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1. Introduction
A function space is an interesting example of a topolog-

ical space. In past, many researchers studies different kind
of function spaces by placing different topologies on the set
of functions. This study is help to understand relationship
between continuous function and a Baire measure on a Ty-
chonoff space. The relationship between these two concepts
can be clarified by the study of various locally convex topolo-
gies on spaces of continuous functions. The most interesting
function space, C(X), which is set of all real-valued continu-
ous function on a Tychonoff space X, have been studied by
defining three topologies like point-open topology, compact-
open topology and topology of uniform convergence. In this
paper, our goal is to introduce and study another topology
called ω-compact topology on C(X) in term of ω-compact
subset of X . We denote this topology by ω and the corre-
sponding space by Cω(X). Throughout this paper we use
following conventions. All spaces in this paper considered
is a Tychonoff space that is, a complete regular Housdroff
space. If X and Y are spaces with same underlying set, then
X = Y , X ≤ Y , X < Y indicate that X and Y have same topol-
ogy, that the topology Y is finer or equal to the topology on X
and that the topology on Y is strictly finer than the topology
on X , respectively. The point-open topology, compact-open

topology and uniform convergence topology on C(X) is de-
noted by p, k and u, respectively and corresponding spaces
are denoted by Cp(X), Ck(X) and Cu(X), respectively. The R
and N denote the space of real numbers and natural numbers
respectively. The constant zero-function in C(X) is denoted
by 0 or sometimes 0X . In this paper, we introduce and study
ω-open-compact topology.

2. Preliminaries
For a subset A of a topological space (X ,τ), we denote

the closure of A and the interior of A by Cl(A) and Int(A),
respectively.

Definition 2.1. A subset A of a topological space (X ,τ) is
said to be semiopen [1] if A ⊂ Cl(Int(A)). The complement
of a semiopen set is called a semiclosed set.

Definition 2.2. A subset A of a space X is called ω-closed
[4] if Cl(A) ⊂U whenever A ⊂U and U is semi-open in X.
The complement of an ω-closed set is called an ω-open set.
The family of all ω-open subsets of (X ,τ) is denoted by ω(τ).
We set ω(X ,x) = {V ∈ ω(τ)|x ∈V} for x ∈ X.

The union (resp. intersection) of all ω-open (resp. ω-
closed) sets, each contained in (resp. containing) a set A in a
space X is called the ω-interior (resp. ω-closure) of A and is
denoted by ω Int(A) (resp. ω Cl(A)) [5].

Note that the family of ω-open subsets of (X ,τ) forms a
topology [5].

Definition 2.3. A function f : (X ,τ)→ (Y,σ) is said to be
ω-continuous [4] if f−1(V ) is ω-open in X for every open set
V of Y .
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Definition 2.4. [5] A topological space (X ,τ) is ω-compact
if every ω- cover (a cover consisting of ω-open sets) of X has
a finite subcover.

Theorem 2.5. [5] If (X ,τ) is an ω-compact space, then it is
compact.

Theorem 2.6. If a space (X ,τ) is ω-irresolvable and ω-
compact, then it is compact.

Theorem 2.7. If a mapping f : (X ,τ) → (Y,σ) is an ω-
continuous surjective and A is ω-compact subset of X, then
f (A) is ω-compact in Y .

3. On ω-compact Topology on C(X)
In this section, we define three new topologies on C(X)

with the help of ω-compact subset of X . First, consider a
set for any ω-compact subset A of X and any open subset U
of R as (A,U) = { f ∈ C(X) : f (A) ⊆U}. Suppose that the
collection of all ω-compact subset of X is denoted by ω(X).
The ω-compact-open topology on C(X) is generated by the
subbase which is defined as {(A,U) : A ∈ ω(X), U is open in
R}. It can be easily verify that this subbasis actually generate
the topology on C(X), called ω-compact-open topology on
C(X) and a new space corresponding to C(X) is denoted by
Cω(X). As we can verify that closure of any ω-compact set is
again ω-compact and because Cl( f (Cl(A))) = Cl( f (A)) for
any f ∈C(X), so we can always consider closed ω-compact
subsets of X in (A,U). Now we will define topology of uni-
form convergence on ω-compact sets. For each A ∈ ω(X)
and ε > 0, let Aε = {( f ,g)∈C(X)×C(X) : | f (x)−g(x)|< ε

for all x ∈ A}. It can be easily show that that the collection
{Aε : A∈ω(X),ε > 0} is a base for some uniformity on C(X).
We denote a space corresponding to C(X) with the topology
induced by this uniformity by Cω,u(X) and this topology is
called the topology of uniform convergence on ω(X). For
each f ∈ C(X), A ∈ ω(X), and ε > 0, let BA( f ,ε) = {g ∈
C(X) : | f (x)− g(x)| < ε for all x ∈ A}. If f ∈ C(X), the
collection {BA( f ,ε) : A ∈ ω(X),ε > 0} forms a neighbor-
hood base at f in Cω,u(X) and this collection forms a base
for the topology of uniform convergence on ω(X). Here
each set BA( f ,ε) is open in Cω,u(X). If ω(X) covers X, then
Cω,u(X) is a Tychonoff space. If suppose ω(X) = {X}, then
we get a topology of uniform convergence and it is denoted by
Cu(X). We can verify that for any ω(X), Cu(X) ≤Cω,u(X).
Now for each A ∈ ω(X) define ω-seminorm ωA on C(X)
by ωA( f ) = min{1,sup{| f (x)| : x ∈ A}}. Also for each A ∈
ω(X) and ε > 0, let UA,ε = { f ∈ C(X) : ωA( f ) < ε}. Let
U = {UA,ε : A ∈ ω(X),ε > 0}. It can be easily shown that
for each f ∈C(X), f +U = { f +U : U ∈U } forms a neigh-
borhood base at f We say that this topology is generated by
the collection of ω-seminorms {ωA : A ∈ ω(X)}. Now we
will establish a relation between above two defined topologies
as Cω(X) and Cω,u(X).

Theorem 3.1. For any space X, the ω-compact-open topol-
ogy on C(X) is same as the topology of uniform convergence

on the ω-compact subsets of X, that is, Cω(X) = Cω,u(X).

Proof. Suppose that (A,U) is subbasis open set in Cω(X) and
f ∈ (A,U). Since f (A) is compact, there exist a1, a2, . . .
an in f (A) such that f (A) ⊆

∞

∪
i=1

(ai− εi,ai + εi) ⊆
∞

∪
i=1

(ai−
2εi,ai + 2εi) ⊆ U . If we consider g ∈ BA( f ,ε) and x ∈ A,
then this show that | f (x)− g(x)| < ε and there exist i such
that | f (x)− ai| < εi. Hence |g(x)− ai| < 2εi and this show
that g(x)⊆U for all x ∈ A. So g(A)⊆U , that is, g ∈ (A,U).
Hence we can say that BA( f ,ε)⊆ (A,U). Let W =

∞

∪
i=1

(Ai,Ui)

be a basic neighborhood of f in Cω(X). Then there exists
ε1, ...,εi such that f ∈ BAi( f ,εi) ⊆ (Ai,Ui)M. Suppose that

A=
∞

∪
i=1

Ai and choose ε =min1≤i≤n{εi}. Then f ∈BA( f ,ε)⊆

W =
∞

∩
i=1

(Ai,Ui) = (A,U). Finally as we supposed f ∈ (A,U)

and we proved that f ∈ BA( f ,ε), we can say that Cω(X) ≤
Cω,u(X). Now let BA( f ,ε) be a basic neighborhood of f in
Cω,u(X). Since f (A) is compact, there exist a1, a2, . . . , an in

f (A) such that f (A)⊆
∞

∪
i=1

(ai− ε

4 ,ai +
ε

4 ). Define Wi = (ai−
ε

2 ,ai +
ε

2 ) and Ai = ClA(A∩ f−1(ai− ε

4 ,ai +
ε

4 ). Here each Ai

will be ω-compact. It is clear that f ∈
∞

∩
i=1

(Ai,Wi)⊆ BA( f ,ε).

Let g ∈
∞

∩
i=1

(Ai,Wi) and x ∈ A. Then there exists i such that x ∈
Ai and f (x) ∈ (ai− ε

4 ,ai +
ε

4 ). Since g(x) ∈ (ai− ε

2 ,ai +
ε

2 ),
| f (x)−g(x)|< ε . Hence g ∈ BA( f ,ε) and finally we can say
that Cω,u(X)≤Cω(X).

Theorem 3.2. For any space X, the family {(A,U) : A ∈
ω(τ)}, where U is a bounded open interval in R forms a
subbase for Cω(X).

Theorem 3.3. For any space X, ω-compact-open topology is
finer than compact-open topology that is Ck(X)<Cω(X).

Proof. Let (Ak,U) and (A,U) be the subbasis elements for
compact-open topology and ω-compact-open topology respec-
tively. Where Ak and A are compact and ω-compact subsets
of X , respectively. Let f ∈ (A,U). Then by definition, f (A)
contained in open subset U of R. Since f is continuous, f (A)
is compact in U . This show that f ∈ (Ak,U). Therefore,
(A,U)⊂ (Ak,U). Hence Ck(X)<Cω(X).

For the space X , we can easily prove that topology of
uniform convergence on C(X) is finer than the ω-compact-
open topology that is Cω(X) < Cu(X). Hence we can say
that

Theorem 3.4. For any Tyhconoff space, Ck(X) ≤Cω(X) ≤
Cu(X).

Theorem 3.5. Every closed ω-compact subset of X is com-
pact if and only if Ck(X) =Cω(X).

Proof. For any subset A of X BCl(A)( f ,ε) ⊆ BA( f ,ε). So if
every closed ω-compact subset of X is compact, then we can
say that Cω(X)≤Ck(X). Hence in this case we can say that
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Ck(X) =Cω(X). Conversely, let Ck(X) =Cω(X) and suppose
that A be any closed ω-compact subset of X . So set BA(0,1)
as open lies in Ck(X). This show that there exists a compact
subset K of X and ε > 0 such that BK(0,ε) ⊆ BA(0,1). If
possible, let x ∈ A\K. Then this implies that there exists
a continuous mapping g : A→ [0,1] such that g(x) = 1 and
g(y) = 0 for all y∈K. Now here g∈ BK(0,ε)\BA(0,1) which
gives a contradiction. Hence A ⊆ K and consequently A is
compact.

Theorem 3.6. Every space X is ω-compact if, and only if
Cω(X) =Cu(X).

Proof. Let X be a ω-compact space. So, by definition it is pos-
sible for each f ∈C(X) and ε > 0 there exists a set BX ( f ,ε)
which is basic open in Cω(X). Hence Cω(X) = Cu(X). Let
us suppose Cω(X) =Cu(X). Because a set BX (0,1) is a basic
neighborhoods of a constant zero-mapping 0 in Cu(X), then
there exists an ω-compact subset A of X and ε > 0 such that
BA(0,ε)⊆ BX (0,1). With the help of complete regularity of
X it can be shown that X = Cl(A). But the closure of an ω-
compact set is also ω-compact. Hence X is ω-compact.

Theorem 3.7. Every closed countably compact subset of X is
compact if and only if Ck(X) =Cω(X), where X is any normal
Housdorff space.

Further we would like to find conditions when some
spaces for which every closed ω-compact subset is compact.
Following definitions will help to find required conditions.

Definition 3.8. A space X is said to be isocompact if every
closed countably compact subset of X is compact.

Definition 3.9. A space X is said to ω-isocompact if every
closed ω-compact subset of X is compact.

Theorem 3.10. Every space X is ω-isocompact if, and only
if Cω(X) =Ck(X).

Theorem 3.11. The space X is isocompact if and only Cω(X)
= Ck(X), where X is a normal space.

Definition 3.12. Let f : (X ,τ)→ (Y,σ) be a continuous map-
ping. Then a mapping f ? : C(Y )→ C(X) is said to be the
induced mapping of f if f ?(g) = g◦ f for all g in C(Y ).

Definition 3.13. Any mapping f : (X ,τ)→ (Y,σ) is said to
be an almost onto mapping if f (X) is dense in Y , where X is
any nonempty set and Y is any topological space.

In this work, we will study nature of the induced mapping
on C(Y ) to C(X), when both are equipped with the ω-compact-
open topology.

Theorem 3.14. If f : (X ,τ)→ (Y,σ) be a continuous map-
ping, then the induced mapping of f as f ? : Cω(Y )→Cω(X)
is continuous.

Proof. Let g ∈Cω(Y ) and BA( f ?(g),ε) be a basic neighbor-
hood of f ?(g) in Cω(X). Then this show that f ?(BA(g,ε))⊆
BA( f ?(g),ε) and consequently, f ? is continuous.

Theorem 3.15. If f : (X ,τ)→ (Y,σ) be a continuous map-
ping, then the function f ? : Cω(Y )→Cω(X) is one-to-one if,
and only if f is almost onto.

Proof. Let g1 and g2 in C(Y ) with f ?(g1) = f ?(g2) and let
y in f (X). Then for some x ∈ X , y = f (x) and g1(y) =
g1( f (x)) = f ?(g1)(x) = f ?(g2)(x) = g2( f (x)) = g2(y). Since
f (X) is dense in Y , then g1 = g2. Conversely, let there ex-
ists a y in Y\ω Cl( f (X)) and p in C[0,1] be a path in R
so that p(0) 6= p(1). Now the continuous function map-
ping ω Cl( f (X)) onto {0} and y to 1 has an extension ϕ in
C(Y, [0,1]). If g= p◦ϕ and c is the constant mapping taking Y
onto {p(0)}, then for each x in X , g( f (x)) = p(0) = c( f (x)).
But then f ?(g) = f ?(c), so that f ? is not one-to-one.

Theorem 3.16. If f : (X ,τ)→ (Y,σ) be a continuous map-
ping, then if f ? : Cω(Y )→ Cω(X) is almost onto, then f is
one-to-one.

Proof. Suppose that x1 and x2 be two distinct elements of X .
So, we have some h in C(X) such that h(x1) 6= h(x2), and also
there exist disjoint neighborhoods U and V of h(xl) and h(x2)
in R. Suppose that S = [xl ,U ]∩ [x2,V ], which is a neighbor-
hood of h in Cω(X). Then since f ? is almost onto, there is
some g in C(Y ) with f ?(g) ∈ S. This show that g( f (xl)) and
g( f (x2)) in U and V , respectively, so that f (x1) 6= f (x2).

Definition 3.17. A continuous mapping f : (X ,τ)→ (Y,σ) is
called ω-covering if given any ω-compact subset A in Y , there
exists an ω-compact subset C in X such that A⊆ Cl( f (C)).

Theorem 3.18. Suppose that f : (X ,τ)→ (Y,σ) be a contin-
uous mapping. If f ? : Cω(Y )→Cω(X) is an embedding, then
f is an ω-covering map.

Proof. Suppose that A is ω-compact subset of Y . Then
f ?(BA(0Y ,1)) is an open neighborhood of the zero function
0X in f ?(Cω(Y )). Now consider an ω-compact subset C of X
such that 0X ∈ BC(0X ,ε)∩ f ?(Cω(Y ))⊆ f ?(BA(0Y ,1)). Now
will prove that A ⊂ Cl( f (C)). If it is possible, suppose y in
A\Cl( f (C)). This show that there exists a continuous func-
tion g : Y → [0,1] such that g(y) = 1 and g(Cl( f (C))) = 0,
by definition. Since g( f (C)) = 0 and f ?(g) ∈ BC(0X ,ε)∩
f ?(Cω(Y )) ⊆ f ?(BA(0Y ,1)). Since g? is an injective map-
ping, g ∈ BA(0Y ,1). But y ∈ A show that |g(y)| < 1. This is
contradiction and hence A⊆ Cl( f (C)). By definition, we can
say that f is ω-covering.

The converse of above result not hold good but next theo-
rem show that under some condition converse of above can
establish.

Theorem 3.19. If a continuous mapping f : (X ,τ)→ (Y,σ)
is ω-covering, then f ? : Cω(Y )→Cω(X) is an embedding of
f , where every ω-compact subset of Y is closed.
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Proof. For each a in X , there is possibility to find an ω-
compact subset C of X such that {a} ⊆ f (C). So f is onto.
Hence f ? is one-to-one. Now our aim is to show that f ? :
Cω → f ?(Cω(Y )) is an open map. Let BA(g,ε) be a basic
open set in Cω(Y ), where A is any ω-compact subset in Y
and ε > 0. Suppose that h ∈ f ?(BA(g,ε)). Then there exists
h1 ∈ BA(g,ε) such that f ?(h1) = h. Since BA(g,ε) is open in
Cω(Y ), then there exists an ω-compact subset D in Y such that
BD(h1,δ )⊆ BA(g,ε), where δ > 0. As f is ω-covering, there
exists an ω-compact set C in X such that D ⊆ f (C). Now
we will show that BC(h,δ )∩ f ?(Cω(Y ))⊆ f ?BD(h1,δ ). Let
us choose l ∈C(Y ) such that f ?(l) ∈ BC(h,δ )∩ f ?(Cω(Y )).
Since D = f (C) for all d ∈ D, there exists c ∈ f (C) such
that d = f (c). Since f ?(l) ∈ BC(h,δ ) and |l(d)− h1(d)| =
|l( f (c))− h1( f (c))| = | f ?(l)(c)− f ?(h1)(c)| = | f ?(l)(c)−
h(c)| < δ . So we can say that l ∈ BD(h1,δ ). This show
that f ?(l) ∈ f ?(BD(h1,δ )). Hence BC(h,δ )∩ f ?(Cω(Y )) ⊆
f ?(BD(h1,δ )) ⊆ f ?(BA,(g,ε)). Consequently, f ?(BA(g,ε))
is open in f ?(Cω(Y )).

Definition 3.20. A space (X ,τ) is said to be submetrizable
if there is a topology τ? that can be defined on X such that
(X ,τ?) is a metrizable space and τ? ⊂ τ . In other words,
(X ,τ) is said to be submitriziable if there exists a continuous
injective mapping f : (X ,τ)→ (Y,d), where (Y,d) is a metric
space and X is a completely regular Housdroff space.

Definition 3.21. The diagonal of a space X is the subset of
its square X×X, that is, defined by ∆ = {(x,x) : x ∈ X}.

Definition 3.22. A Gδ -set is a set which can be written as
a countable intersection of open set of a space X. If ∆ is a
Gδ -set in X×X, the space X is said to have a Gδ -diagonal.

The properties of Gδ -set are as: In metrizable spaces,
every closed set is a Gδ -set, the intersection of countably many
Gδ -sets is a Gδ -set, and the union of finitely many Gδ -sets
is a Gδ -set, a metric space has Gδ -diagonal and all compact
subsets, countably compact subsets and the singletons are
Gδ -sets in a submetrizable space. Every metrizable space has
a zero-set diagonal consequently, every submetrizable space
has also a zero-set-diagonal.

Definition 3.23. A space X is called an E0-space if every
point in the space is a Gδ -set. The submetrizable spaces are
E0-spaces.

Definition 3.24. A completely regular Hausdorff space X is
said to be σ -ω-compact if there exists a sequence {An} of
ω-compact sets in X such that X =

∞

∪
n=1

An. A space X is said

to be almost σ -ω-compact if it has a dense σ -ω-compact
subset.

Theorem 3.25. If X is any space, then following are equiva-
lent:

1. Cω(X) is submetriziable.

2. Every ω-compact subsets of Cω(X) is a Gδ -set in Cω(X).

3. Every countable compact subsets of Cω(X) is a Gδ -set
in Cω(X).

4. Every compact subsets of Cω(X) is a Gδ -set in Cω(X).

5. Cω(X) is a E0-space.

6. X is an almost σ -ω-compact set.

7. Cω(X) has zero set-diagonal.

8. Cω(X) has Gδ -diagonal.

Proof. By above definitions and properties we can show fol-
lowing implications: (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5).
Here we are going to show that (5)⇒ (6). As given Cω(X)
is an E0-space so by definition any constant zero function 0
defined on X will be Gδ -set. Let {0}=

∞

∪
i=1

BAn(0,εn), where

An ∈ ω(X) and εn > 0. Here we are going to show that
X = Cl(

∞

∪
i=1

An). Let x0 be a arbitrary element in X\l(
∞

∪
i=1

An).

Then there exists a continuous mapping f : X → [0,1] such
that f (x) = 0 for all x in

∞

∪
i=1

An and by property of X f (x0) = 1.

Since f (x) = 0 for all x in An and f ∈ BAn(0,εn) for all n show
that f ∈

∞

∪
i=1

BAn(0,εn) = {0}. So f (x) = 0 for all x ∈ X . But

f (x0) = 1. This show a contradiction. Hence X is almost
σ -ω-compact.

Theorem 3.26. Let X be an almost σ -ω-compact space and
P is subset of Cω(X). Then following are equivalent:

1. P is compact.

2. P is sequentially compact.

3. P is countably compact.

4. P is ω-compact.

Proof. It is easy to prove that (2)⇒ (3)⇒ (4).
From the above Theorem Cω(X) is submetriziable and so P
will be also. An ω-submetriziable space is metriziable hence
it will be compact also. As we know that for a metriziable
space all the above form of compactness are coincides. Hence
we can say that (1)⇒ (2) and also (4)⇒ (1).

Definition 3.27. A subset S of a space X is said to have
countable character if there is a sequence {Wn : n ∈ N} of
open subsets in X such that S ⊆Wn for each n, and if W is
any open set containing S, then Wn ⊆W for some n.

Definition 3.28. A space X is said to be of (pointwise) count-
able type if each (point) compact set is contained in a compact
set having countable character.

Definition 3.29. A space X is said to be a q-space if for every
x ∈ X has a sequence {Ui} of neighborhoods satisfying the
condition: If {xi} is an infinite sequence of points in X such
that xi ∈Ui for each i, then {xi} has an accumulation point in
X.
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Definition 3.30. A space X is said to be a M-space if it can
be mapped onto a metric space by a quasi-perfect mapping
(a continuous closed mapping in which inverse images of
points are countably compact). This space is stronger than a
q-space.

Definition 3.31. A space X is said to be a hemi-ω-compact
space if there exists a sequence of ω-compact sets {An} in X
such that for any ω-compact subset A of X, A⊆ An holds for
some n ∈ N.

Theorem 3.32. For any space X, following are equivalent:

1. Cω(X) is metrizable.

2. Cω(X) is of first countable.

3. Cω(X) is of countable type.

4. Cω(X) is of pointwise countable type.

5. Cω(X) has a dense subspace of pointwise countable
type.

6. Cω(X) is a M-space.

7. Cω(X) is a q-space.

8. X is a hemi-ω-compact space.

Proof. From the above discussion, we can directly show that
(1)⇒ (3)⇒ (4)⇒ (7), (1)⇒ (6)⇒ (7) and also (1)⇒
(2)⇒ (7). We will prove (4)⇒ (5). As we know that if D
is any dense subset of a space X and A is a compact subset
of D, then A has countable character in D if, and only if A is
of countable character in X . Since Cω(X) is a locally convex
space, it is homogenous. So, with the help of this result and
above discussion we can say that (4)⇒ (5). Next, we will
prove (7)⇒ (8). Let Cω(X) be a q-space So, there exists a
sequence {Vn : n∈N} of neighborhoods of the zero-function 0
in Cω(X) such that fn ∈Vn for each n, then the set { fn : n∈N}
has a cluster point in Cω(X). Now for each n, there exists
a closed ω-compact subset An of X and εn > 0 such that
0 ∈ BAn(0,εn). Let A be ω-compact subset of X . Suppose
that A is not subset of An for any N. Then for each n ∈ N,
there exists an ∈ A\An. Hence for each n ∈ N there exists a
continuous function fn : X → [0,1] such that fn(an) = n and
fn(x) = 0 for all x ∈ An. Hence it is clear that fn ∈ BAn(0,εn).
But the sequence { fn}n∈N does not have a cluster point in
Cω(X). If possible, let that this sequence has a cluster point
f ∈Cω(X). Then for each k∈N, there exists a positive integer
nk > k such that fnk ∈ BA( f ,1). So, for all k ∈ N, f (ank) >
fnk(ank − 1) = nk − 1 ≥ k. This show that f is unbounded
on the ω-compact set A. Hence the sequence fn cannot have
a cluster point in Cω(X) and consequently, Cω(X) fails to
be a q-space. Hence X must be a hemi-ω-compact space.
Finally, we will show that (8)⇒ (1). As we know that if the
topology of a locally convex Hausdroff space is generated
by a countable family of seminorms, then it is metrizable.

Now the locally convex topology on C(X) generated by the
countable family of seminorms {pAn : n ∈ N} is metrizable
and weaker than the ω-compact-open topology. However,
since for each ω-compact set A in X , there exists An such that
A⊆ An, the locally convex topology generated by the family
of seminorms {pA : A ∈ ω(X)}, that is the ω-compact-open
topology, is weaker than the topology generated by the family
of seminorms {pA : n ∈ N}. Hence Cω(X) is metrizable.

Theorem 3.33. For any space X, the following are equivalent:

1. Cω(X) is separable.

2. Cp(X) is separable, where p is point-open topology.

3. Ck(X) is separable.

4. X has a weaker separable metriziable topology.

Proof. From the Corollary 4.2.2 in [2] that (2), (3) and (4) are
equivalent. Also, since Cp ⊆Cω(X), so (1)⇒ (2).
We will prove (4)⇒ (1). As we know that if X has a weaker
separable metrizable topology, then X is real compact. Hence
X is ω-isocompact. Consequently, Cω(X) = Ck(X). Since
(4)⇒ (3), Cω(X) is separable.
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