

https://doi.org/10.26637/MJM0801/0030

Dom-chromatic number of certain cycle related graphs

S. Uma Maheswari^{1*} and Teresa Arockiamary Santiago²

Abstract

For a given χ - colouring of a graph *G*, a dominating set $S \subseteq V(G)$ is said to be a *dom-colouring set* if it contains atleast one vertex of each colour class of *G*. The *dom chromatic number* of a graph *G* is the minimal cardinality taken over all its dom-colouring sets and is denoted by $\gamma_{dc}(G)$. In this paper we introduce algorithms to obtain the dom-colouring and dom-chromatic number of few cycle related graphs.

Keywords

Chromatic number, Dominating set, Domination number, Dom-colouring set, Dom-chromatic number.

AMS Subject Classification 05C69, 05C15, 05C38.

1,2*Department of Mathematics, Stella Maris College, Chennai - 600086, Tamil Nadu, India.* ***Corresponding author**: ¹ uma1297@gmail.com; ² teresa aroc@yahoo.co.in **Article History**: Received **17** August **2019**; Accepted **11** December **2019** c 2020 MJM.

1. Introduction

Graph colouring and domination are two major areas in graph theory that have been well studied. These concepts also give rise to a number of practical applications in real life. In recent years several graph-theoretic parameters that combine the concepts of domination and colouring have been investigated by several authors. One such parameter is the concept of *dom-colouring* which was introduced by T.N. Janakiraman and M. Poobalaranjani in the year 2010[\[3\]](#page-5-1).

A subset $D \subseteq V$ of *G* is called the *dominating set*, if each vertex of *V* −*D*, is adjacent to some vertex in *D*. The *domination number* $\gamma(G)$ is the minimum cardinality among all dominating sets of a graph *G* . The minimum dominating set of a graph *G* is called the γ*-set* of *G*. For a given χ - colouring of a graph *G*, a dominating set $S \subseteq V(G)$ is said to be a *domcolouring set* if it contains atleast one vertex of each colour class of *G*. The *dom-chromatic number* of a graph *G* is the minimal cardinality taken over all its dom-colouring sets and is denoted by $\gamma_{dc}(G)[2]$ $\gamma_{dc}(G)[2]$.

2. Preliminaries

Definition 2.1. *A Flower graph Flⁿ is the graph obtained from a helm graph Hⁿ by joining each pendant vertex to the central vertex of the helm[\[1\]](#page-5-3).*

Definition 2.2. A shell graph is defined as a cycle C_n with *n* − 3 *chords sharing a common end point called the apex. Shell graphs are denoted by* $C(n, n-3)$ *[\[6\]](#page-5-4).*

Definition 2.3. *A multiple shell is defined to be a collection of edge disjoint shells that have their apex in common. A Shell-Butterfly graph is a double shell in which each shell has any order with exactly two pendant edges at the apex[\[4\]](#page-5-5).*

For definitions of wheel graph, crown graph, helm graph and closed helm graph one can refer to the Gallian survey on graph labeling[\[5\]](#page-5-6).

Contents

3. Main results

3.1 Wheel graph

To facilitate our proof, we call the vertex adjacent to all vertices of the cycle in the wheel graph as the universal vertex.

Dom-colouring algorithm for Wheel graphs W_n , $n \geq 4$

Input: Wheel graph *Wn*.

Algorithm

Step 1: Label the vertices of the cycle C_{n-1} in the clockwise direction, namely with labels 1,2,...,*n*−1.

Step 2: Label the universal vertex adjacent to all vertices of the cycle as *n*.

Step 3: Colour vertex *n* with colour *a*. Since this vertex is adjacent to every other vertex of the graph, colour *a* cannot be used in the further colouring of the graph.

Step 4: Colour the vertices of C_{n-1} in W_n using the following procedure.

Case 1: If *n*−1 is odd in C_{n-1} .

Colour the first $n-2$ vertices of C_{n-1} with colours *b*, *c* alternatively in clockwise direction. Since *n*−1 is odd, when it comes to colouring the last vertex of C_{n-1} , namely the vertex *n*−1, it will be adjacent to all the colours used so far, namely, a, b, c . Thus colour the vertex $n-1$ with colour *d*. See Figure [1.](#page-1-2)

Figure 1. Dom-colouring of *W*⁶

Case 2: If $n-1$ is even in C_{n-1} .

Colour the *n*−1 vertices of C_{n-1} with colours *b*, *c* alternatively in clockwise direction. See Figure [2.](#page-1-3)

Figure 2. Dom-colouring of *W*⁷

Output: We obtain the dom-colouring of *Wn*.

For any wheel graph *Wⁿ* obtained by applying the above algorithm, the set $\{n\}$ is a set of minimum cardinality that dominates every other vertex of the graph. The set $\{1,2,n\}$

(*n* being odd) is a dominating set having exactly a vertex from each of its colour classes. Also it is the set having minimum cardinality that satisfies the properties required to form a dom-colouring set. The set $\{1,2,n-1,n\}$ (*n* being even) is a dominating set having exactly a vertex from each of its colour classes. Also it is the set having minimum cardinality that satisfies the properties required to form a dom-colouring set.

The minimum dominating and dom-colouring sets obtained for *Wⁿ* is:

When *n* is odd

- (i) Minimum dominating set of W_n is $\{n\}$.
- (ii) Minimum dom-colouring set of W_n is $\{1,2,n\}$.

$$
(iii) \ \gamma_{dc}(W_n)=3.
$$

Where *n* is even

- (i) Minimum dominating set of W_n is $\{n\}$.
- (ii) Minimum dom-colouring set of W_n is $\{1, 2, n-1, n\}$.
- (iii) $\gamma_{dc}(W_n) = 4$.

3.2 Crown graph

Dom-colouring algorithm for crown graphs R_n , $n \geq 3$.

Input: Crown graph *Rn*.

Algorithm

Step 1: Label the vertices of the cycle C_n in clockwise direction, namely as $1, 2, \ldots, n$.

Step 2: Label the pendant vertex attached to vertex 1 by $n+1$, pendant vertex attached to the vertex 2 by $n+2$, and so on. Finally label the pendant vertex attached to the vertex *n* by *n*+*n*.

Step 3: Colour the vertices of R_n using the following procedure.

Case 1: When *n* is odd.

Colour the first $n-1$ vertices, namely $1, 2, ..., n-1$ of C_n with colours *a* and *b* alternatively in clockwise direction. Then colour the last vertex of C_n namely *n*, with colour *c*, since it will be adjacent to vertices having colours *a* and *b*. While colouring the pendant vertices, colour the vertices $2n, n+1, n+2, n+3, \ldots, n+n-2$ with colours *a* and *b* alternatively in clockwise direction. Finally colour the last pendant vertex $n + n - 1$ with colour *c*. See Figure [3.](#page-1-4)

Figure 3. Dom-colouring of R_5

Case 2: When *n* is even.

Colour the first *n* vertices, namely $1, 2, \ldots, n$ of C_n with colours *a* and *b* alternatively in clockwise direction. While colouring the pendant vertices, colour the vertices $2n, n+1, n+2, n+1$ 3,...,2*n*−1 with colours *a* and *b* alternatively in clockwise direction. See Figure [4.](#page-2-1)

Figure 4. Dom-colouring of R_6

Output: We obtain the dom-colouring of *Rn*.

For any crown graph R_n obtained by applying the above algorithm, the set $\{1,2,\ldots,n\}$ is a set of minimum cardinality that dominates every other vertex of the graph. Also the above set has at least one vertex from each of the colour classes of *Rn*. Hence it satisfies all properties required to form a domcolouring set.

The minimum dominating and dom-colouring sets obtained for R_n is:

- (i) The minimum dominating and dom-colouring sets of *R_n* is $\{1, 2, ..., n\}$.
- (ii) $\gamma_{dc}(R_n) = n$.

3.3 Helm graph

Dom-colouring algorithm for Helm graphs H_n , $n \geq 4$.

Input: Helm graph *Hn*.

Algorithm

Step 1: Label the vertices of the cycle C_{n-1} in clockwise direction by 1,2,...,*n*−1. Label the pendant vertex attached to vertex 1 by *n*, pendant vertex attached to vertex 2 by $n+1$, and so on. Then label the pendant vertex attached to vertex $n-1$ by $n+n-2$. Finally label the vertex attached to all vertices of the cycle C_{n-1} by $n+n-1$.

Step 2: Colour the vertices of the graph H_n as follows. **Case 1:** If $n-1$ is odd in C_{n-1} .

Colour the vertices $1, 2, ..., n-2$ of the cycle C_{n-1} with colours *a* and *b* alternatively in clockwise direction. Colour the last vertex of the cycle namely *n*−1 with colour *c*, since it will be adjacent to vertices having colours *a* and *b*. Now colour the pendant vertex attached to the vertex $n-1$ with

colour *a*, pendant vertex attached to 1 by colour *b*, pendant vertex attached to 2 by colour *a*, pendant vertex attached to 3 by colour *b*, and so on, and finally colour the pendant vertex attached to *n*−3 with colour *b*, that is, colour the pendant vertices $n + n - 2, n, n + 1, n + 2, n + 3, \ldots, n + n - 4$ with colours *a* and *b* alternatively in clockwise direction. Then colour the pendant vertex attached to vertex $n-2$, namely the vertex $n + n - 3$ with colour *c*. Lastly colour the vertex $n + n - 1$ with colour *d* as it will be adjacent to vertices having colours *a*,*b* and *c*. See Figure [5.](#page-2-2)

Figure 5. Dom-colouring of H_6

Case 2: If $n-1$ is even in C_{n-1} .

Colour the vertices $1, 2, ..., n-1$ of the cycle C_{n-1} with colours *a* and *b* alternatively in clockwise direction. Then colour the pendant vertices $n+n-2, n, n+1, n+2, n+3, \ldots, n+1$ *n*−3 with colours *a* and *b* alternatively in clockwise direction. Finally colour the vertex $n + n - 1$ with colour *c* as it will be adjacent to vertices of colours *a* and *b*. See Figure [6.](#page-2-3)

Figure 6. Dom-colouring of *H*⁷

Output: We obtain the dom-colouring of *Hn*.

For any helm graph H_n obtained by applying the above algorithm, the set $\{1,2,\ldots,n-1\}$ is the set of minimum cardinality that dominates every other vertex of the graph. The set $\{1,2,\ldots,n\}$ is a dominating set having at least one vertex of each colour class of H_n . Also the above set is the set having

minimum cardinality that satisfies the properties required to form a dom-colouring set.

The minimum dominating and dom-colouring sets obtained for H_n is:

- 1}.
- (ii) The minimum dom-colouring set of H_n is given by {1,2,...,*n*−1,*n*+*n*−1}

$$
(iii) \ \gamma_{dc}(H_n)=n.
$$

3.4 Closed Helm graph

A closed helm graph $C(H_n)$ with $2n - 1$ vertices, $n \geq 4$ differ from the helm graph H_n , $n \geq 4$ by an additional set of *n*−1 edges, given by $(n+i, n+i+1)$, for $0 \le i \le n-3$ and the edge $(n+n-2,n)$. The dom-colouring of $C(H_n)$ coincides with the dom-colouring of H_n . Moreover the results obtained for H_n can be applied to the graph $C(H_n)$ as well.

The minimum dominating set of $C(H_6)$ is $\{1,2,3,4,5\}$ and its minimum dom-colouring set is $\{1,2,3,4,5,11\}$. Thus $\gamma_{dc}(C(H_6)) = 6$. See Figure [7.](#page-3-3)

Figure 7. Dom-colouring of *CH*⁶

The minimum dominating set of $C(H_7)$ is $\{1,2,3,4,5,6\}$ and its minimum dom-colouring set is $\{1,2,3,4,5,6,13\}.$ Thus $\gamma_{dc}(C(H_7)) = 7$. See Figure [8.](#page-3-4)

Figure 8. Dom-colouring of *CH*⁷

3.5 Flower graph

A Flower graph is a helm graph with an additional set of *n*−1 edges connecting the pendant vertices to the central vertex and thus the dom-colouring algorithm of helm graphs applies to flower graphs as well.

(i) The minimum dominating set of H_n is given by $\{1, 2, ..., n$ -classes. Also it is the set having minimum cardinality that Also for any flower graph Fl_n with $2n - 1$ vertices, $n \geq 4$ obtained by applying the algorithm used for H_n , the set $\{2n -$ 1} is a set of minimum cardinality that dominates every other vertex of the graph. The set $\{1,2,2n-1\}$ (*n* being odd) is a dominating set having exactly a vertex from each of its colour satisfies the properties required to form a dom-colouring set. The set $\{1, 2, n-1, 2n-1\}$ (*n* being even) is a dominating set having exactly a vertex from each of its colour classes. Also it is the set having minimum cardinality that satisfies the properties required to form a dom-colouring set.

> The minimum dominating and dom-colouring sets for *Flⁿ* is given by:

- (i) The minimum dominating set of Fl_n is $\{2n-1\}$.
- (ii) The minimum dom-colouring set of Fl_n is

$$
\begin{cases} \{1,2,2n-1\} & \text{when } n \text{ is odd.} \\ \{1,2,n-1,2n-1\} & \text{when } n \text{ is even.} \end{cases}
$$

(iii)

$$
\gamma_{dc}(Fl_n) = \begin{cases} 3 & \text{when } n \text{ is odd.} \\ 4 & \text{when } n \text{ is even.} \end{cases}
$$

The minimum dominating set of Fl_6 is $\{11\}$ and its minimum dom-colouring set is $\{1,2,5,11\}$. Thus $\gamma_{dc}(Fl_6) = 4$. See Figure [9.](#page-3-5)

Figure 9. Dom-colouring of *Fl*⁶

The minimum dominating set of Fl_7 is $\{13\}$ and its minimum dom-colouring set is $\{1,2,13\}$. Thus $\gamma_{dc}(Fl_7) = 3$. See Figure [10.](#page-3-6)

Figure 10. Dom-colouring of *Fl*⁷

3.6 Shell graph

Dom-colouring algorithm for shell graphs $C(n, n-3)$, $n \geq$ 6.

Input: Shell graph $C(n, n-3)$.

Algorithm

Step 1: Label the vertices of the cycle C_n as $1, 2, \ldots, n$ in clockwise direction.

Step 2: Fix vertex 1 to be the apex of the graph and construct *n*−3 chords sharing a common vertex with the apex.

Step 3: Colour the vertices of $C(n, n-3)$ as follows:

Colour vertex 1 with colour *a*. Consider the successive $\lfloor \frac{n-2}{2} \rfloor$ vertices to the left and right of the apex and colour these vertices with colours *b* and *c* alternatively downwards. Finally colour the remaining vertices using the following procedure: Case 1: When *n* is even.

In this case, the vertex $\frac{n}{2} + 1$ will be left uncoloured. Thus colour it with colour *b* or *c* depending on whether the vertices adjacent to it are coloured *c* or *b* respectively. See Figure [11.](#page-4-1)

Figure 11. Dom-colouring of *C*(6,3)

Case 2: When *n* is odd.

In this case, the vertices $\frac{n+1}{2} + 1$ and $\frac{n+1}{2}$ will be left uncoloured and thus colour these vertices with colours *b* and *d* or *c* and *d* depending on whether the vertices adjacent to them are coloured *c* or *b* respectively, such that the vertex $\frac{n+1}{2}$ has colour *d*. See Figure [12.](#page-4-2)

Figure 12. Dom-colouring of *C*(7,4)

Output: We obtain the dom-colouring of $C(n, n-3)$. For any shell graph $C(n, n-3)$ obtained by applying the above algorithm, the set $\{1\}$ is a set of minimum cardinality that dominates every other vertex of the graph. The set $\{1, 2, 3, \frac{n+1}{2}\}\$ (*n* being odd) is a dominating set having exactly a vertex from each of its colour classes. Also it is the set having minimum cardinality that satisfies the properties required to form a dom-colouring set. The set $\{1,2,3\}$ (*n* being even) is a dominating set having exactly a vertex from each of its colour classes. Also it is the set having minimum cardinality that satisfies the properties required to form a dom-colouring set.

The minimum dominating and dom-colouring sets obtained for $C(n, n-3)$ is:

- (i) The minimum dominating set of $C(n, n-3)$ is $\{1\}$.
- (ii) The minimum dom-colouring set of $C(n, n-3)$ is

$$
\begin{cases} \{1,2,3\} & \text{when } n \text{ is even.} \\ \{1,2,3,\frac{n+1}{2}\} & \text{when } n \text{ is odd.} \end{cases}
$$

(iii) $\gamma_{dc}(C(n, n-3)) =$

 $\int 3$ when *n* is even. 4 when *n* is odd.

3.7 Shell-Butterfly graph

Dom-colouring algorithm for Shell-Butterfly graphs

Input: Shell-Butterfly graph with shell orders *m* and *l* where $m, n \geq 3$.

Algorithm

Step 1: Label the vertices of the shell of order *m* with labels 1,2,...,*m* upwards.

Step 2: Similarly label the vertices of the shell of order *l* with labels $m+1, m+2, \ldots, m+l$ downwards.

Step3: Label the vertices of the pendant edges as $m + l +$ $1, m+l+2$. Finally label the central apex as $m+l+3$.

Step 4: Colour the vertices of the Shell-Butterfly graph as follows:

Colour the vertex $m+l+3$ with colour *a*. Colour the vertices $m+l+1, m+l+2$ with colour *b*. Colours the vertices 1,2,...,*m* with colours *c* and *b* alternatively. Similarly colour the vertices $m+1, m+2, \ldots, m+l$ with colours *b* and *c* alternatively. See Figure [13.](#page-4-3)

Figure 13. Dom-colouring of Shell-Butterfly graph with shell orders 5 and 4

Output: We obtain the dom-colouring of the Shell-Butterfly graph.

For any shell butterfly graph obtained by applying the above algorithm, the set $\{m+l+3\}$ is a set of minimum cardinalty that dominates every other vertex of the graph. The set $\{1,2,m+l+3\}$ is a dominating set and has at least one vertex of each of its colour classes. Also the above set is a set having minimum cardinalty that satisfies the properties required to form a dom-colouring set.

The minimum dominating and dom-colouring sets obtained for all Shell-Butterfly graphs is:

- (i) It's minimum dominating set is $\{m+l+3\}$.
- (ii) It's minimum dom-colouring set is $\{1, 2, m+l+3\}.$
- (iii) The dom-chromatic number γ*dc* of all shell-butterfly graphs is 3.

References

- [1] R. Arundhadhi and V. Ilayarani, Total Colouring of Closed Helm, Flower and Bistar graph family, *International Journal of Scientific and Research Publications*, 7(7)(2017), 616–621.
- [2] B. Chaluvaraju and C. AppajiGowda, Dom-chromatic number of a graph, *Malaya Journal of Mathematik*, 4(1)(2016), 1–7.
- [3] T.N Janakiraman and M. Poobalaranjani, Dom-chromatic sets in Bi-partite graphs, International Journal of Engineering Science, *Advanced Computing and Bio-Technology*, 1(2)(2010), 80–95.
- [4] J. Jeba Jesintha and K. Ezhilarasi Hilda, Shell-Butterfly graphs are Graceful, *International Journal of Pure and Applied Mathematics*, 101(6)(2015), 949–956.
- [5] Joseph A. Gallian, A Dynamic survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 21, 2018.
- [6] S. Meena, M. Renugha and M. Sivasakthi, Cordial labeling for different types of shell graphs, *International Journal of Scientific and Engineering Research*, 6(9)(2015), 1282–1288.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

