be a VF of A. Then S is a VPIFA if and only if $V_S(v) \ge rmin\{V_S((v \mapsto w) \mapsto (u \mapsto v)), V_S(u)\}$ for all $u, v, w \in A$.

Proof. Let S be a VPIFA. Then, from (i) of proposition 2.5, we have,

$$rmin\{V_S((v \mapsto w) \mapsto (u \mapsto v)), V_S(u)\}$$

$$= rmin\{V_S(u \mapsto ((v \mapsto w) \mapsto v)), V_S(u)\}$$

$$\leq V_S((v \mapsto w) \mapsto v)).$$

From (vii) of proposition 2.5, we have

$$(v \mapsto w) \mapsto v \le w \mapsto v \le (v \mapsto w) \mapsto ((w \mapsto v) \mapsto v).$$

Then, From proposition 2.6, we have

$$V_{S}((v \mapsto w) \mapsto v) \leq V_{S}(w \mapsto v)$$

$$\leq V_{S}((v \mapsto w) \mapsto ((w \mapsto v) \mapsto v))$$

$$\leq V_{S}((w \mapsto v) \mapsto v).$$

Thus,

$$rmin\{V_S((v \mapsto w) \mapsto v), V_S(w \mapsto v)\}$$

$$\leq rmin\{V_S((w \mapsto v) \mapsto v), V_S(w \mapsto v)\}$$

$$\leq V_S(v).$$

Therefore, we have

$$V_S(v) \ge rmin\{V_S((v \mapsto w) \mapsto (u \mapsto v)), V_S(u)\}.$$

Conversely, let S satisfies

$$V_S(v) \ge rmin\{V_S((v \mapsto w) \mapsto (u \mapsto v)), V_S(u)\}.$$

Then we easily prove that,

$$V_S(u \mapsto w) \ge rmin\{V_S(u \mapsto (v \mapsto w), V_S(u \mapsto v)\}.$$

Since S is VF,

$$V_S(1) \geq V_S(u)$$
.

Hence, S is VPIF of A.

Proposition 3.7. Let S_1 and S_2 be two VFs, of $S_1 \subseteq S_2$, $V_{S_1}(1) = V_{S_2}(1)$. If S_1 is a VPIF, so is S_2 .

Proof. From the proposition 3.5, we only prove that $V_{S_2}(u \mapsto w) \ge V_{S_2}(u \mapsto (u \mapsto w))$ for all $u, w \in A$.

Let
$$t = u \mapsto (u \mapsto w)$$
, then

$$u \mapsto (u \mapsto (t \mapsto w)) = t \mapsto (u \mapsto (u \mapsto w))$$

= $t \mapsto t = 1$.

If S_1 is a VPIF, and from (iii) of the proposition 3.5, then

$$V_{S_1}(u \mapsto (t \mapsto w)) = V_{S_1}(u \mapsto (u \mapsto (t \mapsto w))) = V_{S_1}(1).$$

That is

П

$$V_{S_1}(t \mapsto (u \mapsto w)) = V_{S_1}(1) = V_{S_2}(1).$$

From $S_1 \subseteq S_2$, we get

$$V_{S_2}(t \mapsto (u \mapsto w)) \ge V_{S_1}(t \mapsto (u \mapsto w))$$

= $V_{S_2}(1)$,

from (i) of definition 2.3, we have,

$$V_{S_2}(t \mapsto (u \mapsto w)) = V_{S_2}(1).$$

Since S_2 is a VF.

$$V_{S_2}(u \mapsto w) \geq rmin\{V_{S_2}(t \mapsto (u \mapsto w)), V_{S_2}(t)\}.$$

Thus

$$V_{S_2}(u \mapsto w) \ge rminV_{S_2}(1), V_{S_2}(t)$$

= $V_{S_2}(t) = V_{S_2}(u \mapsto (u \mapsto w)).$

Hence, S_2 is a VPIF.

Proposition 3.8. Every VBF is a VPIF, the converse may not be true.

Proof. Let S be a VBF. Then

$$V_S(u \mapsto w)$$

$$\geq rmin\{V_S((u \vee u^-) \mapsto (u \mapsto w)), V_S(u \vee u^-)\}$$

$$= rmin\{V_S((u \vee u^-) \mapsto (u \mapsto w)), V_S(1)\}$$

$$= V_S((u \vee u^-) \mapsto (u \mapsto w)).$$

Since

$$(u \lor u^{-}) \mapsto (u \mapsto w)$$

= $(u \mapsto (u \mapsto w)) \land (u^{-} \mapsto (u \mapsto w))$
= $u \mapsto (u \mapsto w),$

and from the proposition 2.5, we have

$$V_S((u \lor u^-) \mapsto (u \mapsto w)) = V_S(u \mapsto (u \mapsto w)).$$

Thus, we have

$$V_S(u \mapsto w) \ge V_S(u \mapsto (u \mapsto w)).$$

 \square We consider proposition 3.5, we get S is a VPIF.

We prove converse is not true from the following example.

Example 3.9. We consider the example 3.2, Sis a VPIF, but S is not a VBF, since $V_S(q \lor q^-) = V_S(q) \neq V_S(1)$.

Proposition 3.10. Let S be a VPIF of A. S is a VBF if and only if

$$V_S((u \mapsto v) \mapsto v) = V_S((v \mapsto u) \mapsto u)$$
 for all $u, v \in A$.

Proof. Let S be a VPIF of A. We know that

$$u = 1 \mapsto u \le (v \mapsto u) \mapsto u$$

and

$$v \le (v \mapsto u) \mapsto u$$
,

it follows that

$$((v \mapsto u) \mapsto u)^- \le u^- \le u \mapsto v$$

and

$$(u \mapsto v) \mapsto v \le ((v \mapsto u) \mapsto u) \mapsto v$$

$$\le ((v \mapsto u) \mapsto u)^- \mapsto ((v \mapsto u) \mapsto u).$$

Then, we have

$$V_S(((v \mapsto u) \mapsto u)^- \mapsto ((v \mapsto u) \mapsto u)) \ge V_S((u \mapsto v) \mapsto v).$$

Since S is a VBF, from $V_S(u) = V_S(u^- \mapsto u)$, and (ix) of proposition 2.6, we get

$$V_S((v \mapsto u) \mapsto u) = V_S(((v \mapsto u) \mapsto u)^- \mapsto ((v \mapsto u) \mapsto u))$$

Thus, we have

$$V_S((v \mapsto u) \mapsto u) \ge V_S((u \mapsto v) \mapsto v) \tag{3.2}$$

Same method to prove

$$V_S((v \mapsto u) \mapsto u) \le V_S((u \mapsto v) \mapsto v) \tag{3.3}$$

From (3.2) and (3.3), we get

$$V_S((u \mapsto v) \mapsto v) = V_S((v \mapsto u) \mapsto u)$$

Conversely, if *S* be a VPIF of *A*, and satisfies $V_S((u \mapsto v) \mapsto v) = V_S((v \mapsto u) \mapsto u)$.

Replace y by u^- , we have

$$V_S((u \mapsto u^-) \mapsto u^-) = V_S((u^- \mapsto u) \mapsto u).$$

Then, we get

$$V_S(u \vee u^-) = V_S((u \mapsto u^-) \mapsto u^-) \tag{3.4}$$

To Prove: *S* is a VBF.

It is enough to prove $V_S((u \mapsto u^-) \mapsto u^-) = V_S(1)$. Since *S* is a VPIF, from (v) of proposition 3.5, we have

$$V_S((u \mapsto u^-) \mapsto u^-) = V_S((u \mapsto u^-) \mapsto (u \mapsto 0)$$

$$= V_S(u \mapsto (u^-0))$$

$$= V_S(u \mapsto u^{--}) = V_S(1)$$
 (3.5)

From (3.4) and (3.5), we get

$$V_S(u \vee u^-) = V_S(1)$$
.

Thus, S is a VBF.

4. Conclusion

In the present paper, we have introduced the notion of a VPIF of *BL*-algebra, and investigate some related properties. Moreover, we have obtained some necessary and sufficient condition between VPIF and BF of *BL*-algebra.

References

- [1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1)(1986), 87–96.
- ^[2] K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 61(2)(1994), 137–142.
- ^[3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, *Man and Cybernetics*, 23(2)(1993), 610–614.
- [4] P. Hajek, Metamathematics of Fuzzy Logic, Klower Academic Publishers, Dordrecht, 1999.
- ^[5] M. Haveshki, A. Borumand Saeid, and E. Eslami, Some types of filters in *BL* algebras, *Soft Computing*, 10(8)(2006), 657–664.
- [6] L. Z. Liu and K. T. Li, Fuzzy filters of *BL*-algebras, *Information Sciences*, 173 (2005), 141–154.
- [7] E. Turunen, Boolean deductive systems of *BL*-algebras, *Arch. Math. Logic*, 40(2001), 467-473.
- [8] S. Yahya Mohamed and P. Umamaheswari, Vague Filter of *BL*-algebras, *Journal of Computer and Mathematical Sciences*, 9(8)(2018), 914–920.
- ^[9] S. Yahya Mohamed and P. Umamaheswari, Vague prime and Boolean filters of *BL* algebras, *Journal of Applied Science and Computations*, 5(11)(2018), 470–474.
- [10] S. Yahya Mohamed and P. Umamaheswari, Vague implicative filters of *BL* algebras, *American International Journal of Research in Science, Technology, Engineering and & Mathematics*, Conference Proceeding of ICOMAC-2019, 295–299.
- [11] S. Yahya Mohamed and A. Mohamed Ali, Some products on interval-valued Pythagorean fuzzy graphs, *Malaya Journal of Matematik*, 7(3)(2019), 566–571.
- [12] L. A. Zadeh, Fuzzy sets, *Inform. Control*, 8(1965), 338–353.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
