

https://doi.org/10.26637/MJM0801/0033

Exact 2-distance b-coloring of some classes of graphs

S. Saraswathi^{1*} and M. Poobalaranjani²

Abstract

Given a graph G , the exact distance-p (or p-distance) graph $G^{[ep]}$ has $V(G)$ as its vertex set and two vertices are adjacent whenever the distance between them in *G* equals *p*. An exact 2-distance coloring of a graph *G* is a proper coloring of vertices of *G* such that any two vertices which are at distance exactly 2 receive distinct colors. An exact 2-distance chromatic number of *G* is the minimum *k* for which *G* admits an exact 2-distance coloring with *k* colors. A b-coloring of a graph *G* by *k* colors is a proper *k*-vertex coloring such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class. In this paper we introduce a new coloring called exact 2-distance b-coloring. It is a b-coloring of *G* such that any two vertices at distance exactly 2 receive distinct colors and a graph *G* is called exact 2-distance b-colorable graph if it admits such a coloring. An exact 2-distance b-chromatic number $\chi_{e2b}(G)$ of G is the largest integer k such that G has an exact 2-distance b-coloring with *k*-colors. If each color class contains a vertex that has a 2-neighbour in all other color classes, such a vertex is called an exact 2-distance color dominating vertex. Some results based on exact 2-distance b-coloring are obtained. Exact 2-distance b-chromatic number of some classes of graphs are obtained.

Keywords

Exact 2-distance coloring (*e*2-coloring), exact 2-distance chromatic number (*e*2-number), b-coloring, b-chromatic number, exact 2-distance b-coloring(*e*2-b-coloring), exact 2-distance b-chromatic number (*e*2-b-number), exact 2-distance b-colorable graph(*e*2-b-colorable graph), exact 2-distance color dominating vertex(*e*2-b-cdv).

1,2*PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-620002, Tamil Nadu, India.* ***Corresponding author**: ¹ sarassrc75@gmail.com; ²mpranjani@hotmail.com **Article History**: Received **04** September **2019**; Accepted **30** December **2019** c 2020 MJM.

Contents

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For those terminologies not defined in this paper, the reader may refer to [[\[1\]](#page-5-2)]. A proper *k*-coloring of a graph *G* is an assignment of *k*-colors to the vertices of *G* such that no two adjacent vertices are assigned the same color. The chromatic number $\chi(G)$ is the minimum k for which G admits a proper *k*-coloring. Based on this proper coloring of vertices, various types of coloring were defined. The distance coloring was introduced by F. Kramer and H. Kramer [[\[4\]](#page-5-3)],[[\[5\]](#page-5-4)] in

1969. As the name suggests it is based on distance between two vertices. A 2-distance coloring of a graph *G* is an assignment of colors to the vertices of *G* such that every two vertices at distance at most 2 receive distinct colors. The 2-distance chromatic number of *G*, denoted $\chi_2(G)$ is the smallest integer k for which *G* admits a 2-distance k-coloring. One should be careful while defining exact distance coloring. Since kdistance coloring is a coloring of *G* in which two vertices *u*, *v* receive distinct colors if $d(u, v) \leq k$, while in exact k-distance coloring *u*, *v* receive distinct colors if $d(u, v) = k$. Hence if $ux_1x_2 \cdots x_{r-1}v$ is a $u - v$ path, then in a k-distance coloring, *r* ≤ *k*,*r* − 1 + 2 ≤ *k*(i.e., *r* + 1 ≤ *k*), each vertex receive distinct colors while in exact k-distance coloring, all the *xi*'s may receive same color. If *u* and *v* are vertices such that $d(u, v) = 2$, then u is said to be a 2-neighbour of v and vice versa. The set of all 2-neighbours of *u* is denoted by $N_2(u)$ and is called open 2-neighbournood of *u* and $N_2[u] = N_2(u) \cup \{u\}$ is called the closed 2-neighbourhood of *u*. In this paper, we consider only exact 2-distance coloring. Exact k-distance coloring of *G* can also be analyzed from the exact k-distance graph.

The concept of the exact p-distance (or distance-p) graph, where p is a positive integer, was introduced by Simi'c [[\[7\]](#page-5-6)] in the 1980s and was recently rediscovered by Ne'set'ril and Ossona De Mendez[[\[6\]](#page-5-7)]. If *G* is a graph, then the exact pdistance graph $G^{[ep]}$ of *G* is the graph with $V(G^{[ep]}) = V(G)$ and two vertices in $G^{[ep]}$ are adjacent if and only if they are at distance exactly p in *G*. In particular, the exact 2 distance graph $G^{[e2]}$ of *G* is the graph with $V(G^{[e2]}) = V(G)$ and two vertices in $G^{[e2]}$ are adjacent if and only if they are at distance exactly 2 in *G*. Note that $G^{[e_1]} = G$. Clearly, $\chi(G^{[e2]}) = \chi_{e2}(G)$. The other coloring of interest is b-coloring. The concept of b-coloring was introduced by Irving and Manlove[[\[2\]](#page-5-8)] in 1991. A b-coloring of *G* by k-colors is a proper k-coloring such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class. Such a vertex is called a color dominating vertex. The b-chromatic number $\chi_b(G)$ of *G* is the largest integer k such that *G* has a b-coloring by k-colors. The m-degree $m(G)$ of a graph was defined as $m(G) = \max\{i : 1 \le i \le |V(G)|, G\}$ has at least *i* vertices of degree at least *i*−1}. In this paper, we have defined a new coloring based on two types of coloring viz. (i) exact p-distance coloring and (ii) b-coloring. In this paper, an attempt is made to combine the concept of exact 2-distance coloring and b-coloring. Difficulty arose as b-coloring tries for maximum coloring and exact 2-distance for minimum coloring. Hence to support the definition exact 2-distance b-coloring or e2b-coloring, the terms color dominating vertex, b-spectrum and b-continuity which are the fundamental terminologies of b-coloring are redefined based on distance. Consequently chromatic parameter exact 2-distance b-chromatic number $\chi_{e2b}(G)$ of *G* is introduced. Results are obtained for some well known classes of graphs.

2. Definitions and some prior results related to exact 2-distance coloring

In this section, graphs are constructed from given graph *G* based on exact distance between two vertices of *G*. Here, we discuss exact 2-distance coloring and exact 2-distance graph. We give the general definition first. In this section, the particular case i.e, $p = 2$ of exact p-distance coloring and the corresponding graphs are studied. Hence we give the definition for the particular case. Also 2-distance chromatic number of some well known graphs are given. Further exact 2-distance chromatic number of some graph families which are not studied ealier are discussed.

Definition 2.1. *An exact p-distance coloring (or an ep-coloring) of a graph G is defined as a coloring of vertices of G which are at distance exactly p receive distinct colors.*

An exact p-distance chromatic number (or an ep- number) $\chi_{ep}(G)$ *of G is the minimum k for which G admits an ep-coloring with k-colors.*

Definition 2.2. *An exact 2-distance coloring (or an e*2*-coloring) of a graph G is defined as a coloring of vertices of G which*

are at distance exactly 2 receive distint colors.

*An exact 2-distance chromatic number (or an e*2*- number)* $\chi_{e2}(G)$ *of G is the minimum k for which G admits an e*2*-coloring with k-colors.*

i.e., $\chi_{e2}(G) = \min\{k : G \text{ has an } e2 \text{ coloring with } k \text{ colors }\}.$

Definition 2.3. *The color classes of an e*2*-coloring are called e*2*-color classes.*

Definition 2.4. *For a vertex* $u, d_2(u)$ *is called the* d_2 -*degree of u.*

Example 2.5.

(b) *G* with $\chi(G) = 2$ and $\chi_{e2}(G) = 4$.

$$
\bullet \hspace{10mm} \bullet \hspace{10mm} \bullet \hspace{10mm} \bullet
$$

(c) *G* with $\chi(G) = \chi_{e2}(G) = 2$.

Figure 1

Notation 2.6. *Let u be a vertex of a graph G. Then*

- *i*) $d_2(u) = |N_2(u)|$
- *ii*) $\Delta_2(G) = \max\{d_2(u) : \forall u \in V(G)\}$ *, where* $\Delta_2(G)$ *the maximum degree with respect to 2-neighbours.*
- *iii*) $\delta_2(G) = \min\{d_2(u): \forall u \in V(G)\}$, where $\delta_2(G)$ the min*imum degree with respect to 2-neighbours.*

observation 2.7. Let $G = (V, E)$ be a connected graph of *order* $n > 3$ *. Then the followings hold.*

- *(i) If* $u \in V$ *, then* $d_2(u) \leq n 1 d(u)$ *.*
- (iii) *d*₂ $(u) \le n-2$.

Proof. (i)
$$
d_2(u) = |N_2(u)| \le |V(G)| - |N[u]| = n - (d(u) + 1)
$$

 $d_2(u) \le n - 1 - d(u).$

(ii) Since
$$
d(u) \ge 1, d_2(u) \le n-2
$$
.

observation 2.8 ([\[8\]](#page-5-9)). Let G be a bipartite graph, then $G^{[e2]}$ *is not connected.*

observation 2.9 ([\[6\]](#page-5-7), [\[7\]](#page-5-6)). *For any graph* $G, \chi(G^{[e2]}) = \chi_{e2}(G)$

- observation 2.10. *i) An e*2*-coloring is not a proper vertex coloring. i.e., adjacent vertices may receive the same color.*
	- *ii) A given class of graphs need not to have unique* χ*e*2*.*
	- *iii*) If *H* is any induced sub graph of *G*, then $\chi_{e2}(H) \leq$ $\chi_{e2}(G)$.
	- *iv) e*2*-color classes need not be independent.*
	- *v*) *For any incomplete graph of order at least 3,* $\chi_{e2}(G) \geq$ 2*.*
- *Proof.* i) By the definition of *e*2-coloring, adjacent vertices may receive the same color.
	- ii) Refer example 2.5, figure 1(b) and 1(c). Though $K_{1,4}$ and P_3 are bipartite graphs, $\chi_{e2}(K_{1,4}) = 4$ and $\chi_{e2}(P_3) =$ 2.

iii) Trivial.

- iv) Follows from (i).
- v) Since P_3 is an induced sub graph of *G*, from (iii), $\chi_{e2}(G) \ge$ 2.

The following proposition gives exact bounds of χ*ek* for some standard graphs.

- **Proposition 2.11** ([\[3\]](#page-5-10)). *i)* $For n \geq 3$, $\chi_{ek}(P_n) = 2$, $for 2 \leq 1$ k ≤ *n*−1*.*
	- *ii*) *For* $n \geq 2$, $\chi_{e2}(K_{1,n}) = n$.
	- *iii*) *For* $n \geq 5$, $\chi_{e2}(W_n) = \lfloor \frac{n}{2} \rfloor$.
	- *iv*) *For* $m \geq 1$ *and* $n \geq 1$, $\chi_{e2}(K_{m,n}) = \max\{m,n\}.$

v) For
$$
m \ge 1
$$
 and $n \ge 1$, $\chi_{ek}(B_{m,n}) = \begin{cases} \max\{m, n\} + 1, if k = 1 \text{ or } 3 \\ 2, if k = 1 \text{ or } 3 \end{cases}$

Lemma 2.12. *If G is a connected incomplete graph of order n* \geq 3*, then* $2 \leq \chi_{e2}(G) \leq n-1$ *and the bounds are sharp.*

Proof. Lower inequality follows from observation 2.10 (v). Let *u* be an arbitrary vertex of *G*. Since *G* is connected, *u* is adjacent to at least one vertex say *v*. Assign color 1 to *u* and *v*, and distinct *n*−2 colors to the remaining *n*−2 vertices. This give an *e*2-coloring of *G*. Hence the upper inequality follows. From observation 2.11, $\chi_{e2}(P_4) = 2$ and $\chi_{e2}(K_{1,n-1}) = n - 1$. Hence, the bounds are sharp. П

Lemma 2.13. If a graph G has a vertex u such that $N(u)$ is *independent, then* $\chi_{e2}(G) \geq d(u) \geq \delta$.

Proof. Let $d(u) = r$. Then $N[u]$ induces $K_{1,r}$. From observa- $\chi_{e2}(G) \geq \chi_{e2}(K_{1,r}) = r = d(u) \geq \delta.$ □

Proposition 2.14. *For n* $>$ 4*,*

 \Box

$$
\chi_{e2}(C_n) = \begin{cases} 2, if \ n \equiv 0 \pmod{4} \\ 3, otherwise \end{cases}
$$

Proof. Let C_n be u_1, u_2, \dots, u_n . Based on *n*, there are four cases to consider.

Let $c: V(C_n) \to \{1,2\}$ be a coloring defined as follows.

$$
c(u_i) = \begin{cases} 1, if i \equiv 1 \pmod{4} \\ i \equiv 2 \pmod{4} \\ 2, if i \equiv 0 \pmod{4} \\ i \equiv 3 \pmod{4} \end{cases}
$$

From the above it is clear that any u_i and u_{i+1} receive distinct colors. Hence it is an *e*2-coloring of P_n . Since C_n , $d(u_1, u_{n-1}) =$ $d(u_2, u_n) = 2$, it is enough to verify the colors for the pair of vertices *u*₁ and *u*_{*n*}-1, and *u*₂ and *u*_{*n*}. Clearly, $c(u_1) = c(u_2)$ 1.

Case (i): $n \equiv 0 \pmod{4}$

Since $n \equiv 0 \pmod{4}$, $n - 1 \equiv 3 \pmod{4}$. Therefore, $c(u_n) =$ $c(u_{n-1}) = 2$. As $c(u_1) = c(u_2) = 1$, *c* is an *e*2-coloring of C_n . **Case (ii)**: $n \equiv 1 \pmod{4}$

As in case (i), color C_n such that all u_i 's are colored except the vertex u_n . Since $n \equiv 1 \pmod{4}$, $n - 1 \equiv 0 \pmod{4}$ and $n-2 \equiv 3 \pmod{4}$. Hence, $c(u_{n-1}) = c(u_{n-2}) = 2$. Thus *u*₁ and *u*_{*n*−1} receive distinct colors. Since $c(u_2) = 1$ and $c(u_{n-2}) = 2, u_n$ cannot be assigned either the color 1 or the color 2. Assign color 3 to *un*. This gives a minimum *e*2 coloring of *Cn*.

Case (iii): $n \equiv 2 \pmod{4}$

Follow the same color scheme as in case (i) up to the vertex *u*_{*n*−2}. Since $n \equiv 2 \pmod{4}$, $n-3 \equiv 3 \pmod{4}$ and $n-2 \equiv$ 0(*mod* 4). Hence, $c(u_{n-3}) = c(u_{n-2}) = 2$. Since $c(u_1) = 1$ and $d(u_{n-1}, u_1) = d(u_{n-1}, u_{n-3}) = 2, u_{n-1}$ can't be given either color 1 or 2. Hence $\chi_{e2}(C_n) > 2$. Now let $c(u_{n-1}) =$ $c(u_n) = 3$. Then *c* is an *e*2-coloring.

Case (iv):
$$
n \equiv 3 \pmod{4}
$$

 $max{m, n} + 1$, *if* $k = 2$ Color up to the vertex u_{n-2} . Clearly $n - 3 \equiv 0 \pmod{4}$ and hence, $c(u_{n-3}) = 2$. Now $d(u_{n-1}, u_1) = d(u_{n-1}, u_{n-3}) = 2$. Since $c(u_1) = 1, u_{n-1}$ can't be given the colors 1 as well as 2. Hence $\chi_{e2}(C_n) > 2$. Now let $c(u_{n-1}) = c(u_n) = 3$. Then *c* is an *e*2-coloring. П

 \Box

3. Exact 2-distance b-coloring

In this section some definitions and results of an exact 2-distance b-coloring are discussed. Also exact 2-distance b-chromatic number of some graph families are obtained. Further exact 2-distance b-discontinuity properties of some graph families are discussed.

Definition 3.1. *An exact 2-distance b-coloring (or an e*2*-b coloring)) of a graph G is an e*2*-coloring of G such that each color class contains a vertex that has a 2-neighboour in all other color classes.*

*An exact 2-distance b-chromatic number (or an e*2*-bnumber*) $\chi_{e2b}(G)$ *of G is the largest integer k such that G has e*2*-b-coloring with k-colors.*

*A vertex which has a 2-neighbour in all other classes is called an exact 2-distance color dominating vertex (or an e*2*-cdv). If u is an e*2*-cdv of color i, then it is called an e*2*-icdv. The color classes of an e*2*-b-coloring is called e*2*-color classes.*

Definition 3.2. *The term* m_2 *degree of* $m_2(G)$ *of G is defined as the largest integer m such that G has at least m vertices having at least* (*m*−1) *2- neighbours.*

Example 3.3.

Figure 2

Proposition 3.4. *Any minimum e*2*-coloring of a graph is an e*2*-b-coloring.*

Proof. Let *G* be a graph with $\chi_{e2}(G) = l$. Then there exists an *e*2-coloring say 'c' with *l* colors. Then its vertex set *V* can be partitioned into *l* color classes namely V_1, V_2, \dots, V_l . Suppose *c* is not an *e*2-b-coloring. Then atleast one color class *Vⁱ* does not have any *e*2-cdv. Therefore each *u* does not have any 2-neighbour in atleast some V_j , $j \neq i$. Put *u* is the respective V_j . Hence V_i becomes \emptyset . Therefore there exists an *e*2-coloring with *l* − 1 colors, a contradiction. \Box **Definition 3.5.** *If for each integer k satisfying* $\chi_{e2}(G) \leq k \leq$ χ*e*2*b*(*G*),*G has an e*2*b-coloring by k-colors, then G is said to be an exact 2-distance b-continuous (or e*2*-b-continuous) graph.*

Definition 3.6. *The exact 2-distance b-spectrum (or e*2*-bspectrum*) $S_{e2b}(G)$ *of G is defined by the set of all k such that G has an e*2*-b-coloring by k-colors. In other words,* $S_{e2b}(G) = \{k : G \text{ has an } e2-b-coloring with k-colors \}.$ *Thus, if* $S_{e2b}(G)$ *contains all the integers from* $\chi_{e2}(G)$ *to* $\chi_{e2b}(G)$, then G is e2-b-continuous.

observation 3.7. *For a graph G,*

- *i*) $\chi_{e2}(G) \leq \chi_{e2b}(G) \leq m_2(G) \leq \Delta_2(G) + 1$.
- *ii) If* $\chi_{e2b}(G) = \chi_{e2}(G)$ *or* $\chi_{e2b}(G) = \chi_{e2}(G) + 1$ *, then G is e*2*-b-continuous.*

observation 3.8. *(i)* $For n \geq 3, m_2(P_n) = \begin{cases} 2, if 3 \leq n \leq 6 \\ 2, if n \leq n \end{cases}$ $3,$ *if* $n \geq 7$

(ii) For $n \geq 4, m_2(C_n) = \begin{cases} 2, & \text{if } n = 4 \\ 2, & \text{if } n > 5 \end{cases}$ $3,$ *if* $n \geq 5$

(*iii*) For
$$
n \ge 2, m_2(K_{1,n}) = n
$$
.

- *(iv) For* $m, n \geq 2, m_2(K_{m,n}) = \max\{m, n\}.$
- *(v) For n* > 5,*m*₂(*W_n*) = *n* − 3
- *(vi) For* $m \ge 1$ *and* $n \ge 1, m_2(B_{m,n}) = \max\{m, n\} + 1$

Proposition 3.9. *(i) For* $n \ge 2$, $\chi_{e2b}(K_{1,n}) = n$.

- *(ii) For* $m \geq 1$ *and* $n \geq 1$, $\chi_{e2b}(K_{m,n}) = \max\{m,n\}.$
- *(iii) For* $m \ge 1$ *and* $n \ge 1$, $\chi_{e2b}(B_{m,n}) = \max\{m,n\} + 1$.

Proof. (i) to (iii) follow from observations 3.7,3.8 and Proposition 2.11. П

Proposition 3.10. *For* $n \geq 3$ *,*

$$
\chi_{e2b}(P_n) = \begin{cases} 2, & if \ 3 \leq n \leq 6 \\ 3, & if \ n \geq 7 \end{cases}
$$

Proof. From proposition 2.11, $\chi_{e2}(P_n) = 2$, for all $n \geq 3$. Then there are two cases to consider.

Case(i): $3 \le n \le 6$

From observations 3.7 (i) and 3.8 (i), $\chi_{e2b}(P_n) = 2$. Case (ii): $n > 7$ From observations 3.7(i) and 3.8 (i),

$$
2 \leq \chi_{e2b}(P_n) \leq 3 \tag{3.1}
$$

There are at least three vertices namely, v_3 , v_4 , v_5 having two 2-neighbours. Therefore these three vertices must receive three distinct colors namely 1, 2 and 3. Let $c(v_3) = 1$; $c(v_4) =$ $2, c(v_5) = 3$. Since $d(v_3, v_1) = d(v_3, v_5) = 2$, assign color 2 to the vertices v_1 and v_7 .

∴ *v*₃ is *e*2-1- cdv and *v*₅ is *e*2-3-cdv. Since $d(v_3, v_2) =$ $d(v_5, v_6) = 1$ assign 1 to v_2 and 3 to v_6 . Hence v_4 is *e*2-2-cdv. For the remaining vertices $v_i, i \geq 8$.

$$
c(v_i) = \begin{cases} 2, if i \equiv 0 \pmod{4} \\ i \equiv 3 \pmod{4} \\ 1, if i \equiv 1 \pmod{4} \\ i \equiv 2 \pmod{4} \end{cases}
$$

Clearly, this coloring is an *e*2*b*-coloring by 3-colors. Therefore from (1), $\chi_{e2b}(P_n) = 3$. \Box

Corollary 3.11. *Pⁿ is e*2*b-continuous.*

Proof. From observation 3.7(ii) and the above proposition 3.10, P_n is $e2b$ -continuous. \Box

Theorem 3.12. *For n* ≥ 4 *,*

$$
\chi_{e2b}(C_n) = \begin{cases} 2, if \ n = 4, 8 \\ 3, if \ n \ge 5 \ and \ n \ne 8 \end{cases}
$$

Proof. There are 4 cases.

Case(i): $n = 4$

From observation 3.7(i) and 3.8(iii,) $\chi_{e2b}(C_n) = 2$. Case (ii): $n = 8$

By the similar argument as in case (i), $2 \leq \chi_{e2b}(C_n) \leq$ $3, n = 8$. Assign three distinct colors say 1,2 and 3 to the vertices v_{i-2} , v_i and v_{i+2} , $i = 3$ or 4 or 5 in any manner. Let $c(v_1) = 1$; $c(v_3) = 2$; $c(v_5) = 3$. Then v_3 is *e*2-2-cdv. Since $c(v_5) = 3$; $c(v_1) = 1$, $d(v_5, v_7) = 2$ and $d(v_1, v_7) = 2$, colors 1 or 3 cannot be assigned to the vertex *v*7. Hence assign color 2 to *v*7.

∴ *v*₁ and *v*₅ cannot be *e*2-1 cdv and *e*2-3 cdv. Since $c(v_1)$ = $1, c(v_3) = 2, c(v_5) = 3$ and $c(v_7) = 2$, assign colors 1 or 3 to any two of the remaining vertices v_i , $i = 2, 4, 6, 8$ which are not yet colored. Clearly, $d(v_i, v_j) = 2$ or 4, $i, j = 2, 4, 6, 8, i \neq j$. **Subcase(a)**: Suppose $d(v_i, v_j) = 2, i, j = 2, 4, 6, 8$ and $i \neq j$. Assign colors 1 and 3 to any two of these vertices say v_2 and *v*₄. (ie), Let $c(v_2) = 1$; $c(v_4) = 3$. Then color 1 cannot be assigned to v_8 and 3 cannot be assigned to v_6 . To get e_2 -1 cdv and *e*2-3 cdv, color 2 should be given to both of the vertices v_6 and v_8 . But $d(v_2, v_8) = 2$. Therefore assign color 2 to one of the vertices, namely v_6 . Hence v_4 is e^{2-3} cdv. Clearly *e*2-1-cdv cannot be obtained.

Subcase(b): Suppose $d(v_i, v_j) = 4, i, j = 2, 4, 6, 8$ and $i \neq j$ proceed as in subcase (a).

 $\chi_{e2b}(C_n) \neq 3, n = 8.$

Case (iii): $n \not\cong 0 \pmod{3}$

From proposition 2.13 and observations 3.7(i) and 3.8(iii), $\chi_{e2b}(C_n) = 3.$

Case (iv): $n \equiv 0 \pmod{4}$ and $n \ge 12$.

By similar argument as in case (i), $2 \leq \chi_{e2b}(C_n) \leq 3$. Assign colors 1,2,3 to the vertices v_i , $i = 1$ to 12 in cyclic order. Since C_n contains P_7 as an induced subgraph, C_n has *e*2-1-cdv, *e*2-2-cdv, *e*2-3-cdv.

For the remaining vertices, assign color 1,1,3,3 in cyclic order. Since $d(v_{n-1}, v_1) = d(v_n, v_2) = 2, 1 = c(v_1) \neq c(v_{n-1}) = 3$ and $3 = c(v_n) \neq c(v_2) = 2$, an *e*2-b-coloring by 3 colors is obtained.

$$
\therefore \chi_{e2b}(C_n) = 3
$$

 \Box

Corollary 3.13. *Cⁿ is e*2*b-continuous.*

Proof. From observation 3.7(ii) and the above proposition 3.10, C_n is *e*2*b*-continuous. \Box

Proposition 3.14. *For* $n \geq 5$

$$
\chi_{e2b}(W_n) = \lfloor \frac{n}{2} \rfloor
$$

Proof. From observation 3.7(i) and 3.8, $\lfloor \frac{n}{2} \rfloor \leq \chi_{e2b}(W_n) \leq$ *n*−3.

The color schemes slightly varies according as *n* is even or odd. Suppose *c* is an *e*2-b-coloring.

Case(i): *n* is even

.

Let *v* be the central vertex and $v_1, v_2, \cdots v_{n-1}$ are the vertices of C_{n-i} , v_1 , v_3 , v_5 , \cdots , v_{n-3} are mutually at distance 2 and hence must receive distinct colors. Assign to them respectively the colors $1, 2, 3, \cdots, \lceil \frac{n-3}{2} \rceil$.

Suppose v_{n-1} is given a new color $\lceil \frac{n-3}{2} \rceil + 1 = \lceil \frac{n-1}{2} \rceil = \lceil \frac{n}{2} \rceil = \frac{n}{2} = \lfloor \frac{n}{2} \rfloor$. Then this color cannot be given to any of the vertices v_2, v_4, \dots, v_{n-4} . But v_{n-2} . Since *v*₁ need to have 2-neighbour of color $\lfloor \frac{n}{2} \rfloor$ and *v*_{*n*−1} is

not a 2-neighbour of v_1 , $\lfloor \frac{n}{2} \rfloor$ should be given to v_{n-2} . If v_2 is given a new color, then this color cannot be assigned to v_4 , v_6 , \cdots , v_{n-4} . Further no vertex other than v_1 can receive color 1. Hence v_1 is the only dominating vertex of color 1. But v_1 cannot dominate the color $c(v_2)$, contradiction. Hence v_2 cannot be assigned any new color.

By similar argument v_2, v_4, \dots, v_{n-4} cannot be assigned any new color. For the vertices v_{2i} , $i = 1, 2, \dots, \frac{n-4}{2}$, assign colors $i+1$ respectively. Also assign any one of these colors $1, 2, \dots, \lfloor \frac{n}{2} \rfloor$ to the central vertex. Clearly the vertices v_1, v_3, \dots, v_{n-3} and v_{n-2} are *e*2-color dominating vertices of colors $1, 2, 3, \dots, \lfloor \frac{n}{2} \rfloor$ respectively. Hence an *e*2-b-coloring by $\lfloor \frac{n}{2} \rfloor$ colors.

 $\therefore \chi_{e2b}(W_n) = \lfloor \frac{n}{2} \rfloor$, *n* is even. Case(ii): *n* is odd.

 $v_1, v_3, v_5, \cdots, v_{n-2}$ are mutually at distance 2 and hence must receive distinct colors. Assign to them respectively the colors $1, 2, 3, \cdots, \lceil \frac{n-2}{2} \rceil$. Suppose v_2 is given a new color $\lceil \frac{n-2}{2} \rceil + 1$. This color cannot be given to the any one of the vertices v_4 , v_6 , \cdots , v_{n-1} . Since v_1 need to have 2-neighbour of color $\lceil \frac{n-2}{2} \rceil + 1$. ∴ *v*₁ cannot dominate the color *c*(*v*₂), a contradiction. Hence v_2 cannot be assigned any new color. By similar argument v_4 , v_6 , \cdots , v_{n-2} cannot be assigned any new color. Therefore for the vertices, v_{2i} , $i = 1, 2, \dots, \frac{n-1}{2}$ assign colors *i* respectively.

Also assign any one of the colors $1, 2, \cdots, \lceil \frac{n-2}{2} \rceil$ to

u. Clearly, $v_1, v_3, v_5, \cdots, v_{n-2}$ are *e*2-color dominating vertices of colors $1, 2, \dots, \lceil \frac{n-2}{2} \rceil$. Hence an *e*2-b-coloring by $\lceil \frac{n-2}{2} \rceil = \lfloor \frac{n}{2} \rfloor$ colors is obtained. \Box

4. Conclusion

In this paper, a new type of coloring called exact 2-distance b-coloring and it's chromatic parameters were introduced. Some results based on exact 2-distance b-coloring were obtained. Also exact 2-distance b-chromatic number of some classes of graphs were obtained.

References

- [1] Harary F, *Graph Theory*, Narosa Addison Wesley, Indian Student Edition, 1988.
- [2] Irving R.W and Manlove D.F, The b-chromatic number of a graph, *Discrete. Appl. Math.,* 91(1991), 127–141.
- [3] Janakiraman T.N, Poobalaranjani M and Senthil Thilak A, Exact k-distance coloring of graphs, *Proceeding of the UGC sponsored National Seminar on Applications in Graph Theory*.
- [4] Kramer K and Kramer H, Un Probleme de coloration des sommets d'un graphe. *C.R.Acad.Sci. Paris A,* 268(7)(1969), 46–48.
- [5] Kramer F and Kramer H, EinFarbungsproblem der Knotenpunkteeines Graphenbezuglich der Distanzp, *Rev. Roumaince Math. Pure Application*, 14(2)(1969), 1031– 1038.
- [6] Nesetril J, Ossona de Mendez, *Sparsity, Graphs, Structures, and Algorithms*, Springer Verlag, Berlin, Heidelberg, 2012.
- [7] Simic S.K, Graph equations for line graphs and nth distance graphs, *Publ. Inst. Math.,* 33(1983), 203–216.
- [8] Ziegler G.M, Coloring Hamming Graphs, Optimal binary codes, and the 0/1-Borsuk problem in low dimensions, *Lecture Notes Comp. Sci.,* 2122(2001), 159–171.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

