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Abstract. In this paper, the numerical scheme for solving singular Volterra integral equation is obtained by considering non-
variable subinterval and the function under the integrals were approximated by the Simpson’s rule. The error bound for the
numerical scheme is established where the scheme derived has convergence of order 3. The scheme obtained is compared
with exact solution of the tested problems which shows that the scheme is effective.
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1. Introduction and Background

Singular Volterra integral equation of this form

u(t) =

∫ t

0

sµ−1

tµ
u(s)ds+ g(t), t ∈ (0, T ], (1.1)

with µ > 0, g(t) ∈ C[0, T ] is a given function and the kernel is weakly type has been considered by many
authors. Diogo et al.[3], investigated the application of product integration method for the numerical solutions
base on graded meshes by Trapezoidal method. Diogo et al. [1], utilized the analytic results for the existence
and uniqueness solution of (1.1). Further more, Euler’s and Trapezoidal methods were used to develop new
schemes, comparison between them was made and error bound analysis were developed. Diogo et al. [2], used
a class of singular Volterra integral equation of the form (1.1) and obtained the numerical schemes which uses
Euler method and Trapezoidal rules. The numerical approximation base on the product Euler scheme converges
to the smooth solution but with poor order of convergence. However, Diogo and Lima [4], analyzed discrete
supperconvergence properties of spline collocation results and for a certain choice of parameter the attainable
convergence order of (1.1) was considered. Diogo and Lima [5], proved that a higher order attained at the
meshes points by special choice of the collocation methods. Also Diogo [6], utilized the iterated methods on the
collocation results.

In this article we consider the work in Diogo et al. (2006) which we used the Simpson’s method in the case of
when 0 < µ ≤ 1, Eqn (1.1) has a family of solutions in the space C[0, T ]. The work has been organized as
follows; In section 2, we derived the scheme by applying the Simpson’s method. In section 3, we estimates the
error bound analysis for the convergence results of the propose scheme. Also, in section 4 we tested the scheme
by means of some examples and finally in section 5 the conclusion was given.
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2. Derivation of the Scheme by Simpson’s rule Approach

2.1. Definitions of the basic concepts

We start by presenting some definitions, theorems and lemmas;

Definition 2.1. A kernel is called separable if it can be expressed as the outer product of two variables (vectors).
For examples

u(t) =

∫ t

0

sµ−1

tµ
u(s)ds+ g(t), t ∈ [0, T ],

where k(t, s) = sµ−1

tµ that can be expressed as k(t, s) = 1
tµ s

µ−1

otherwise, it is nonseparable.

Theorem 2.2. Mean Value Theorem: Let u(x) be a function which is continuous on the closed interval [a, b] and
which is differentiable at every point of (a,b). Then there is a point c ∈ (a, b) such that

u′(c) =
u(b)− u(a)

b− a
,

Lemma 2.3. Special Gronwall lemma: Let (en) and (ej) be nonnegative sequences andC a nonnegative constant
if

un ≤C +

n−1∑
k=0

gkuk for n ≥ 0,

then

un ≤C
n−1∏
j=0

(1 + gj) ≤ C exp(
∑n−1
j=0 gj) for n ≥ 0.

Lemma 2.4. (i) If 0 < µ ≤ 1 and g ∈ C1[0, T ] (with g(0) = 0 if µ = 1) then equation(1) has a family of
solutions u ∈ C[0, T ] given by the formula

u(t) = c0t
1−µ + g(t) + γ + t1−µ

∫ t

0

sµ−2(g(s)− g(0))ds, (2.1)

where

γ :=

{ 1
µ−1g(0) if µ < 1,

0 if µ = 1,

and c0 is an arbitrary constant. Out of this family of solutions there is one particular solution u ∈ C1[0, T ].
(ii) If µ ≤ 1 and g ∈ Cm[0, T ],m ≥ 0 then the unique solution u ∈ Cm[0, T ] of (1) is given by

u(t) = g(t) + t1−µ
∫ t

0

sµ−2g(s)ds.,

We note that Eqn (2.4) can be obtained from Eqn (2.1) with c0 = 0. Indeed; it follows from Eqn (2.1) that

c0 = lim
t→0+

tµ−1u(t),

and this limit is zero when µ > 1.
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2.2. Derivation of the scheme

Let us reformulate (1.1) into a new form by choosing some fixed real number α > 0. Substituting t by t + α in
(1.1) we have

u(t+ α) =

∫ t+α

0

sµ−1

(t+ α)µ
u(s)ds+ g(t+ α), t ∈ [0, T ], (2.2)

by splitting of the interval we have

u(t+ α) =
1

(t+ α)µ

∫ α

0

sµ−1u(s)ds+

∫ t+α

α

sµ−1

(t+ α)µ
u(s)ds+ g(t+ α), t ∈ [α, T ], (2.3)

or, equivalently,

u(t+ α) =
Iα

(t+ α)µ
+

∫ t

0

(s+ α)µ−1

(t+ α)µ
u(s+ α)ds+ g(t+ α), (2.4)

where

Iα =

∫ α

0

sµ−1u(s)ds. (2.5)

Since Iα is known exactly for a chosen the exact solution by using the solution formula then we can apply the
numerical method in (2.4) and obtain the approximation.
Now, let us define a uniform grid Xh with stepsize h = t

n

Xh := {ti = ih+ α, 0 ≤ i ≤ N}.

Setting t = nh in (2.4) we have

u(tn) =
Iα
tµn

+
1

tµn

∫ nh

0

(s+ α)µ−1u(s+ α)ds+ g(tn). (2.6)

In the Simpson’s method, we approximates the integral on the right-hand side of (2.6) by considering each
subinterval using:

u(s+ α) ≈ 1

6

[
u(tj+1)(s− jh) + 4u

(
tj + tj+1

2

)
(tj+1 − tj) + u(tj)((j + 1)h− s)

]
, (2.7)

on each subinterval s ∈ [jh, (j + 1)h]. Defining the following

D1
j : =

∫ (j+1)h

jh

(s+ α)µ−1(s− jh)ds

D2
j : =

∫ (j+1)h

jh

(s+ α)µ−1ds

D3
j : =

∫ (j+1)h

jh

(s+ α)µ−1((j + 1)h− s)ds

which can be obtain analytically.
Hence the scheme:

u(tn)
h
n =

Iα
tµn

+
h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ g(tn), n = 1, 2, ..., N. (2.8)
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2.3. Algorithm: Simpson’s rule approach

Step1: Given n = 1, ε = 10−3, t ∈ [0, T ], µ ∈ (0, 1], α > 0, u(t), g(t), Iα.
Step2: Set h = t

n

Step3: Compute

tn = nh+ α

tµn = (nh+ α)µ

uhn =
Iα
tµn

+
h

tµn

n−1∑
j=0

(D1ju
h
j+1 +D2ju

h
j/2 +D3ju

h
j )

6
+ g(tn)

where
D1j :=

(jh+α)µ+1−((j+1)h+α)µ+1+h((j+1)h+α)µ(µ+1)
(µ+1)µ ,

D2j :=
h(((j+1)h+α)µ−(jh+α)µ)

µ ,

D3j :=
((j+1)h+α)µ+1−(jh+α)µ+1−h(jh+α)µ(µ+1)

(µ+1)µ ,

uhj+1 := u ((j + 1)h+ α) ,

uhj/2 := 4u
(

(jh+α)+((j+1)h+α)
2

)
uhj := u (jh+ α)

If |u(t)− uhn| ≤ 10−2 stop, else
Step4: set n = n+ 1 and go to Step3.

3. Error Bound of the Scheme in Simpson’s Rule Approach

In this section we present the error bound for the convergence of the scheme.

Theorem 3.1. Consider (1.1) with 0 < µ ≤ 1 and u ∈ C1[0, T ]. Let α 6= 0 be fixed in the equivalent (2.4) and
assume the integral Iα is known exactly for a chosen particular solution (corresponding to a certain value of the
parameter c0). Then the approximate solution obtained by the product Simpson’s method converges with order 3
to the particular exact solution.

Proof. The solution u of the exact solution satisfies

u(tn)
h
n =

Iα
tµn

+
h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ g(tn) + η(h, tn), n ≥ 1, (3.1)

where η(h, tn) is the consistency error given by

η(h, tn) =

∫ tn

0

sµ−1

tµn
u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
, (3.2)

but the exact solution is

u(tn) =
Iα
tµn

+
1

tµn

∫ T

α

sµ−1u(s)ds+ g(tn). (3.3)
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Setting en = u(tn)− u(tn)h for n ≥ 1 and by utilizing (3.3) and (3.1) this gives

en =
1

tµn

∫ T

α

sµ−1u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6
+ η(h, tn)

=
1

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1u(tj)ds−
h2

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1

(
u(tj+1)

h + u(tj/2)
h + u(tj)

h

6

)
ds

+ η(h, tn)

=
h2

tµn

n−1∑
j=0

∫ tj+1

tj

(
u(tj)− Su(tj)h

)
sµ−1ds+ η(h, tn)

let Su(tj)h =
u(tj+1)

h+u(tj/2)
h+u(tj)

h

6 and defining esj := Sej =
(
u(tj)− Su(tj)h

)
yield

en =
h2

tµn

n−1∑
j=0

esj

∫ tj+1

tj

sµ−1ds+ η(h, tn), n ≥ 1, (3.4)

but

1

tµn

∫ tj+1

tj

sµ−1ds ≤
tµ−1j

tµn

∫ tj+1

tj

ds

= h
tµ−1j

tµn

≤ h

(
tj
tn

)µ
1

tj

≤ h

α
. (3.5)

Since α 6= 0 and for α > 0 choose α ≤ tj
(
tn
tj

)µ
. By utilizing (3.5) in (3.4) we have

en ≤
h3

α

n−1∑
j=0

esj + η(h, tn), n ≥ 1. (3.6)

Taking the modulus in (3.6) we have

|en| ≤
h3

α

n−1∑
j=0

∣∣esj∣∣+ |η(h, tn)| , n ≥ 1 (3.7)

On the other hand from equation (3.2) we have

|η(h, tn)| =

∣∣∣∣∣∣
∫ tn

0

sµ−1

tµn
u(s)ds− h

tµn

n−1∑
j=0

(D1
ju
h
j+1 +D2

j4u
h
j/2 +D3

ju
h
j )

6

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1tµn
n−1∑
j=0

Dju(tj)−
h2

tµn

n−1∑
j=0

Dj

(
u(tj+1)

h + u(tj/2)
h + u(tj)

h

6

)∣∣∣∣∣∣
=

∣∣∣∣∣∣h
2

tµn

n−1∑
j=0

Dj

(
u(s)− Su(tj)h

)∣∣∣∣∣∣
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but

Dj :=

∫ tj+1

tj

sµ−1ds

Therefore,

|η(h, tn)| ≤
h2

tµn

n−1∑
j=0

∫ tj+1

tj

sµ−1
∣∣(u(s)− Su(tj)h)∣∣ ds (3.8)

by applying the mean value theorem in (3.8), we have

|η(h, tn)| ≤
h3

tµn
max
s∈[α,T ]

|u′(s)|
∫ tn

α

sµ−1ds (3.9)

Defining M(α) := maxs∈[α,T ] |u′(s)|

|η(h, tn)| ≤
M(α)h3

tµn

∫ tn

α

sµ−1ds

=
M(α)h3

µ

(
tµn − αµ

tµn

)
=

(
1− αµ

tµn

)
M(α)h3

µ

we obtained the following bound

|η(h, tn)| ≤
(
1− αµ

tµn

)
M(α)h3

µ
(3.10)

substitute (3.10) into (3.7) we have

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ
+
h3

α

n−1∑
j=0

∣∣esj∣∣ (3.11)

by applying the special Gronwall lemma for the discrete in (3.11) we have

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ

n−1∏
j=0

(
1 +

n− 1

α

)
we obtained the error bound as

|en| ≤
(
1− αµ

tµn

)
M(α)h3

µ
exp

(
T − 1

α

)
Hence, a third order convergence follows.

4. Main Results

In this section we tested the scheme using Maple13 version 10 with the stoping rule as |uhn − u(t)| ≤ 10−3.

Problem 4.1. Given g(t) = 1 + t+ t2 and 0 < µ ≤ 1 in (1.1), then using (2.1) we obtained the general form of
its family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t+

µ+ 2

µ+ 1
t2 (4.1)

where c0 is an arbitrary constant. The exact solution (4.1) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table 1
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Table 1: The results obtained by the numerical scheme (2.8) on problem1.

n uhn
Eqn (2.8) |u(t)− uhn|

80 2.4543 6.664E − 1

82 2.5122 6.085E − 1

84 2.5707 5.500E − 1

86 2.6299 4.908E − 1

88 2.6899 4.308E − 1

90 2.7506 3.701E − 1

92 2.1190 3.088E − 1

94 2.8741 2.466E − 1

96 2.9369 1.838E − 1

98 3.0004 1.203E − 1

100 3.0647 5.600E − 2

102 3.1297 9.000E − 3

Table (1) shows that the numerical results of problem 4.1 obtained from scheme (2.8) which has exact solution
of u(t) = 3.1207 and the best result is obtained when n = 102 with corresponding to an error of 9.000E − 3.

Problem 4.2. Given g(t) = 1 + t and 0 < µ ≤ 1 in (1.1), then using (2.1) we obtained the general form of its
family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t (4.2)

where c0 is an arbitrary constant. The exact solution (4.2) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table (2)

Table 2: The results obtained by the numerical scheme (2.8) on problem2.

n uhn
Eqn (2.8) |u(t)− uhn|

80 1.7946 2.652E − 1

82 1.8195 2.403E − 1

84 1.8442 2.156E − 1

86 1.8689 1.909E − 1

88 1.8934 1.664E − 1

90 1.9179 1.419E − 1

92 1.9423 1.175E − 1

94 1.9666 9.320E − 2

96 1.9908 6.900E − 2

98 2.0149 4.490E − 2

100 2.0389 2.090E − 2

102 2.0663 6.500E − 3
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Table (2) shows that the numerical results of problem 4.2 obtained from scheme (2.8) which has exact solution
of u(t) = 2.0598 and the best result is obtained when n = 102 with corresponding to an error of 6.50E − 3.
The error decreases when the number of iterations are increased. The results is an improvement when compared
with the work of [5] which uses Euler’s method with number of iterations up to 1600 corresponding to an error
of 4.82E − 2.

Problem 4.3. Given g(t) = 1 + t+ t3 and 0 < µ < 1 in (1.1), then using (2.1) we obtained the general form of
its family of solutions:

u(t) = c0t
1−µ +

µ

µ− 1
+
µ+ 1

µ
t+

µ+ 3

µ+ 2
t3 (4.3)

where c0 is an arbitrary constant. The exact solution (4.3) when t = 1.02 is compared with numerical solution
(2.8) and errors are presented in Table (3)

Table 3: The results obtained by the numerical scheme (2.8) on problem3.

n uhn
Eqn (2.8) |u(t)− uhn|

80 2.3278 8.247E − 1

82 2.3932 7.593E − 1

84 2.4604 6.921E − 1

86 2.5296 6.229E − 1

88 2.6008 5.517E − 1

90 2.6739 4.786E − 1

92 2.7493 4.032E − 1

94 2.8268 3.257E − 1

96 2.9065 2.460E − 1

98 2.9884 1.641E − 1

100 3.0727 7.980E − 2

102 3.1593 6.800E − 3

Table (3) shows that the numerical results of problem (4.3) obtained from scheme (2.8) which has exact
solution of u(t) = 3.1525 and the best result is obtained when n = 102 with corresponding to an error of
6.800E−3. The error decreases when the number of iterations are increased. The results is an improvement when
compared with the work of [5] which uses Euler’s method with number of iterations up to 1600 corresponding to
an error of 4.82E − 2.
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4.1. The comparison of the numerical schemes

Here we presented the scheme (2.8) derived from Midpoint’s rule when compared with Euler’s method in [5].

Table 4: The comparison of scheme (2.8) and Euler’s methods in [5] using errors of problem 1 and 2.

n scheme (2.8) scheme (2.8) Euler’s in [5]
Errors1 Errors2 Errors

80 5.759E − 1 2.321E − 1 3.919E − 1

82 5.183E − 1 2.072E − 1 4.173E − 1

84 4.599E − 1 1.825E − 1 4.423E − 1

86 4.009E − 1 1.578E − 1 4.671E − 1

88 3.412E − 1 1.333E − 1 4.817E − 1

90 2.807E − 1 1.089E − 1 5.159E − 1

92 2.196E − 1 8.460E − 2 5.400E − 1

94 1.578E − 1 6.030E − 2 5.638E − 1

96 9.520E − 2 3.620E − 2 5.874E − 1

98 3.190E − 2 1.210E − 2 6.108E − 1

99 1.000E − 4 1.000E − 4 6.224E − 1

Table (4) Shows that the errors obtained from the scheme (2.8) is an improvement when compared with the
work of [5] which uses Euler’s method, since the error decreases when the number of iterations are increased.
This shows that the scheme obtained has a better result when compared with the Euler’s method with number of
iterations up to 1600 corresponding to an error of 4.82E − 2.

5. Conclusion

The function under the integrals were approximated base on the concepts of Simpson’s rule. We used error bound
estimates for the convergence of the scheme obtained. The numerical results were obtained by means of some
examples so as to test the efficiency, accuracy and effectiveness of the new scheme derived. The new approach of
the numerical scheme obtained from Simpson’s rule was compared with exact solutions.
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