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Abstract
A dominating set or dset of G is called a s-path dset of G (2 ≤ s ≤ diamG ) if any path of length s ∈ G has ⊆
of one vertex in this dset. We indicate a s-path dset by Dps . The s-path dominaton number or s-path dn of G
indicated by γps(G ) is the minimal cardinality or MC taken over all s-path dsets of G . In that paper, we determine
domination number and s-path domination number for the brick product graph B(2n,P,Q) (P = 2) related with
even cycles.
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1. Introduction
For a graph G = (V,E) is a finite, not directed graph,

loopless and non parallel edges. If D⊆ V is called a dset of
G , if every vertex /∈ D is adjoining to few vertex ∈ D. The dn
of G denoted by γ(G ) is the MC taken over all dset of G .

A set F of edges ∈ G is called an edge dset if any edge e∈
E−F is adjoining to ≥ one edge in F . The edge domination
number γ

′
(G ) of G is the MC of an edge dset of G .

The open neighbourhood of N(e) is the set of all edges
adjoining to e∈G . If e=(u,v) is an edge in G , the degree of e
indicate by deg(e) is described as deg(e) = deg(u)+deg(v)−
2. The maximum degree of an edge in graph is denoted by
4′(G ).

A dset of graph is called a s-path dset of G (2 ≤ s ≤
diamG ) if any path of length s ∈ G has ⊆ one vertex in this
dset. We indicate a s-path dset by Dps . The s-path dn of G

denoted by γps(G ) is the MC taken over all s-path dsets of
graph.

If any s-path dset is a dset but the converse need not be
accurate . Also we well known that |D| ≤ |Dps |. Therefore
γ(G )≤ γps(G ).

Figure 1. G = (B(9,1,2)), γP2(G) = 4

The graph G = B(9,1,2) in figure , the sets D = {v0,v4}
, {v1,v5}, {v2,v7}, {v3,v7} etc are dsets. Without loss gen-
erality let us consider the set {v0,v4} as the dset but not a
2-path dset of G since the paths v3− v5− v6 , v3− v5− v7,
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v3− v1− v8 and v1− v8− v6 of length 2 does not contain ei-
ther v0 or v4. But, the set {v0,v3,v4,v8} is a 2-path dset, γP2 =
4. If allow that |D|< |Dps |

Definition 1.1. [3]
Let P,n and Q be a positive integers.
Let B2n = a0,a1,a2, ....,a2n−1,a0 denote a cycle order

2n. The (P,Q) - brick product of B2n, [2] denoted by
B(2n,P,Q), is defined in two cases as follows.

Figure 2. The brick product graph B(10,1,5)

Figure 3. The brick product graph B(10,2,4)

1. If P =1, we make necessary that Q be odd and > 1.
Then, B(2n,P,Q) is attained from B2n by connecting
chords a2ka2k+Q, k = 1,2,...,n, where the computation
is performed modulo 2n.

2. If P >1, we make necessary that P +Q be even.
Then, B(2n,P,Q) is attained by first taking the dis-
joint union of P copies of B2n,

namely B2n(1),B2n(2), ...,B2n(P), where for each i =
1,2, ...,m, B2n(i) = (i,0)(i,1)...(i,2n). Next, for each
odd i = 1,2, ...P−1 and each even k = 0,1,2, ...2n−2,
an edge (called a brick edge) is drawn to join(ai,ak) to
(ai+1,ak), whereas, for each even i= 1,2, ...,P−1 and
each odd k = 1,2, ...,2n−1, an edge (also called a brick
edge) is drawn to join (ai,ak) to (ai+1,ak). Finally, for
each odd k = 1,2, ..,2n−1, an edge (called a hooking
edge) is drawn to join (a1,ak) to (aP ,ak+Q). An edge
in B(2n,P,Q) which is not either a brick edge nor a
hooking edge is called a flat edge.

2. Preliminaries
We bring the following result belonging to the dn of a

graph.

Theorem 2.1. [6] A dset D is a minimal dset⇔ for any vertex
a ∈ D, one of the following condition holds:

1. degree(a) = 0 of dset

2. ∃ a vertex b in V −D such that N(b)∩D is equal to
{a}.

comparable to the theorem 2.1, we have the following
result for a s-path dset.

Theorem 2.2. A dset Dps is a minimal s-path dset (s ≥ 2)
⇔ for each vertex u in Dps , one of the following conditions
holds:

1. degree u = 0 of Dps

2. ∃ a vertex v ∈V −Dps such that N(v)∩Dps = {u}

3. If G is k- connected, k > 1 and vi,v j ∈ Dps , then <
Dps > is a disconnected graph and each vertex of Dps−
{u} belongs to some cycle in G .

Proof. Let Dps be a minimal s-path dset of G . Then for every
vertex u ∈ Dps if the set Dps −{u} is not a s-path dset in
G , it follows that either degree u = 0 of Dps or ∃ a vertex
v ∈V −Dps such thatN(v)∩Dps = {u}. If G is k- connected
and k > 1, then for s≥ 2, every vertex of Dps −{u} belongs
to some cycle in G and we have the following two possible
cases.
Case 1 : Let vi,v j ∈Dps such that d(vi,v j)= 1. Then, <Dps >
is a disconnected graph with one component as K2 and the
remaining components are isolated vertices.
Case 2 : Let vi,v j ∈Dps such that d(vi,v j)≥ 1. Then <Dps >
is a disconnected graph in which all components are isolated
vertices.
Conversely, let Dps be a s-path dset satisfying the conditions
above. For the purpose of contradiction, let us assume that
Dps is not minimal. Then there must exist a vertex u ∈ Dps

such that Dps −{u} is also a s- path dset. Hence, for atleast
one vertex v ∈ Dps −{u}, there must be a path connecting u
and v in G , so that {u} cannot be an isolated vertex of Dps and
hence condition 1 fails. Also, every vertex in V −Dps lies in
some path connecting atleast one vertex in Dps −{u} so that
conditions 2 also fails. For condition 3, it is easy to observe
that {u} lies in some cycle of G along with the vertices of
V − (Dps −{u}). So condition 3 also fails. This contradicts
the fact the Dps −{u} also a minimal s-path dset.

Hence the proof.
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3. Main Results
We provide the results connected to the domination and

the edge dn of some brick product graphs.

Theorem 3.1. Let G = B(2n,2,Q). Then γ(G ) = 2d n
2e for

n≥ 3, where Q= 2 j, j=1,2,3,4.

Proof. We consider V (G )= V1 ∪V2, where V1= {v(1,i)} and
V2 = {v(2,i)}, i = 1,2,3.....2n, modulo 2n and E(G ) = E1 ∪
E2∪E3∪E4∪E5∪E6, where E1 = {ei/ei = (v(1,i),v(1,i+1))},
E2 = {e′i/e

′
i = (v(2,i),v(2,i+1))}, i = 1,2, ...2n, module 2n, E3

= {lp/lp = (v(i,k),v(i+1,k))}, for every odd i = 1,2...m− 1
and every even k = 0,1,2....2n− 2, p = 1,2, ...(n− 1), E4 =
{l ′p/l

′
p = (v(1,k),v(2,k+r))}, for every odd k = 1,2, ...(2n−1),

E5 = {c1/c1 = (v(1,i),v(1,2n))}, E6 = {c′1/c
′
1 = (v(2,i),v(2,2n))},

modulo 2n.
Let n≥ 3.
Consider the set D = D1∪D2,

where D1 = {v(1,4 j−2)}, 1 ≤ j ≤ d n
2e and D2 = {v(2,4k) ∪

v(2,2n)}, 1≤ k ≤ d n
2e−1

The above set D is a minimal dset, for any vertex a ∈ D,
D−{a} is not a dset. consequence, few vertex b ∈V −D∪
{a} is not dominated by any vertex ∈ D∪{a}. If b ∈ V −D
and b /∈ dominated by D−{a}, but is dominated by D, then b
is adjoining exclusively to vertex a ∈ D, i.e N(a)∩D is equal
to {a}.

Therefore |D| = 2d n
2e, it follows that γ(G ) = 2d n

2e.
Hence the proof

Theorem 3.2. Let G = B(2n,2,Q). Then γ
′
(G ) = 2d 2n

3 e for
n≥ 3, where Q= 2,8.

Proof. The V (G ) and E(G ) are as theorem 3.1.
Let n≥ 3.
Consider set F = F1∪F2,

where F1 =


{e(1,p−2)}, n≡ 0(mod3)
{e1,3q−2}, n≡ 1(mod3)
{e1,3t−2}∪{e1,2n−1}, n≡ 2(mod3)

1≤ p≤ 2n
3

, 1≤ q≤ 2n+1
3

, 1≤ t ≤ 2n−1
3

and

F2 =


{e(2,3p−1)}, n≡ 0(mod3)
{e2,3q−1}, n≡ 1(mod3)
{e2,3t−1}∪{e2,2n−1}, n≡ 2(mod3)

1≤ p≤ 2n
3

, 1≤ q≤ d2n+4
3
e, 1≤ t ≤ 2n+2

3
The above set F is a minimal edge dset, for every edge

fi ∈ F , F−{ fi} is /∈ an edge dset for neighbourhood of fi ∈
G . For every set carry edges < that of F cannot be a dset of
graph. Also graph is a 3-regular and every edge of G is of
degree 4 and an edge of graph be able to dominate ≤ f ive
well defined edges of graph inclusive of itself.

Therefore |F | = 2d 2n
3 e, it follows that γ

′
(G ) = 2d 2n

3 e.
Hence the proof

Theorem 3.3. Let G = B(2n,2,Q). Then γ
′
(G ) = 2d 2n

3 e for
n≥ 3, where Q= 4,6.

Proof. The V (G ) and E(G ) are as theorem 3.1.
Let n≥ 3.
Consider set F = F1∪F2,

where F1 =


{e(1,3p−1)}, n≡ 0(mod3)
{e1,3q−1}∪{e1,2n−1}, n≡ 1(mod3)
{e1,3t−1}∪{e1,2n−3}∪{e1,2n−1}, n≡ 2(mod3)

1≤ p≤ 2n
3

, 1≤ q≤ b2n
3
c, 1≤ t ≤ b2(n−1)

3
c and

F2 =


{e(2,3p−2)}, n≡ 0(mod3)
{e2,3q−2}, n≡ 1(mod3)
{e2,3t−2}∪{e2,2n−1}, n≡ 2(mod3)

1≤ p≤ 2n
3

, 1≤ q≤ d2n+4
3
e, 1≤ t ≤ d2n+2

3
e

The above set F is a minimal edge dset, for every edge
fi ∈ F , F−{ fi} is /∈ an edge dset for neighbourhood of fi ∈
G . For every set carry edges < that of F cannot be a dset of
graph. Also graph is a 3-regular and every edge of G is of
degree 4 and an edge of graph be able to dominate ≤ f ive
well defined edges of graph inclusive of itself.

Therefore |F | = 2d 2n
3 e, it follows that γ

′
(G ) = 2d 2n

3 e.
Hence the proof

we provide the results related to the s-path domination of
some brick product graphs.

Theorem 3.4. Let G = B(2n,2,Q). Then γp2(G ) = 2n for
n≥ 3, where Q= 2 j, j=1,2,3,4.

Proof. The V (G ) and E(G ) are as theorem 3.1.
Let n≥ 3
Consider the set Dp2 = V1∪V2, where V1 = {v1,2i−1} and

V2 = {v2,2k}, 1≤ i, j ≤ n
The set Dp2 is a minimal 2-path dominating set, for ev-

ery vertex of Dp2 −{u} belongs to some cycle in G and let
vi,v j ∈Dp2 such that d(vi,v j)= 1. Then, < Dp2 > is a discon-
nected graph with one component as K2 and the remaining
components are isolated vertices.

Therefore, |Dp2 | = 2n, it follows that γp2(G ) = 2n.
Hence the proof

Theorem 3.5. Let G = B(2n,2,Q). Then γp3(G ) = 2n for
n≥ 3, for n≥ 3, where Q= 2 j, j=1,2,3,4.

Proof. The V (G ) and E(G ) are as theorem 3.1.
Let n≥ 3
Consider the set Dp3 = V1∪V2, where V1 = {v1,2i−1} and

V2 = {v2,4k−2}, 1≤ i≤ n, 1≤ j ≤ d n
2e

The set Dp3 is a minimal 3-path dset, for any a ∈ Dp3 ,
Dp3 −{a} is /∈ a 3-path dset and also, some b ∈ V −Dp3
is not dominated by any vertex in Dp3 ∪{a}. Hence, either
a=b or b ∈ V −Dp3 . But, degree a of Dp3 if a=b, and, if
b ∈ V −Dp3 and b is not dominated by Dp3 −{a}, but is
dominated by Dp3 , then b is adjoining exclusively to vertex
a ∈ Dp3 , i.e. N(a)∩Dp3 is equal to {a}.

Therefore, |Dp3 | = 2n, it follows that γp3(G ) = 2n.
Hence the proof.
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4. Conclusion
In this paper, the vertex domination number γ(G ) and edge

domination number γ
′
(G ) , also s-path domination number

γps(G ) associated with the brick product graphs of even cycles
B(2n,P,Q) (P = 2) are determined.
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