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1. Introduction

In Mathematical analysis, general topology and functional analysis the fixed point theory play a very
important role. Many applications of fixed point theory in computer science, engineering field, image processing
and mathematics etc. Banach contraction mapping principle play a crucial role in the fixed poin theory. The
concept of dislocated metric space was first introduced by Hitzler in 2001. He generalized the Banach
contraction mapping principle in the dislocated metric space. The beauty of dislocated metric space that the self
distance between two points need not be necessarily zero. The logical programming, topology, electronic
engineering and computer science etc. these are the fields which the dislocated metric space play a very vital
role. Azam et al. introduced the complex valued metric spaces and proved Banach contraction mapping
principle. So many researchers proved many contraction principle by this complex valued metric spaces. Ozgur
edge and Ismet karaca introduced the complex valued disclocated metric spaces. Now we are going to prove the
complex valued dislocated metric spaces in the fixed point theorem satisfying rational contraction mapping.
Before entering into our main results we shall recall some basic definition and results which are needful.
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2. Preliminaries

We recollect some basic definitions and notions which is useful for proving our main results.
Let C be the set of complex numbers and v1, v2 ∈ C. Define a partial order ≤ on C as follows:
v1 ≤ v2 if and only if Re(v1) ≤ Re(v2), Im(v1) ≤ Im(v2).
Consequently, one can infer that v1 ≤ v2 if one of the following conditions is satisfied:
(i) Re(v1) = Re(v2), Im(v1) < Im(v2),
(ii)Re(v1) < Re(v2), Im(v1) = Im(v2),
(iii)Re(v1) < Re(v2), Im(v1) < Im(v2),
(iv)Re(v1) = Re(v2), Im(v1) = Im(v2).
In particular,we write v1 � v2 if v1 6= v2 and one of (i), (ii) and (iii) is satisfied and we write v1 < v2 if only
(iii) is satisfied. Notice that
(a) If 0 ≤ v1 � v2, then |v1| < |v2|,
(b) If v1 ≤ v2 and v2 < v3 then v1 < v3,
(c) If p, q ∈ R and p ≤ q then pv ≤ qv for all v ∈ C.
Now we define a complex valued dislocated metric space

Definition 2.1. Consider γd be a non void set and define a function γd : H × H → C satisfies the following
conditions such that for all u, r, w ∈ H
(1)γd(u, r) = γd(r, u)

(2)γd(u, r) = γd(r, u) = 0 if and only if u = r

(3)γd(u, r) ≤ γd(u,w) + γd(w, r)

Then γd is said to be complex valued dislocated metric space and call (H, γd) is a complex valued dislocated
metric space.

Example 2.2. Consider the function that γd : H ×H → C be defined by γd(u, r) = max{u, r} where H = C

then it is called as complex valued dislocated metric space.

Remark 2.3. Every complex valued metric space is a complex valued dislocated metric space but converse need
not be true.

Definition 2.4. Consider (H, γd) be a complex valued dislocated metric space and define a sequence {un} in H
for each u ∈ H
(i)let the sequence {un} be convergent to u in (H, γd) is said to be complex valued dislocated metric space then
for each ε > 0 we can find n0 ∈ N such that γd(un, u) < ε for each n > n0 which is denoted by un → u

(ii)Consider the sequence {un} be cauchy sequence in (H, γd) is called complex valued dislocated metric space
if limn→∞γd(un, un+b) = 0 for each b > 0

(iii)Let (H,γd) be a complex valued complete dislocated metric space if every complex valued cauchy sequence
in H converges to some u ∈ H.

We state the two lemmas which are useful to prove our main theorem

Lemma 2.5. Consider (H,γd) be a complex valued dislocated metric space.Let {un} be sequence in H. Then
{un} converges to u if and only if |γd(un, u)| → 0 as n→∞

Lemma 2.6. Consider (H,γd) be a complex valued dislocated metric space.Let {un} be sequence in H. Then
{un} is a complex valued dislocated metric cauchy sequence if and only if |γd(un, un+b)| → 0 as n→∞

3. Main Results

In this section, we prove the theorem by using new rational contraction mapping in complex valued dislocated
metric space.
Now we first define the rational contraction mapping in complex valued dislocated metric space
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Definition 3.1. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions
γd(Gu, Tr) ≤ a[γd(u, r)] +

3b[γd(u,Tr)]
2

1+γd(u,r)+γd(r,Tr)
+ c[γd(u, Tr) + γd(u,Gu)] for each u, r ∈ H and the non

negativity constants are a, b, c

Theorem 3.2. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions of (3.1) with 2a + 6b + 3c < 1 .Then G has unique
common fixed point.

Proof. Let u0 be the arbitrary point in H. Now define uk+1 = Guk,uk+2 = Tuk+1, for each k ∈ Z+ Therefore,
γd(uk+1, uk+2) = γd(Guk, Tuk+1)

≤ a[γd(uk, uk+1)] +
3b[γd(uk,Tuk+1)]

2

1+γd(uk,uk+1)+γd(uk+1,Tuk+1)
+

c[γd(uk, Tuk+1) + γd(uk, Guk)]

≤ a[γd(uk, uk+1)] +
3b[γd(uk,uk+2)]

2

1+γd(uk,uk+1)+γd(uk+1,uk+2)
+

c[γd(uk, uk+2) + γd(uk, uk+1)]

≤ a[γd(uk, uk+1)] +
3b[γd(uk,uk+1)+γd(uk+1,uk+2)]

2

1+γd(uk,uk+1)+γd(uk+1,uk+2)
+

c[γd(uk, uk+1) + γd(uk+1, uk+2) + γd(uk, uk+1)]

|γd(uk+1, uk+2)| ≤ a|γd(uk, uk+1)|+ 3b|γd(uk, uk+1) + γd(uk+1, uk+2)|+
c|2γd(uk, uk+1) + γd(uk+1, uk+2)|

Since
|1 + d(uk, uk+1) + d(uk+1, uk+2)| > |d(uk, uk+1) + d(uk+1, uk+2)|
Now
|γd(uk+1, uk+2)| ≤ a|γd(uk, uk+1)|+ 3b|γd(uk, uk+1)|+ 3b|γd(uk+1, uk+2)|+

2c|γd(uk, uk+1)|+ c|γd(uk+1, uk+2)|
Therefore |γd(uk+1, uk+2)| ≤ a+3b+2c

1−(3b+c) |γd(uk, uk+1)|
Similarly,
γd(uk+2, uk+3) = γd(Guk+1, Tuk+2)

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,Tuk+2)]

2

1+γd(uk+1,uk+2)+γd(uk+2,Tuk+2)
+

c[γd(uk+1, Tuk+2) + γd(uk+1, Guk+1)]

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,uk+3)]

2

1+γd(uk+1,uk+2)+γd(uk+2,uk+3)
+

c[γd(uk+1, uk+3) + γd(uk+1, uk+2)]

≤ a[γd(uk+1, uk+2)] +
3b[γd(uk+1,uk+2)+γd(uk+2,uk+3)]

2

1+γd(uk+1,uk+2)+γd(uk+2,uk+3)
+

c[γd(uk+1, uk+2) + γd(uk+2, uk+3) + γd(uk+1, uk+2)]

|γd(uk+2, uk+3)| ≤ a|γd(uk+1, uk+2)|+ 3b|γd(uk+1, uk+2) + γd(uk+2, uk+3)|+
c|2γd(uk+1, uk+2) + γd(uk+2, uk+3)|

Since
|1 + d(uk+1, uk+2) + d(uk+2, uk+3)| > |d(uk+1, uk+2) + d(uk+2, uk+3)|
Now
|γd(uk+2, uk+3)| ≤ a|γd(uk+1, uk+2)|+ 3b|γd(uk+1, uk+2)|+ 3b|γd(uk+2, uk+3)|+

2c|γd(uk+1, uk+2)|+ c|γd(uk+2, uk+3)|
Therefore
|γd(uk+2, uk+3)| ≤ a+3b+2c

1−(3b+c) |γd(uk+1, uk+2)|
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Since a+ 3b+ 2c < 1 therefore α = a+3b+2c
1−(3b+c) < 1

Then, we have
|γd(un+1, un+2)| ≤ α|γd(un, un+1)| ≤ ........ ≤ αn+1|γd(u0, u1)|
Therefore for every m > n we have
|γd(un, um)| ≤ |γd(un, un+1)|+ |γd(un+1, un+2)|+ ........+ |γd(um−1, um)|
|γd(un, um)| ≤ [αn + αn+1 + ........+ αm−1]|γd(u0, u1)|

≤ αn

1−α |γd(u0, u1)|
γd(un, um)| ≤ αn

1−α |γd(u0, u1)| → 0 as n,m→∞
Hence {un} is a cauchy sequence. Since H is complete there must exist x ∈ H such that {un} → x as n→∞
Suppose on contrary that x 6= Gx so γd(x,Gx) = y

Now
y ≤ γd(x, xk+2) + γd(uk+2, Gx)

≤ γd(x, uk+2) + γd(Tuk+1, Gx)

≤ a[γd(x, uk+1)] +
3b[γd(x,Tuk+1)]

2

1+γd(x,uk+1)+γd(uk+1,Tuk+1)
+ c[γd(x, Tuk+1) + γd(x,Gx)]

≤ a[γd(x, uk+1)] +
3b[γd(x,uk+2)]

2

1+γd(x,uk+1)+γd(uk+1,uk+2)
+ c[γd(x, uk+2) + γd(x,Gx)]

|y| ≤ a|γd(x, uk+1)|+ 3b|γd(x, uk+1) + γd(uk+1, uk+2)|+ c|γd(x, uk+1) + γd(uk+1, uk+2) + γd(x,Gx)|
Since
|1 + γd(x, uk+1) + γd(uk+1, uk+2)| > |γd(x, uk+1) + γd(uk+1, uk+2)|
Therefore
|y| ≤ a|γd(x, uk+1)|+ 3b|γd(x, uk+1)|+ 3b|γd(uk+1, uk+2)|+ c|γd(x, uk+1)|+

c|γd(uk+1, uk+2)|+ c|γd(x,Gx)|
Letting n→∞ we have
|γd(x,Gx)| ≤ a+6b+2c

1−c |γd(x, x)| Since a+ 6b+ 2c < 1

Therefore, we have |γd(x,Gx)| → 0 which is the contradiction.
Hence Gx = x similarly we prove that Tx = x

To prove the uniqueness of common fixed point of G and T, let d ∈ H be the another common fixed point of G
and T, we have
γd(x, d) = γd(Gx, Td) ≤ a[γd(x, d)] + 3b[γd(x,Td)]

2

1+γd(x,d)+γd(d,Td)
+ c[γd(x, Td) + γd(x,Gx)]

≤ a[γd(x, d)] + 3b[γd(x,d)]
2

1+γd(x,d)+γd(d,d)
+ c[γd(x, d) + γd(x, x)]

≤ a[γd(x, d)] + 3b[γd(x,d)+γd(d,d)]
2

1+γd(x,d)+γd(d,d)
+ c[γd(x, d) + γd(x, x)]

|γd(x, d)| ≤ a|γd(x, d)|+ 3b|γd(x, d) + γd(d, d)|+ c|γd(x, d) + γd(x, x)|
Since |1 + γd(x, d) + γd(d, d)| > |γd(x, d) + γd(d, d)|
Now,
|γd(x, d)| ≤ a|γd(x, d)|+ 3b|γd(x, d)|+ 3b|γd(d, d)|+ c|γd(x, d)|+ c|γd(x, x)|
|γd(x, d)| ≤ 3b

1−(a+3b+c) |γd(d, d)|+
c

1−(a+3b+c) |γd(x, x)|
Since a+ 6b+ 3c < 1 therefore we have x = d which shows the uniqueness of common fixed point. �

Corollary 3.3. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G,T :

H → H which satisfies the rational contraction conditions γd(Gu, Tr) ≤ a[γd(u, r)]+c[γd(u, Tr)+γd(u,Gu)]
for each u, r ∈ H and the non negativity constants are a, c with 2a+ 3c < 1 .Then G has unique common fixed
point.

Corollary 3.4. Let (H, γd) be a complete complex valued dislocated metric space. Consider the function G :

H → H which satisfies the contraction conditions γd(Gun, Grn) ≤ a[γd(u, r)] for each u, r ∈ H and the non
negativity constant a with a < 1 .Then G has unique fixed point.

Example 3.5. Let X= C be set of complex numbers.Define f : C × C → Cas follows where z1 = x1 + iy1
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z2 = x2 + iy2 .Then (C, f) is a complete complex valued dislocated metric space.
Define G : C → C as

G(x) =



0, if x, y ∈ Q.
1 + 2i, if x, y ∈ Qc

2 if x ∈ Qc, y ∈ Q
5i if x ∈ Q, y ∈ Qc

Let us consider x =
√
3 and y = 0 we obtain,

f(G(
√
3), L(0)) = f(3, 0) = 3 4 αf(

√
3, 0) = α

√
3

Therefore ,α <
√
3, which is a contradiction as 0 4 α ≺ 1

We notice that G2z = 0 so that 0 = f(G2z1, G
2z2) 4 αf(z1, z2) which shows that G2 satisfies the requirement

of Bryant theorem and z=0 is the unique fixed point of T.
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