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An application of a new coupled fixed point theorem
on nonlinear integro-differential equations
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Abstract
In this paper, we define the concept of the diameter for an orbit at a point, with respect to a context, which is
entirely different from the one available in the literature. As a sequel, we prove the existence of a coupled fixed
point for a mapping defined on a b-metric space, using a Meir-Keeler type of contractive condition. Finally, we
give an application to prove the significance of the theory developed.
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1. Introduction
The concept of fixed point theory emerged as an

inevitable tool, to study the existence of solutions for
various types of equations, as never before, after the
development of Banach contraction principle. In 1930,
Caccioppoli[6] gave a natural extension of the Banach
contraction principle; Bryant[4] generalized the
results of Caccioppoli. In 1969, Kannan[15] gave a
characterization of a complete metric space involving
a contractive condition. Caristi, Ciric, Matkowski and
Rakotch are some others who studied and extended the
theory further (see[7, 8, 17, 18]).

In relative to our work, a generalization of Banach
contraction principle was given by Meir and Keeler[16].
In 1968, Browder[3] introduced a non-decreasing right
continuous control function to prove a fixed point

theorem; Boyd and Wong[5] extended the result of
Browder using a right upper semi continuous control
function. Following them, the theory on contractive
condition involving control function was studied by
many others (see [11, 14, 19]). In 1980, Hegedus and
Szilagyi[13] defined the concept diameter of an orbit
and proved a fixed point theorem. Suzuki[22] gave a
generalization of the fixed point theorem proved by
Hegedus and Szilagyi.

The concept of a coupled fixed point and mixed
monotone property of the mapping F : X2

→X, where X
is a partially ordered metric space defined by Bhaskar et
al.[12] in 2006. In 2012, Sintunavart et al.[20] proved the
existence of a coupled fixed point for a
nonlinear contraction mapping F : X2

→ X in a
complete metric spaces excluding the premise that F
has the mixed monotone property. In 2016, Su et al.[21]
proved the existence of a multivariate fixed point for
N-variable mappings. The concept of b-metric space
was introduced by Bakhtin[2], to study the pattern
matching problems, in the field of computer Sciences.
Babu, Czerwik, Demmaa are some other who studied
and extended the theory further see ([1, 9, 10]).

In our work, we first define the concept of the
diameter for an orbit at a point, with respect to a
context, that is totally heterogeneous to the one available
in the literature. In follow, we prove a coupled fixed
point theorem through a Meir-Keeler type of contractive
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condition, in the context of b-metric space; conclusively
we give an application to justify the significance of the
theory developed.

2. Preliminaries
As usual, let R andN denote the set of real numbers

and natural numbers respectively.

Definition 2.1. [12] Let F : X2
→ X be a mapping. A point

(x, y) ∈ X2 is said to be a coupled fixed point if F(x, y) = x and
F(y,x) = y.

Definition 2.2. [21] Let F : XN
→ X be an N-variable

mapping. A point x ∈X is said to be a multivariate fixed point
of order N if F(x,x, . . . ,x) = x.

Note that, if (x, y) ∈ X2 is a coupled fixed point of
F, then (y,x) ∈ X2 is also a coupled fixed point of F ;
Similarly, if (x, y) ∈ X2 is the unique coupled fixed point
of F, then x ∈ X is a unique multivariate fixed point of
order 2.

Definition 2.3. [22] Let (X,d) be a metric space and T be a
self map on X. Define DT(x) and DT(x, y) by

DT(x) = sup{d(u,v) : u,v ∈ {x,Tx,T2x, . . . }}

DT(x, y) = sup{d(u,v) : u,v ∈ {x,Tx,T2(x), . . . ,

y,Ty,T2y, . . . }}

for any x, y ∈ X, that is DT(x) is the diameter of the orbit
{x,Tx,T2x, . . . } of x.

Definition 2.4. [9] Let X be a nonempty set and b ≥ 1 be a
given real number. A function d : X2

→ [0,∞) is said to be
b-metric if for all x, y,z ∈ X,

(B1) d(x, y) = 0⇔ x = y

(B2) d(x, y) = d(y,x)

(B3) d(x,z) ≤ b[d(x, y) + d(y,z)].

The pair (X,d) is called a b-metric space.

3. A coupled fixed point theorem via
diameter of an orbit

We start this section, with the definition of diameter
of an orbit.

Definition 3.1. Let (X,d) be a b-metric space with b ≥ 1
and F : X2

→ X be a mapping that satisfies F0(x, y) = x and
Fn(x, y) = Fn−1(F(x, y),F(y,x)) for all n ≥ 1. Let
OF : X2N

→ P(X) and DF : X2N
→ R be the mappings

defined by

OF(x) =

N⋃
i=1

Ai,

where Ai = {x2i−1,F(x2i−1,x2i),F2(x2i−1,x2i), . . . }.

DF(x) = bsup{d(u,v) : u,v ∈ OF(x)},

for all x = (x1,x2, . . . ,x2N) ∈ X2N. Then OF(x) is called an
orbit at x andDF(x) is called diameter of an orbit at x.

Example 3.2. Let X = [0,1]. Clearly (X,d) is a b-metric
space with d(x, y) = |x− y|2. Here b = 2. Let F : X2

→ X be a
mapping defined by F(x, y) = x

3 +
y
2 . Then we have

(a.) OF(0,1) =
{
0, 1

2 ,
1
3 , . . .

}
and OF(1,0) =

{
1, 1

3 ,
13
36 , . . .

}
(b.) OF(1,0,0,1) =

{
0, 1

2 , . . .1,
1
3 , . . .

}
and

OF
(
0, 1

2 ,
1
2 ,0

)
=

{
0, 1

4 ,
1
6 , . . . ,

1
2 ,

1
6 , . . .

}
(c.) DF(0,1) = 2sup {d(u,v) : u,v ∈ OF(0,1)} = 1

2

(d.) DF(1,0) = 2sup {d(u,v) : u,v ∈ OF(1,0)} = 2

(e.) DF(1,0,0,1) = 2sup {d(u,v) : u,v ∈ OF(1,0,0,1)} = 2

(f.) DF
(
0, 1

2 ,
1
2 ,0

)
= 2sup

{
d(u,v) : u,v ∈ OF

(
0, 1

2 ,
1
2 ,0

)}
= 1

Remarks

(i.) From the above example, it is easy to see that
DF(x, y) and DF(y,x) need not be equal for all
x, y ∈ X.

(ii.) DF(x, y) ≤DF(x, y,u,v) and DF(u,v) ≤DF(x, y,u,v)
for all x, y,u,v ∈ X.

(iii.) IfDF(x, y,u,v) = 0, thenDF(x, y) =DF(u,v) = 0.

(iv.) If DF(x, y) =DF(y,x) = 0, then (x, y) is a coupled
fixed point of F.

(v.) If DF(x, y, y,x) = 0, then x is a multivariate fixed
point of order 2.

(vi.) If (x, y) is a coupled fixed point,
DF(x, y, y,x) = bd(x, y).

(vii.) If DF(x, y, y,x) = bd(x, y), then (x, y) need not be a
coupled fixed point. For, in the above example we
haveDF

(
0, 1

2 ,
1
2 ,0

)
= 1 = 2d(0, 1

2 ). But
(
0, 1

2

)
is not a

coupled fixed point.

Theorem 3.3. Let (X,d) be a complete b-metric space and
let F : X2

→ X be a mapping. Suppose DF(x, y) < ∞ for
all x, y ∈ X and if there exists a function φ : [0,∞)→ [0,∞)
satisfying the following conditions:

(i.) φ(t) < t holds for all t ∈ (0,∞).

(ii.) For any ε > 0, there exists δ > 0 such that
ε < t < ε+δ⇒ φ(t) ≤ ε.
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(iii.) For any x, y,u,v ∈ X,

bd
(
F(x, y),F(u,v)

)
≤ φ

(
DF(x, y,u,v)

)
holds.

Then F has a unique coupled fixed point.

Proof. Step 1. If (x, y) = (u,v) or if

lim
n→∞
DF(Fn(x, y),Fn(y,x)) = lim

n→∞
DF(Fn(u,v),Fn(v,u)) = 0,

for some (x, y), (u,v) ∈ X2. We prove the following:

lim
n→∞
DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) = 0 (3.1)

Let n ∈N, then we have
{Fn+1(x, y),Fn+2(x, y), . . . ,Fn+1(u,v),Fn+2(u,v), . . . }

⊆ {Fn(x, y),Fn+1(x, y), . . . ,Fn(u,v),Fn+1(u,v), . . . }

and
DF(Fn+1(x, y),Fn+1(y,x),Fn+1(u,v),Fn+1(v,u))

≤ DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)).

Thus, {DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u))} is monotonic
decreasing sequence that is bounded below and hence
converges to greatest lower bound. Now we claim that,
if lim

n→∞
DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) = ε, then ε = 0.

Suppose ε > 0, then by the construction ofDF, we have
the following two cases.

i. ε <DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) for all n.

ii. DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) = ε
for all n ≥N.

First let us assume that

ε <DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u))

for all n. Let δ ∈ (0,∞) be such that ε < t < ε+ δ, then
φ(t) ≤ ε. Since ε is the greatest lower bound of the
sequence {DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u))}, there
exists an r ∈N such that

DF(Fr(x, y),Fr(y,x),Fr(u,v),Fr(v,u)) < ε+δ.

Let m,n ≥ r, then

ε < DF(Fmax{m,n}(x, y),Fmax{m,n}(y,x),

Fmax{m,n}(u,v),Fmax{m,n}(v,u))
≤ DF(Fm(x, y),Fm(y,x),Fn(u,v),Fn(v,u))

≤ DF(Fmin{m,n}(x, y),Fmin{m,n}(y,x),

Fmin{m,n}(u,v),Fmin{m,n}(v,u))
≤ DF(Fr(x, y),Fr(y,x),Fr(u,v),Fr(v,u))
< ε+δ.

Thus we have,

bd
(
F(m+1)(x, y),F(n+1)(u,v)

)
= bd

(
F(Fm(x, y),Fm(y,x)),F(Fn(u,v),Fn(v,u))

)
≤ φ

(
DF(Fm(x, y),Fm(y,x),Fn(u,v),Fn(v,u))

)
≤ ε.

Subsequently we attain the inequality,

ε <DF(Fr+1(x, y),Fr+1(y,x),Fr+1(u,v),Fr+1(v,u)) ≤ ε

which is a contradiction, in both the cases of our
assumption. For if (x, y) = (u,v), then the inequality
follows obviously. Suppose

lim
n→∞
DF(Fn(x, y),Fn(y,x)) = lim

n→∞
DF(Fn(u,v),Fn(v,u)) = 0,

there exists an N ∈N such that

DF(Fn(x, y),Fn(y,x)) =DF(Fn(u,v),Fn(v,u)) <
ε
2

for all n ≥N and it is easy to see that r ≥N. Thus

DF(Fr(x, y),Fr(y,x)) =DF(Fr(u,v),Fr(v,u)) <
ε
2
.

But since m,n are arbitrary, we have

ε <DF(Fr+1(x, y),Fr+1(y,x),Fr+1(u,v),Fr+1(v,u)) ≤ ε.

Suppose DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) = ε for
all n ≥N and

lim
n→∞
DF(Fn(x, y),Fn(y,x)) = lim

n→∞
DF(Fn(u,v),Fn(v,u)) = 0.

Then there exists an N1 ∈N such that

DF(Fn(x, y),Fn(y,x)) =DF(Fn(u,v),Fn(v,u)) < φ(ε)

for all n ≥N1. Let r = max{N,N1}, then it follows that

DF(Fr(x, y),Fr(y,x),Fr(u,v),Fr(v,u)) = ε

and

DF(Fr(x, y),Fr(y,x)) =DF(Fr(u,v),Fr(v,u)) < φ(ε).

Let r ≤m and r ≤ n, then

ε < DF(Fmax{m,n}(x, y),Fmax{m,n}(y,x),

Fmax{m,n}(u,v),Fmax{m,n}(v,u))
≤ DF(Fm(x, y),Fm(y,x),
Fn(u,v),Fn(v,u))

≤ DF(Fmin{m,n}(x, y),Fmin{m,n}(y,x),

Fmin{m,n}(u,v),Fmin{m,n}(v,u))
≤ DF(Fr(x, y),Fr(y,x),Fr(u,v),Fr(v,u))
= ε.

250



An application of a new coupled fixed point theorem on nonlinear integro-differential equations — 251/253

Hence,

bd
(
Fm+1(x, y),Fn+1(u,v)

)
= bd

(
F(Fm(x, y),Fm(y,x)),F(Fn(u,v),Fn(v,u))

)
≤ φ

(
DF(Fm(x, y),Fm(y,x),Fn(u,v),Fn(v,u))

)
= φ(ε).

But since m,n are arbitrary, we have

ε=DF(Fr+1(x, y),Fr+1(y,x),Fr+1(u,v),Fr+1(v,u))≤φ(ε)< ε

which leads us to a contradiction. Suppose if we take
(x, y) = (u,v) instead of

lim
n→∞
DF(Fn(x, y),Fn(y,x)) = lim

n→∞
DF(Fn(u,v),Fn(v,u)) = 0,

then by letting r = N, in the above discussion we obtain
a similar form of contradiction. Thus we have

lim
n→∞
DF(Fn(x, y),Fn(y,x),Fn(u,v),Fn(v,u)) = 0.

Step 2. Now we prove the theorem. Let x, y ∈ X,
then by (3.1), it follows that lim

n→∞
DF(Fn(x, y),Fn(y,x)) = 0.

Thus for every ε > 0, there exists an N ∈N such that
DF(Fn(x, y),Fn(y,x)) < ε for all n ≥N and hence

bd(Fr(x, y),Fm(x, y)) ≤DF(Fn(x, y),Fn(y,x)) < ε

for all r,m,n ≥ N. Therefore {Fn(x, y)} is a Cauchy
sequence in X and hence converges to some point p ∈ X.
Similarly, we can prove that {Fn(y,x)} converges to some
point q ∈ X. By (3.1), it follows that,

lim
n→∞
DF(Fn(p,q),Fn(q,p))

= 0 = lim
n→∞
DF(Fn(x, y),Fn(y,x),Fn(p,q),Fn(q,p)).

Thus for every ε > 0, there exists an N1 ∈N such that

DF(Fn(x, y),Fn(y,x),Fn(p,q),Fn(q,p)) <
ε
2

for all n ≥N1

and hence

bd(Fn(x, y),Fn(p,q))
< DF(Fn(x, y),Fn(y,x),Fn(p,q),Fn(q,p))

<
ε
2

for all n ≥ N1. Since lim
n→∞
Fn(x, y) = p, there exists an

N2 ∈N such that

d(Fn(x, y),p) <
ε
2b

for all n ≥N2.

Thus for any n ≥max{N1,N2}, we have

d(Fn(p,q),p) ≤ b
(
d(Fn(p,q),Fn(x, y)) + d(Fn(x, y),p)

)
< b

(
ε
2b

+
ε
2b

)
= ε

and hence {Fn(p,q)} converges to p ∈ X.

i.e, lim
n→∞

d(p,Fn(p,q)) = 0.

Now since

DF(p,q) = sup{DF(F(p,q),F(q,p)),d(p,Fn(p,q)) : n ∈N},

it follows thatDF(p,q) =DF(F(p,q),F(q,p)). We claim that
DF(p,q) = 0. Suppose that DF(p,q) = ε > 0, then (since
lim
n→∞
DF(Fn(p,q),Fn(q,p)) = 0) there exists an r ∈N such

that

ε = DF(p,q) = · · · =DF(Fr−1(p,q),Fr−1(q,p))
= DF(Fr(p,q),Fr(q,p))

> DF(Fr+1(p,q),Fr+1(q,p)).

This implies that,

ε =DF(Fr(p,q),Fr(q,p)) = bsup{d(Fr(p,q),Fn(p,q)) : n > r}.

Thus for any n > r, we have

bd(Fr(p,q),Fn(p,q))

= bd
(
F(Fr−1(p,q),Fr−1(q,p)),F(Fn−1(p,q),Fn−1(q,p))

)
≤ φ

(
DF(Fr−1(p,q),Fr−1(q,p),Fn−1(p,q),Fn−1(q,p))

)
= φ

(
DF(Fr−1(p,q),Fr−1(q,p))

)
= φ(ε).

Since n is arbitrary, we have

ε = bsup{d(Fr(p,q),Fn(p,q)) : n > r} ≤ φ(ε) < ε,

which leads to a contradiction. Hence DF(p,q) = 0.
Similarly, we can prove thatDF(q,p) = 0. Thus it follows
that, F(p,q) = p and F(q,p) = q; i.e, (p,q) is a coupled fixed
point of F. To prove the uniqueness, if (u,v) is another
coupled fixed point of F, then

bd(p,u) = bd
(
F(p,q),F(u,v)

)
≤ φ

(
DF(p,q,u,v)

)
< bd(p,u),

and

bd(q,v) = bd
(
F(q,p),F(v,u)

)
≤ φ

(
DF(q,p,v,u)

)
< bd(y,v)

which in turn implies that p = u and q = v as desired. �

Example 3.4. Let X = [0,1]. Clearly (X,d) is a complete
b-metric space with d(x, y) = |x − y|2. Here b = 2.
Let F : X2

→ X be defined by F(x, y) =
x+y
100 . Then, clearly

DF(x, y) =
∣∣∣∣ 99x−y

100

∣∣∣∣2 <∞. Letφ : [0,∞)→ [0,∞) be defined by

φ(t) = t
2 . Let ε > 0, then by letting δ= ε

2 , we haveφ(t) = t
2 < ε,

for any t ∈ (ε, 3ε
2 ). Thus it follows that,

2d
(
F(x, y),F(u,v)

)
= 2

∣∣∣∣∣x + y
100
−

u + v
100

∣∣∣∣∣2
= 2

∣∣∣∣∣ (x−u) + (y−v)
100

∣∣∣∣∣2
< |x−u|2

= φ
(
DF(x, y,u,v)

)
251
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for all x, y,u,v ∈ X. Thus by Theorem 3.3, 0 ∈ X is a unique
coupled fixed point of F.

4. Application to nonlinear
integro-differential equations

Let X be set of all continuous functions from [−π2 ,
π
2 ]

to [−π2 ,
π
2 ] and let d : X2

→ R be a function defined
by d(x(t), y(t)) = sup

t∈[−π/2,π/2]
|x(t)− y(t)|2. Then (X,d) is a

complete b-metric space. Here b = 2. Let K : X2
→ X be a

mapping that satisfies∣∣∣∣∣∣∣∣∣
π/2∫
−π/2

(k(x(s), y(s))− k(u(s),v(s))) ds

∣∣∣∣∣∣∣∣∣ ≤ 1

and let ψ ∈X be such that sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣
t∫

−π/2
ψ(t) dt

∣∣∣∣∣∣∣ ≤ 1. Let

x′(t) =

π/2∫
−π/2

k(x(s), y(s))ψ(t) ds,

y′(t) =

π/2∫
−π/2

k(x(s), y(s))ψ(t) ds, (4.1)

be the system of nonlinear integro-differential equations.
Let F : X2

→ X be a mapping defined by

F(x(t), y(t)) =

t∫
−π/2

π/2∫
−π/2

k(x(s), y(s))ψ(t) ds dt.

Then DF(x(t), y(t)) ≤ π2 < ∞ for all x(t), y(t) ∈ X and
DF(x(t), y(t),u(t),v(t)) ≤ π2 for all x(t), y(t),u(t),v(t) ∈ X.
Now consider

2d(F(x(t), y(t)),F(u(t),v(t)))

= 2 sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣∣∣
t∫

−π/2

π/2∫
−π/2

{
k(x(s), y(s))− k(u(s),v(s))

}
dsψ(t) dt

∣∣∣∣∣∣∣∣∣
2

≤ 2 sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣∣∣
t∫

−π/2

ψ(t) dt

∣∣∣∣∣∣∣∣∣
2

≤ 2

Define φ : [0,∞)→ [0,∞) by φ(t) = t
2 . Then t

2 < t for
all t ∈ (0,∞). Let ε > 0, then by letting δ = ε

2 , we have
φ(t) = t

2 < ε, for any t ∈ (ε, 3ε
2 ). Thus,

bd(F(x(t), y(t)),F(u(t),v(t))) ≤ φ(DF(x(t), y(t),u(t),v(t)))

for all x(t), y(t),u(t),v(t) ∈ X and hence By Theorem 3.3,
the pair of integro-differential equations (4.1) has a
unique solution in X.

Example 4.1. Let k(x(s), y(s)) =
x(s)y(s)

2 andψ(t) = cos t, then
clearly ∣∣∣∣∣∣∣∣∣

π/2∫
−π/2

(k(x(s), y(s))− k(u(s),v(s))) ds

∣∣∣∣∣∣∣∣∣ ≤ 1

and

sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣∣∣
t∫

−π/2

ψ(t) dt

∣∣∣∣∣∣∣∣∣ ≤ 1.

Let

x′(t) =

π/2∫
−π/2

k(x(s), y(s))ψ(t) ds

=
1
2

π/2∫
−π/2

x(s)y(s)cos t ds,

y′(t) =

π/2∫
−π/2

k(x(s), y(s))ψ(t) ds

=
1
2

π/2∫
−π/2

x(s)y(s)cos t ds (4.2)

DefineF : X2
→X byF(x(t), y(t)) = 1

2

t∫
−π/2

π/2∫
−π/2

x(s)y(s)ψ(t) ds dt.

Then clearlyDF(x(t), y(t)) ≤ π2 <∞ for all x(t), y(t) ∈ X and
DF((x(t), y(t),u(t),v(t))) ≤ π2 for all x(t), y(t),u(t),v(t) ∈ X.
Now consider,

2d(F(x(t), y(t)),F(u(t),v(t)))

= 2 sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣∣∣
1
2

t∫
−π/2

π/2∫
−π/2

{
x(s)y(s)−u(s)v(s)

}
dscos t dt

∣∣∣∣∣∣∣∣∣
2

= sup
t∈[−π/2,π/2]

∣∣∣∣∣∣∣∣∣
t∫

−π/2

cos t dt

∣∣∣∣∣∣∣∣∣
2

≤ 1

Let φ : [0,∞)→ [0,∞) be defined by φ(t) = t
2 , then we have

bd(F(x(t), y(t)),F(u(t),v(t))) ≤ φ(DF(x(t), y(t),u(t),v(t)))

for all x(t), y(t),u(t),v(t) ∈ X. Thus by Theorem 3.3, the pair
of integro-differential equation (4.2) has a unique solution in
X which is equal to 2

π sin t.
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