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Magnetic trajectories on oriented surfaces
Gozde Ozkan Tikel'*

Abstract

We study magnetic trajectories of a magnetic field on an oriented surface § in three-dimensional Euclidean
space. Defining the Lorentz force of a magnetic field on S, we give the Lorentz force equation for the associated
magnetic trajectories. We have derived the Killing magnetic flow equations with regard to the geodesic curvature,
geodesic torsion and normal curvature of the curve y on S. Finally we examine magnetic trajectories on some
familiar surfaces in three-dimensional Eucliedan space.
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1. Introduction

Shape of the magnetic flow in a magnetic field is known a
magnetic trajectory. A magnetic trajectory of a magnetic flow
is significant in the study of the Hall effect. The Landau-Hall
problem is the study of the motion of a charged particle in the
existence of a constant and static magnetic field on a Rieman-
nian surface. In this case, a particle of mass and charge evolve
with velocity vector satisfying the Lorentz force law [5]. So,
the problem includes the study of solutions of the Lorentz
force equation associated with a Killing magnetic field. The
Lorentz force equation and Hall effect allow to some im-
plementations in many research areas in physics, chemistry,
atmospheric and computer sciences, etc. [1]. Recent studies
of characterization of magnetic flow in a magnetic field have
brought variational perspective. Therefore the techniques of
the differential geometry could be used in the construction
of the equations. So the solutions of the equations could be
interpreted with a more geometric point of view [1, 2, 4, 5,

7, 8,9, 10 ]. For example, in [1], authors have completely
solved the Landau-Hall problem for Killing magnetic fields
in Riemannian manifolds with constant sectional curvature by
using the techniques of the differential geometry, variational
methods and Jacobi elliptic functions. Also in [2], authors
show that magnetic trajectories of a Killing magnetic field cor-
respond to the centerlines of the Kirchhoff elastic rods. Any
divergence-free vector field in three-dimensional Euclidean
space defines a magnetic field. The magnetic trajectory of a
magnetic flow is a curve such that it stands for the trajectory
of a charged particle moving on the surface S under the action
of a magnetic field F' defined as a closed 2—form on (see, [7]).
The Lorentz force of F' denoted by a skew symmetric operator
¢ is given by
F(X,)Y)=<¢(X),Y > (1.1)

for X,Y € x(S). On a oriented surface S, the magnetic trajec-
tories of F satisfies the Lorentz equation (or known Newton
equation)

o (Y)=Vy,Y

(see, [7]). On the other hand, a vector field V on a surface S
is a Killing vector field if and only if it satisfies the Killing
equation,

Ly <X, Y >=<VxV,Y >+ <VyV,Z>=0

for every vector fields X, Y, Z on S, where V is the covariant
derivative (see [3]). Since a Killing field on § is determined



by a vector and its gradient, its divergence is free and it au-
tomatically defines a magnetic flow which is known Killing
magnetic flow [1].

In this paper we examine the magnetic curves representing
the magnetic trajectories of charged particles on oriented sur-
faces in three-dimensional Euclidean space R3. By using the
Darboux frame equations along a curve ¥ on S, we character-
ize the magnetic field V. Then we derive the Killing magnetic
flow equations. Finally we apply to this formulation curves
on some surfaces in R>.

2. Preliminaries

Consider a connected oriented surface S in three-dimensional

Euclidean space R3. F denotes a complete differential 2—form
in a open subset U of S with F = dw, where ® is a 1 —form.
If we define I as a set of C™ curves that combine two fixed
point of U, the Lorentz force equation is a minimizer of the
functional .% : " — R defined by

9(Y)=%/<”/,}/>dt+/w()/)dt.
Y Y

Then the Euler-Lagrange equation of the functional % is
derived as

¢ (Y) =Vy7.

An extremal of .% corresponds to a solution of the Lorentz
force equation [1].

Since magnetic fields are seen to be divergence-free vec-
tor fields in three-dimension, if V € x (S) has a zero diver-
gence, it defines a magnetic vector field on S. Let the differen-
tial 2—form F be a magnetic field with the skew-symmetric
Lorentz force operator ¢ on S. A curve y which is the asso-
ciated magnetic trajectories on S satisfies the Lorentz force
equation. The cross product X x Y on S can be defined by

2.1)

<XXY,Z>=0Q3(X,Y,Z),

where Q3 is area element of S. Then ¢ associated with a
magnetic field F' = iy Q3 can be obtained as follows

<P9X),Y>=F(X,)Y)=iyQ3(V,X,Y) =<V xX,Y >.
So one can see that
9 (X)=VxX, (2.2)

i.e., ¢ is defined via cross product on S. Combining (2.1) and
(2.2), the Lorentz force equation can be written by

0 (V) =Vy?Y =Vxy

for a curve y on S.

Assume that y: [ — S is a parametrized curve with arc
length s, 0 < s < ¢. The curvature and the torsion functions
of 7y are resp. denoted by K (s) and 7(s). Let T(s) =¥ (s)
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and n denote the unit tangent vector to ¥ and the unit normal
vector field of S, resp. Then the trihedron {T,Q,n} along y
determines an orthonormal frame field, known as Darboux
frame field. The Darboux frame field is defined as follows

T(s) =7 (s), Q(s) =n(s) x T(s), n(s) =n((s)) (2.3)

and the frame has the following derivative equations

T 0 K K T
Ol=-x 0 = ol , 2.4)
n K, —T, O n

where K, is the geodesic curvature, k; is the normal curvature
and 7, is the geodesic torsion of ¥.

The square curvature k2 and the torsion 7 of ¥ on S have
the following relations

K> =K+ K, (2.5)

and

/ /
K, Kg — KKy

T=1,+ , (2.6)

21 12
K2+ K7

(see [6], [11]).

3. Magnetic Fields According to Darboux
Frame

Let S denote a connected oriented surface in three-dimensional

Euclidean space and F denote a magnetic field on S. We first
give a proposition which expresses the Lorentz force in terms
of the Darboux frame field.

Proposition 1. Suppose that y: I CR -+ SC R is a
parametrized magnetic curve and {7,Q,n} is the Darboux
frame field along . Then the Lorentz force ¢ in the Darboux
frame {T,Q,n} is written as follows

¢ (T) = K,0+ Kun, 3.1

¢ (Q) = —K,T +on (3.2)
and

¢ (n) =—1,T — 00, (3.3)

where the function @ associated with each magnetic curve is
the quasislope measured according to the magnetic field V.

Proof. The unit tangent vector at a point y(s) of ¥ is
T(s) =¥ (s). Then from Eq. (2.1) and Darboux formulas
(2.4), we have

¢ (T)=VrT = K,0+ K.

We can write the linear expansion of ¢ (Q), ¢ (n) € S as fol-
lows



0(0)=<¢(Q),T>T+<¢(Q),0>0+<¢(Q),n>n

and
o(n)=<¢(n),T>T+<¢(n),0>0+<¢(n),n>n,

resp. Taking into consideration Eq. (2.2) and Eq. (3.1), we
get

<9(0),T>=<VxQT>=-<VxT,0>
:7<¢(T)7Q>:7Kg

and

<o), T>=<VxnT>=—-<VxT,n>
=—<¢(T),n>=—k,.

Since ¢ is a skew-symmetric operator, we get
<0(0),0>=<0¢(n),n>=0.

On the other hand, we have from (2.3)
0=<¢(Q),n>=—<VxnQ0>=—<¢(n),0>.

Proposition 2. A parametrized curve y: [ — S is a mag-
netic trajectory of a magnetic field V iff it is written along y

by

V =T — k,Q+ Kgn. (3.4)

Proof. Suppose that y is a magnetic curve along a magnetic
field V and the Darboux frame along ¥ is given by {T,Q,n}.
Then, V can written as

V=<V.T>T+<V,0>0+<V,n>n.

To find coefficient of V, we use the Lorentz force in Darboux
frame equations (3.1 —3.3):

0 = <¢(Q),n>=<VxQ,n>=<V,T >,

Ke = <¢(T),n>=<VxT,n>=-<V,0>
and

K, =<¢(Q), T >=<VxQ,T>=—-<V,n>.

4. Killing Magnetic Flow Equations

Let y:I — S be a curve on oriented surface in three-
dimensional Euclidean space. Suppose the V is a vector field
along 7. A variation of ¥ in the direction of V can be defined
by

Y: [0,1]x(—€,e) —
—

S
(s,1) Y(s,1)
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satisfying

T(5,0) =70, (Z2) =V, (TRL) =76

One can write U (s,1) = H Ma(‘;’l)

, K (s,1) and 7 (s,1) (see [1]).

Lemma 3. We consider that y: I C R — Sis a curve in
R3 and V is a vector field along the curve y. Then we have
the following equalities

dv (s,1)

V(v) = (a;) =< ViV,T > v, @.1)
=

1
V(K‘):(a’((s’t)> :E<V%V,VTT>—2K<VTV,T>
t=0
“4.2)

and

!
a(s,
+T< VTV,T >+ < VTV,TXVTT >

Proposition 4. Let y be a regular curve on S in three-dimensional
Euclidean space R3. If V (s) is the restriction to y(s) of a
Killing vector field, then we have for V in R3

4.4)

Theorem 5. Let y be a parametrized curve on an oriented
surface S in R3. Suppose that V = 0T — x,0 + Kgn, where @
is the quasislope, a Killing vector field along y. Then magnetic
trajectories are curves on S satisfying following differential
equations

biy + ciy =0 (4.5)
and
/
— Ky (aKy +b' — cTg) — b (Ke Ty + K5) + ¢ (K — KTy )
1, (0K, — K, Ty + Ky) — Ky (0K — K, — K Tg) = 0,
(4.6)
where

a=—0 (K +Kk7)+ T (K2 + K7) + Kg K — Kn Ky,
_ /1 / / / 2
b=—K, + 0K, —2K,To — Kg Ty — 0Ky Tg + K, Ty,
C = K] — 2K, Ty — KTy — K Ty + 0Ky Ty + 0K,
Proof. Assume that V is a Killing vector field along ¥ on
S. Along any magnetic trajectory ¥, we have V = 0T — k,0 +
Ken. If V is Killing vector field, we calculate

V (V) =< 0'T + (0K, — K, — K, Tg) Q
+ (0K — Ky T + K} n, T > .



From Eq.(4.1) and Eq. (4.4), we have

that is @ is a constant, and

ViV = (0K, — K — Ky Tg) O+ (0K, — KnTe + K5) . (47)

We calculate first derivative of (4.7) as follows

(—o (k2 +K7) + Ty (K2 4 K7) + KK, — K K
(K+an< — 2Ky Tg — Ky Ty — 0Ky Ty + K T 2)

/! / / 2 /
(K — 20K,y — KT — Ky Ty + 0K, T + wKn) n
=aT +bQ+ cn.

V%V )T
0

(4.8)

Substituting Eq. (4.8) into Eq. (4.2) and using Eq. (4.4), we
get

V (k)= (—K) + 0k, — 2K}, 7 — ;cg é—wxnrngKn ) Ke
/! /
(K — 20Ty — K6, — Ky Tg + DK, Ty + 0K ) K
= by +cKk, =0.

Finally, we find to V (7) as follows

(¢

+(§) <VAV,T x VAT >+ < ViV,T x V4T > .

V(1) :
4.9)

By using the Darboux trihedron and formulas (2.4), we can
obtain the following cross products
T xVyT = Kgn+ —K,Q (4.10)
and
T x V3T = — k) O+ (

Taking first derivative of (4.8), we obtain

(KT — Ky —KnTg)n.  (4.11)

3 vV — (4 — — '~
VIV = (@ — b — k) T+ (ak 16/ = c7) Oy )
+ (ax, + bty n.

Substituting Eqgs. (2.5), (4.5), (4.10), (4.12) and (4.8) into
(4.9), we derive Eq. (4.6).

Definition 6. Any regular curve on oriented surface S
is called the magnetic trajectory of a magnetic field V if it
satisfies the differential equation system (4.5) and (4.6).

5. Applications

Magnetic trajectories on a plane: The plane curves have
identically zero torsion and normal curvature [11]. A regular
curve Y on a plane is a magnetic trajectory of a magnetic field
V iff it can be written along 7y as follows

V=0T +K,n.

2 ! 1
) <V2VT><VTT>+( )<V3VT><VTT> (4,2,:3“) (g g =y 0icg) + 2K2+1(
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Thus we can give the following corollary.

Corollary 7. Any regular curve y with constant geodesic
curvature on a plane is a magnetic trajectory of the magnetic
field V. So, the parts of a circle and the geodesic on a plane
are magnetic trajectories of the magnetic field V.

Magnetic trajectories on a sphere: We consider the sphere

with radius 7,
S*(r) = {(x1,x2,x3) € R :x}+x3 443 = r2} .

The geodesic torsion T, vanishes for all curves on S (r) and

normal curvature k> = L [11]. Then a regular curve y on

S? (r) is a magnetic trajectory of a magnetic field V iff it can
be written along v as

1
V=0T —--0+xKmn.
r

For given magnetic trajectory of the magnetic field V, the
Killing magnetic flow equations (4.5) and (4.6) reduce to

r

3 (k) +x/=0 (5.1)

and

K.l// Kg o 7601(. + K.// K./

+K‘gK‘ =0.
5.2)

Theorem 8. The Killing magnetic flow equations which
gives the magnetic trajectory of the magnetic field V on the
sphere is given by differential equations (5.1) and (5.2).

Corollary 9. Any regular curve ¥ with constant geodesic
curvature (such as small circles) on the sphere S?(r) is a
magnetic trajectory of the magnetic field V. So, the geodesic
on a sphere S?(r) is a magnetic trajectory of the magnetic
field V.

Magnetic trajectories on a cylinder: Let the cylinder be
parametrized by

u . u
x(u,v) = (rcos—,rsin—,v),
r r

where r is radius of the circle. Then for an arbitrary arc y on
the cylinder

ﬁ
ds

Ky = , Kn:—;coszeandfg:%cos@sin@,
where 0 = 0(s) is the angle between the u—coordinate curve
through 7(s) and the arc . The geodesics on the cylinder are
characterized by 6 =constant (see [11]). Then, we clearly see
the following corollary;

Corollary 10. All geodesics (straight lines, circles and
helices) on a cylinder are magnetic trajectories of the magnetic
field V.

Conclusion. In this work we consider magnetic curves on

oriented surface S in Euclidean 3—space R3. To deriving the
L%,

%

40



Killing magnetic flow equations which determine magnetic
curves on S, we use the Darboux frame field which made it
possible to know more about the curvatures of a curve on
the surface. We apply this formulation to give results about
magnetic curves on a plane, a sphere and a cylinder surfaces.
We show that geodesics of these surfaces are magnetic curves.
Moreover we exhibit some examples for magnetic trajectories
in the magnetic field on these surfaces with different approach
in [1], [5] and [7].
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