

https://doi.org/10.26637/MJM0801/0033

Exact 2-distance b-coloring of some classes of graphs

S. Saraswathi^{1*} and M. Poobalaranjani²

Abstract

Given a graph *G*, the exact distance-p (or p-distance) graph $G^{[ep]}$ has V(G) as its vertex set and two vertices are adjacent whenever the distance between them in *G* equals *p*. An exact 2-distance coloring of a graph *G* is a proper coloring of vertices of *G* such that any two vertices which are at distance exactly 2 receive distinct colors. An exact 2-distance chromatic number of *G* is the minimum *k* for which *G* admits an exact 2-distance coloring with *k* colors. A b-coloring of a graph *G* by *k* colors is a proper *k*-vertex coloring such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class. In this paper we introduce a new coloring called exact 2-distance b-coloring. It is a b-coloring of *G* such that any two vertices at distance exactly 2 receive distinct colors. An exact 2-distance b-chromatic number $\chi_{e2b}(G)$ of *G* is the largest integer *k* such that *G* has an exact 2-distance b-coloring with *k*-colors. If each color class contains a vertex that has a 2-neighbour in all other color classes, such a vertex is called an exact 2-distance color dominating vertex. Some results based on exact 2-distance b-coloring are obtained.

Keywords

Exact 2-distance coloring (e2-coloring), exact 2-distance chromatic number (e2-number), b-coloring, b-chromatic number, exact 2-distance b-coloring(e2-b-coloring), exact 2-distance b-chromatic number (e2-b-number), exact 2-distance b-colorable graph(e2-b-colorable graph), exact 2-distance color dominating vertex(e2-b-cdv).

^{1,2}*PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-620002, Tamil Nadu, India.* *Corresponding author: ¹ sarassrc75@gmail.com; ²mpranjani@hotmail.com Article History: Received 04 September 2019; Accepted 30 December 2019

Contents

1	Introduction 195
2	Definitions and some prior results related to exact 2- distance coloring196
3	Exact 2-distance b-coloring198
4	Conclusion
	References

1. Introduction

All graphs considered in this paper are finite, simple and undirected. For those terminologies not defined in this paper, the reader may refer to [[1]]. A proper *k*-coloring of a graph *G* is an assignment of *k*-colors to the vertices of *G* such that no two adjacent vertices are assigned the same color. The chromatic number $\chi(G)$ is the minimum k for which *G* admits a proper *k*-coloring. Based on this proper coloring of vertices, various types of coloring were defined. The distance coloring was introduced by F. Kramer and H. Kramer [[4]],[[5]] in

1969. As the name suggests it is based on distance between two vertices. A 2-distance coloring of a graph G is an assignment of colors to the vertices of G such that every two vertices at distance at most 2 receive distinct colors. The 2-distance chromatic number of G, denoted $\chi_2(G)$ is the smallest integer k for which G admits a 2-distance k-coloring. One should be careful while defining exact distance coloring. Since kdistance coloring is a coloring of G in which two vertices u, vreceive distinct colors if d(u, v) < k, while in exact k-distance coloring u, v receive distinct colors if d(u, v) = k. Hence if $ux_1x_2\cdots x_{r-1}v$ is a u-v path, then in a k-distance coloring, $r \le k, r-1+2 \le k$ (i.e., $r+1 \le k$), each vertex receive distinct colors while in exact k-distance coloring, all the x_i 's may receive same color. If u and v are vertices such that d(u, v) = 2, then u is said to be a 2-neighbour of v and vice versa. The set of all 2-neighbours of u is denoted by $N_2(u)$ and is called open 2-neighbournood of u and $N_2[u] = N_2(u) \cup \{u\}$ is called the closed 2-neighbourhood of *u*. In this paper, we consider only exact 2-distance coloring. Exact k-distance coloring of G can also be analyzed from the exact k-distance graph.

©2020 MJM.

The concept of the exact p-distance (or distance-p) graph, where p is a positive integer, was introduced by Simi'c [[7]] in the 1980s and was recently rediscovered by Ne'set'ril and Ossona De Mendez[[6]]. If G is a graph, then the exact pdistance graph $G^{[ep]}$ of G is the graph with $V(G^{[ep]}) = V(G)$ and two vertices in $G^{[ep]}$ are adjacent if and only if they are at distance exactly p in G. In particular, the exact 2distance graph $G^{[e2]}$ of G is the graph with $V(G^{[e2]}) = V(G)$ and two vertices in $G^{[e^2]}$ are adjacent if and only if they are at distance exactly 2 in G. Note that $G^{[e1]} = G$. Clearly, $\chi(G^{[e^2]}) = \chi_{e^2}(G)$. The other coloring of interest is b-coloring. The concept of b-coloring was introduced by Irving and Manlove[[2]] in 1991. A b-coloring of G by k-colors is a proper k-coloring such that in each color class, there exists a vertex adjacent to at least one vertex in every other color class. Such a vertex is called a color dominating vertex. The b-chromatic number $\chi_b(G)$ of G is the largest integer k such that G has a b-coloring by k-colors. The m-degree m(G) of a graph was defined as $m(G) = \max\{i : 1 \le i \le |V(G)|, G\}$ has at least *i* vertices of degree at least i-1. In this paper, we have defined a new coloring based on two types of coloring viz. (i) exact p-distance coloring and (ii) b-coloring. In this paper, an attempt is made to combine the concept of exact 2-distance coloring and b-coloring. Difficulty arose as b-coloring tries for maximum coloring and exact 2-distance for minimum coloring. Hence to support the definition exact 2-distance b-coloring or e2b-coloring, the terms color dominating vertex, b-spectrum and b-continuity which are the fundamental terminologies of b-coloring are redefined based on distance. Consequently chromatic parameter exact 2-distance b-chromatic number $\chi_{e2b}(G)$ of G is introduced. Results are obtained for some well known classes of graphs.

2. Definitions and some prior results related to exact 2-distance coloring

In this section, graphs are constructed from given graph *G* based on exact distance between two vertices of *G*. Here, we discuss exact 2-distance coloring and exact 2-distance graph. We give the general definition first. In this section, the particular case i.e, p = 2 of exact p-distance coloring and the corresponding graphs are studied. Hence we give the definition for the particular case. Also 2-distance chromatic number of some well known graphs are given. Further exact 2-distance chromatic number of some graph families which are not studied ealier are discussed.

Definition 2.1. An exact p-distance coloring (or an ep-coloring) of a graph G is defined as a coloring of vertices of G which are at distance exactly p receive distinct colors.

An exact p-distance chromatic number (or an ep- number) $\chi_{ep}(G)$ of G is the minimum k for which G admits an ep-coloring with k-colors.

Definition 2.2. An exact 2-distance coloring (or an e2-coloring) of a graph G is defined as a coloring of vertices of G which

are at distance exactly 2 receive distint colors.

An exact 2-distance chromatic number (or an e2- number) $\chi_{e2}(G)$ of G is the minimum k for which G admits an e2-coloring with k-colors.

i.e., $\chi_{e2}(G) = \min\{k : G \text{ has an } e2 \text{ coloring with } k \text{ colors } \}.$

Definition 2.3. *The color classes of an e2-coloring are called e2-color classes.*

Definition 2.4. For a vertex $u, d_2(u)$ is called the d_2 -degree of u.

Example 2.5.

(b) G with $\chi(G) = 2$ and $\chi_{e2}(G) = 4$.

(c) G with $\chi(G) = \chi_{e2}(G) = 2$.

Figure 1

Notation 2.6. Let u be a vertex of a graph G. Then

- *i*) $d_2(u) = |N_2(u)|$
- *ii)* $\Delta_2(G) = \max\{d_2(u) : \forall u \in V(G)\}$, where $\Delta_2(G)$ the maximum degree with respect to 2-neighbours.
- iii) $\delta_2(G) = \min\{d_2(u) : \forall u \in V(G)\}$, where $\delta_2(G)$ the minimum degree with respect to 2-neighbours.

observation 2.7. Let G = (V, E) be a connected graph of order $n \ge 3$. Then the followings hold.

(*i*) If
$$u \in V$$
, then $d_2(u) \le n - 1 - d(u)$.

(*ii*) $d_2(u) \le n-2$.

Proof. (i)
$$d_2(u) = |N_2(u)| \le |V(G)| - |N[u]| = n - (d(u) + 1)$$

 $d_2(u) \le n - 1 - d(u).$

(ii) Since
$$d(u) \ge 1, d_2(u) \le n-2$$
.

observation 2.8 ([8]). Let G be a bipartite graph, then $G^{[e^2]}$ is not connected.

observation 2.9 ([6], [7]). *For any graph* $G, \chi(G^{[e^2]}) = \chi_{e^2}(G)$

- observation 2.10. *i)* An e2-coloring is not a proper vertex coloring. *i.e.*, adjacent vertices may receive the same color.
 - ii) A given class of graphs need not to have unique χ_{e2} .
 - iii) If H is any induced sub graph of G, then $\chi_{e2}(H) \leq \chi_{e2}(G)$.
 - iv) e2-color classes need not be independent.
 - v) For any incomplete graph of order at least 3, $\chi_{e2}(G) \ge 2$.
- *Proof.* i) By the definition of *e*2-coloring, adjacent vertices may receive the same color.
 - ii) Refer example 2.5, figure 1(b) and 1(c). Though $K_{1,4}$ and P_3 are bipartite graphs, $\chi_{e2}(K_{1,4}) = 4$ and $\chi_{e2}(P_3) = 2$.
 - iii) Trivial.
 - iv) Follows from (i).
 - v) Since P_3 is an induced sub graph of G, from (iii), $\chi_{e2}(G) \ge 2$.

The following proposition gives exact bounds of χ_{ek} for some standard graphs.

- **Proposition 2.11** ([3]). *i*) For $n \ge 3$, $\chi_{ek}(P_n) = 2$, for $2 \le k \le n-1$.
 - *ii*) For $n \ge 2, \chi_{e2}(K_{1,n}) = n$.
 - *iii*) For $n \ge 5$, $\chi_{e2}(W_n) = \lfloor \frac{n}{2} \rfloor$.
 - iv) For $m \ge 1$ and $n \ge 1$, $\chi_{e2}(K_{m,n}) = \max\{m, n\}$.

v) For
$$m \ge 1$$
 and $n \ge 1$, $\chi_{ek}(B_{m,n}) = \begin{cases} \max\{m,n\} + 1, if k = 2, if k = 1 \text{ or } 3 \end{cases}$

Lemma 2.12. If G is a connected incomplete graph of order $n \ge 3$, then $2 \le \chi_{e2}(G) \le n-1$ and the bounds are sharp.

Proof. Lower inequality follows from observation 2.10 (v). Let *u* be an arbitrary vertex of *G*. Since *G* is connected, *u* is adjacent to at least one vertex say *v*. Assign color 1 to *u* and *v*, and distinct n - 2 colors to the remaining n - 2 vertices. This give an *e*2-coloring of *G*. Hence the upper inequality follows. From observation 2.11, $\chi_{e2}(P_4) = 2$ and $\chi_{e2}(K_{1,n-1}) = n - 1$. Hence, the bounds are sharp.

Lemma 2.13. If a graph G has a vertex u such that N(u) is independent, then $\chi_{e2}(G) \ge d(u) \ge \delta$.

Proof. Let d(u) = r. Then N[u] induces $K_{1,r}$. From observation 2.10 (iii), $\chi_{e2}(G) \ge \chi_{e2}(K_{1,r}) = r = d(u) \ge \delta$.

Proposition 2.14. *For* $n \ge 4$ *,*

$$\chi_{e2}(C_n) = \begin{cases} 2, if \ n \equiv 0 (mod4) \\ 3, otherwise \end{cases}$$

Proof. Let C_n be u_1, u_2, \dots, u_n . Based on *n*, there are four cases to consider.

Let $c: V(C_n) \to \{1,2\}$ be a coloring defined as follows.

$$c(u_i) = \begin{cases} 1, if \ i \equiv 1 \pmod{4} \\ i \equiv 2 \pmod{4} \\ 2, if \ i \equiv 0 \pmod{4} \\ i \equiv 3 \pmod{4} \end{cases}$$

From the above it is clear that any u_i and u_{i+1} receive distinct colors. Hence it is an *e*2-coloring of P_n . Since $C_n, d(u_1, u_{n-1}) = d(u_2, u_n) = 2$, it is enough to verify the colors for the pair of vertices u_1 and u_{n-1} , and u_2 and u_n . Clearly, $c(u_1) = c(u_2) = 1$.

Case (i): $n \equiv 0 \pmod{4}$

Since $n \equiv 0 \pmod{4}, n-1 \equiv 3 \pmod{4}$. Therefore, $c(u_n) = c(u_{n-1}) = 2$. As $c(u_1) = c(u_2) = 1$, *c* is an *e*2-coloring of C_n . **Case (ii)**: $n \equiv 1 \pmod{4}$

As in case (i), color C_n such that all u_i 's are colored except the vertex u_n . Since $n \equiv 1 \pmod{4}, n-1 \equiv 0 \pmod{4}$ and $n-2 \equiv 3 \pmod{4}$. Hence, $c(u_{n-1}) = c(u_{n-2}) = 2$. Thus u_1 and u_{n-1} receive distinct colors. Since $c(u_2) = 1$ and $c(u_{n-2}) = 2, u_n$ cannot be assigned either the color 1 or the color 2. Assign color 3 to u_n . This gives a minimum *e*2coloring of C_n .

Case (iii): $n \equiv 2 \pmod{4}$

Follow the same color scheme as in case (i) up to the vertex u_{n-2} . Since $n \equiv 2 \pmod{4}, n-3 \equiv 3 \pmod{4}$ and $n-2 \equiv 0 \pmod{4}$. Hence, $c(u_{n-3}) = c(u_{n-2}) = 2$. Since $c(u_1) = 1$ and $d(u_{n-1}, u_1) = d(u_{n-1}, u_{n-3}) = 2, u_{n-1}$ can't be given either color 1 or 2. Hence $\chi_{e2}(C_n) > 2$. Now let $c(u_{n-1}) = c(u_n) = 3$. Then *c* is an *e*2-coloring.

Case (iv):
$$n \equiv 3 \pmod{4}$$

= \mathfrak{C} olor up to the vertex u_{n-2} . Clearly $n-3 \equiv 0 \pmod{4}$ and hence, $c(u_{n-3}) = 2$. Now $d(u_{n-1}, u_1) = d(u_{n-1}, u_{n-3}) = 2$. Since $c(u_1) = 1, u_{n-1}$ can't be given the colors 1 as well as 2. Hence $\chi_{e2}(C_n) > 2$. Now let $c(u_{n-1}) = c(u_n) = 3$. Then *c* is an *e*2-coloring.

3. Exact 2-distance b-coloring

In this section some definitions and results of an exact 2-distance b-coloring are discussed. Also exact 2-distance b-chromatic number of some graph families are obtained. Further exact 2-distance b-discontinuity properties of some graph families are discussed.

Definition 3.1. An exact 2-distance b-coloring (or an e2-b coloring)) of a graph G is an e2-coloring of G such that each color class contains a vertex that has a 2-neighboour in all other color classes.

An exact 2-distance b-chromatic number (or an e2-bnumber) $\chi_{e2b}(G)$ of G is the largest integer k such that G has e2-b-coloring with k-colors.

A vertex which has a 2-neighbour in all other classes is called an exact 2-distance color dominating vertex (or an e2-cdv). If u is an e2-cdv of color i, then it is called an e2-icdv. The color classes of an e2-b-coloring is called e2-color classes.

Definition 3.2. The term m_2 degree of $m_2(G)$ of G is defined as the largest integer m such that G has at least m vertices having at least (m-1) 2- neighbours.

Example 3.3.

Figure 2

Proposition 3.4. Any minimum e2-coloring of a graph is an e2-b-coloring.

Proof. Let *G* be a graph with $\chi_{e2}(G) = l$. Then there exists an *e*2-coloring say 'c' with *l* colors. Then its vertex set *V* can be partitioned into *l* color classes namely V_1, V_2, \dots, V_l . Suppose *c* is not an *e*2-b-coloring. Then atleast one color class V_i does not have any *e*2-cdv. Therefore each *u* does not have any 2-neighbour in atleast some $V_j, j \neq i$. Put *u* is the respective V_j . Hence V_i becomes \emptyset . Therefore there exists an *e*2-coloring with l - 1 colors, a contradiction.

Definition 3.5. If for each integer k satisfying $\chi_{e2}(G) \leq k \leq \chi_{e2b}(G)$, G has an e2b-coloring by k-colors, then G is said to be an exact 2-distance b-continuous (or e2-b-continuous) graph.

Definition 3.6. The exact 2-distance b-spectrum (or e2-bspectrum) $S_{e2b}(G)$ of G is defined by the set of all k such that G has an e2-b-coloring by k-colors. In other words, $S_{e2b}(G) = \{k : G \text{ has an } e2\text{-b-coloring with } k\text{-colors } \}$. Thus, if $S_{e2b}(G)$ contains all the integers from $\chi_{e2}(G)$ to $\chi_{e2b}(G)$, then G is e2-b-continuous.

observation 3.7. For a graph G,

- *i*) $\chi_{e2}(G) \le \chi_{e2b}(G) \le m_2(G) \le \Delta_2(G) + 1.$
- ii) If $\chi_{e2b}(G) = \chi_{e2}(G)$ or $\chi_{e2b}(G) = \chi_{e2}(G) + 1$, then G is e2-b-continuous.

observation 3.8. (i) For $n \ge 3, m_2(P_n) = \begin{cases} 2, if \ 3 \le n \le 6\\ 3, if \ n \ge 7 \end{cases}$

(*ii*) For $n \ge 4, m_2(C_n) = \begin{cases} 2, if \ n = 4 \\ 3, if \ n \ge 5 \end{cases}$

(*iii*) For
$$n \ge 2, m_2(K_{1,n}) = n$$
.

- (iv) For $m, n \ge 2, m_2(K_{m,n}) = \max\{m, n\}.$
- (v) For $n \ge 5, m_2(W_n) = n 3$
- (vi) For $m \ge 1$ and $n \ge 1, m_2(B_{m,n}) = \max\{m, n\} + 1$

Proposition 3.9. (*i*) For $n \ge 2, \chi_{e2b}(K_{1,n}) = n$.

- (*ii*) For $m \ge 1$ and $n \ge 1$, $\chi_{e2b}(K_{m,n}) = \max\{m, n\}$.
- (*iii*) For $m \ge 1$ and $n \ge 1$, $\chi_{e2b}(B_{m,n}) = \max\{m, n\} + 1$.

Proof. (i) to (iii) follow from observations 3.7,3.8 and Proposition 2.11. \Box

Proposition 3.10. *For* $n \ge 3$ *,*

$$\chi_{e2b}(P_n) = \begin{cases} 2, if \ 3 \le n \le 6\\ 3, if \ n \ge 7 \end{cases}$$

Proof. From proposition 2.11, $\chi_{e2}(P_n) = 2$, for all $n \ge 3$. Then there are two cases to consider.

Case(i): $3 \le n \le 6$

From observations 3.7 (i) and 3.8 (i), $\chi_{e2b}(P_n) = 2$. **Case (ii)**: $n \ge 7$ From observations 3.7(i) and 3.8 (i),

$$2 \le \chi_{e2b}(P_n) \le 3 \tag{3.1}$$

There are at least three vertices namely, v_3 , v_4 , v_5 having two 2-neighbours. Therefore these three vertices must receive three distinct colors namely 1, 2 and 3. Let $c(v_3) = 1$; $c(v_4) = 2$, $c(v_5) = 3$. Since $d(v_3, v_1) = d(v_3, v_5) = 2$, assign color 2 to the vertices v_1 and v_7 .

 \therefore v_3 is e^{2-1} - cdv and v_5 is e^{2-3} -cdv. Since $d(v_3, v_2) = d(v_5, v_6) = 1$ assign 1 to v_2 and 3 to v_6 . Hence v_4 is e^{2-2} -cdv. For the remaining vertices $v_i, i \ge 8$.

$$c(v_i) = \begin{cases} 2, if \ i \equiv 0 \pmod{4} \\ i \equiv 3 \pmod{4} \\ 1, if \ i \equiv 1 \pmod{4} \\ i \equiv 2 \pmod{4} \end{cases}$$

Clearly, this coloring is an *e*2*b*-coloring by 3-colors. Therefore from (1), $\chi_{e2b}(P_n) = 3$.

Corollary 3.11. P_n is e2b-continuous.

Proof. From observation 3.7(ii) and the above proposition 3.10, P_n is *e2b*-continuous.

Theorem 3.12. *For* $n \ge 4$,

$$\chi_{e2b}(C_n) = \begin{cases} 2, if \ n = 4, 8\\ 3, if \ n \ge 5 \ and \ n \ne 8 \end{cases}$$

Proof. There are 4 cases.

Case(i): n = 4

From observation 3.7(i) and 3.8(iii,) $\chi_{e2b}(C_n) = 2$. Case (ii): n = 8

By the similar argument as in case (i), $2 \le \chi_{e2b}(C_n) \le 3$, n = 8. Assign three distinct colors say 1,2 and 3 to the vertices v_{i-2}, v_i and $v_{i+2}, i = 3$ or 4 or 5 in any manner. Let $c(v_1) = 1; c(v_3) = 2; c(v_5) = 3$. Then v_3 is e2-2-cdv. Since $c(v_5) = 3; c(v_1) = 1, d(v_5, v_7) = 2$ and $d(v_1, v_7) = 2$, colors 1 or 3 cannot be assigned to the vertex v_7 . Hence assign color 2 to v_7 .

∴ v_1 and v_5 cannot be e^{2-1} cdv and e^{2-3} cdv. Since $c(v_1) = 1, c(v_3) = 2, c(v_5) = 3$ and $c(v_7) = 2$, assign colors 1 or 3 to any two of the remaining vertices $v_i, i = 2, 4, 6, 8$ which are not yet colored. Clearly, $d(v_i, v_j) = 2$ or $4, i, j = 2, 4, 6, 8, i \neq j$. **Subcase(a)**: Suppose $d(v_i, v_j) = 2, i, j = 2, 4, 6, 8$ and $i \neq j$. Assign colors 1 and 3 to any two of these vertices say v_2 and v_4 . (ie), Let $c(v_2) = 1; c(v_4) = 3$. Then color 1 cannot be assigned to v_8 and 3 cannot be assigned to v_6 . To get e^{2-1} cdv and e^{2-3} cdv, color 2 should be given to both of the vertices v_6 and v_8 . But $d(v_2, v_8) = 2$. Therefore assign color 2 to one of the vertices, namely v_6 . Hence v_4 is e^{2-3} cdv. Clearly e^{2-1} -cdv cannot be obtained.

Subcase(b): Suppose $d(v_i, v_j) = 4, i, j = 2, 4, 6, 8$ and $i \neq j$ proceed as in subcase (a).

 $\chi_{e2b}(C_n) \neq 3, n = 8.$

Case (iii): $n \not\cong 0 \pmod{3}$

From proposition 2.13 and observations 3.7(i) and 3.8(iii), $\chi_{e2b}(C_n) = 3$.

Case (iv): $n \equiv 0 \pmod{4}$ and $n \ge 12$.

By similar argument as in case (i), $2 \le \chi_{e2b}(C_n) \le 3$. Assign colors 1,2,3 to the vertices v_i , i = 1 to 12 in cyclic order. Since C_n contains P_7 as an induced subgraph, C_n has e2-1-cdv, e2-2-cdv, e2-3-cdv. For the remaining vertices, assign color 1,1,3,3 in cyclic order. Since $d(v_{n-1}, v_1) = d(v_n, v_2) = 2, 1 = c(v_1) \neq c(v_{n-1}) = 3$ and $3 = c(v_n) \neq c(v_2) = 2$, an *e*2-b-coloring by 3 colors is obtained.

$$\therefore \chi_{e2b}(C_n) = 3$$

Corollary 3.13. C_n is e2b-continuous.

Proof. From observation 3.7(ii) and the above proposition 3.10, C_n is *e2b*-continuous.

Proposition 3.14. *For* $n \ge 5$

$$\chi_{e2b}(W_n) = \lfloor \frac{n}{2} \rfloor$$

Proof. From observation 3.7(i) and 3.8, $\lfloor \frac{n}{2} \rfloor \leq \chi_{e2b}(W_n) \leq n-3$.

The color schemes slightly varies according as n is even or odd. Suppose c is an e2-b-coloring.

Case(i): *n* is even

Let *v* be the central vertex and $v_1, v_2, \dots v_{n-1}$ are the vertices of $C_{n-i}, v_1, v_3, v_5, \dots, v_{n-3}$ are mutually at distance 2 and hence must receive distinct colors. Assign to them respectively the colors $1, 2, 3, \dots, \lceil \frac{n-3}{2} \rceil$.

Suppose v_{n-1} is given a new color $\lceil \frac{n-3}{2} \rceil + 1 = \lceil \frac{n-1}{2} \rceil = \lceil \frac{n}{2} \rceil = \frac{n}{2} = \lfloor \frac{n}{2} \rfloor$. Then this color cannot be given to any of the vertices v_2, v_4, \dots, v_{n-4} . But v_{n-2} . Since v_1 need to have 2-neighbour of color $\lfloor \frac{n}{2} \rfloor$ and v_{n-1} is not a 2-neighbour of $v_1, \lfloor \frac{n}{2} \rfloor$ should be given to v_{n-2} .

If v_2 is given a new color, then this color cannot be assigned to v_4, v_6, \dots, v_{n-4} . Further no vertex other than v_1 can receive color 1. Hence v_1 is the only dominating vertex of color 1. But v_1 cannot dominate the color $c(v_2)$, contradiction. Hence v_2 cannot be assigned any new color.

By similar argument v_2, v_4, \dots, v_{n-4} cannot be assigned any new color. For the vertices $v_{2i}, i = 1, 2, \dots, \frac{n-4}{2}$, assign colors i + 1 respectively. Also assign any one of these colors $1, 2, \dots, \lfloor \frac{n}{2} \rfloor$ to the central vertex. Clearly the vertices v_1, v_3, \dots, v_{n-3} and v_{n-2} are *e*2-color dominating vertices of colors $1, 2, 3, \dots, \lfloor \frac{n}{2} \rfloor$ respectively. Hence an *e*2-b-coloring by $\lfloor \frac{n}{2} \rfloor$ colors.

 $\therefore \chi_{e2b}(W_n) = \lfloor \frac{n}{2} \rfloor, n \text{ is even.}$ Case(ii): *n* is odd.

 $v_1, v_3, v_5, \dots, v_{n-2}$ are mutually at distance 2 and hence must receive distinct colors. Assign to them respectively the colors $1, 2, 3, \dots, \lceil \frac{n-2}{2} \rceil$. Suppose v_2 is given a new color $\lceil \frac{n-2}{2} \rceil + 1$. This color cannot be given to the any one of the vertices v_4, v_6, \dots, v_{n-1} . Since v_1 need to have 2-neighbour of color $\lceil \frac{n-2}{2} \rceil + 1$. $\therefore v_1$ cannot dominate the color $c(v_2)$, a contradiction. Hence v_2 cannot be assigned any new color. By similar argument v_4, v_6, \dots, v_{n-2} cannot be assigned any new color. Therefore for the vertices, $v_{2i}, i = 1, 2, \dots, \frac{n-1}{2}$ assign colors *i* respectively.

Also assign any one of the colors $1, 2, \dots, \lfloor \frac{n-2}{2} \rfloor$ to

u. Clearly, $v_1, v_3, v_5, \dots, v_{n-2}$ are *e*2-color dominating vertices of colors $1, 2, \dots, \lceil \frac{n-2}{2} \rceil$. Hence an *e*2-b-coloring by $\lceil \frac{n-2}{2} \rceil = \lfloor \frac{n}{2} \rfloor$ colors is obtained.

4. Conclusion

In this paper, a new type of coloring called exact 2-distance b-coloring and it's chromatic parameters were introduced. Some results based on exact 2-distance b-coloring were obtained. Also exact 2-distance b-chromatic number of some classes of graphs were obtained.

References

- ^[1] Harary F, *Graph Theory*, Narosa Addison Wesley, Indian Student Edition, 1988.
- ^[2] Irving R.W and Manlove D.F, The b-chromatic number of a graph, *Discrete. Appl. Math.*, 91(1991), 127–141.
- [3] Janakiraman T.N, Poobalaranjani M and Senthil Thilak A, Exact k-distance coloring of graphs, *Proceeding of* the UGC sponsored National Seminar on Applications in Graph Theory.
- [4] Kramer K and Kramer H, Un Probleme de coloration des sommets d'un graphe. C.R.Acad.Sci. Paris A, 268(7)(1969), 46–48.
- ^[5] Kramer F and Kramer H, EinFarbungsproblem der Knotenpunkteeines Graphenbezuglich der Distanzp, *Rev. Roumaince Math. Pure Application*, 14(2)(1969), 1031– 1038.
- [6] Nesetril J, Ossona de Mendez, Sparsity, Graphs, Structures, and Algorithms, Springer Verlag, Berlin, Heidelberg, 2012.
- [7] Simic S.K, Graph equations for line graphs and nth distance graphs, *Publ. Inst. Math.*, 33(1983), 203–216.
- [8] Ziegler G.M, Coloring Hamming Graphs, Optimal binary codes, and the 0/1-Borsuk problem in low dimensions, *Lecture Notes Comp. Sci.*, 2122(2001), 159–171.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

