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1. Introduction
In an attempt to generalize metric space Gahler [2,3] in-

troduced the notion of 2-metric spaces while B.C.Dhage [1]
initiated the notion of D- metric spaces.Subsequently sev-
eral researchers have proved that most of their claims are
not valid.As probable modification to D- metric spaces,very
recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [4]
introduced D∗- metric spaces. In 2006 Zead Mustafa and Brai-
ley Sims [7] have initiated G- metric spaces, while Shaban
Sedghi, Nabi Shobe and Abdelkrm Aliouche [5] considered
S-mertic spaces in 2012.Of these three generalizations, the
S-metric space seen evinced interest in many researchers.
The purpose of this paper is to prove a common fixed point
theorem for three self maps of a S-metric space.Also as a con-
sequence, we prove a common fixed point theorem for three
self maps of a complete S-metric space. Further we show that
a common fixed point theorem for three self maps of a metric
space proved by S.L.Singh and S.P.Singh ([6] pp 1584-1586)
follows as a particular case of our theorem.
Now we recall some basic definitions and lemmas required in

the sequel in section 2 and establish main results in section 3

2. Preliminaries

Definition 2.1. Let X be a non empty set.By S-metric we
mean a function S : X3→ [0,∞) which satisfies the following
conditions for each x,y,z,w ∈ X
(a) S(x,y,z)≥ 0
(b) S(x,x,y) = 0 if and only if x = y = z.
(c) S(x,y,z)≤ S(x,x,w)+S(y,y,w)+S(z,z,w)
In this case (X ,S) is called a S-metric space

Example 2.2. Let X = R and S : R3→ [0,∞) be defined by
S(x,y,z) = |y+ z−2x|+ |y− z| for x,y,z ∈R, then (X ,S) is a
S-metric space.

Example 2.3. Let (X ,d) be a metric space.
Define Sd : X3→ [0,∞) by Sd(x,y,z)= d(x,y)+d(y,z)+d(z,x)
then Sd is a S-metric on X and we call this as the S-metric
induced by d.

Remark 2.4. It is shown ([5], Lemma 2.5) in a S-metric space
that
S(x,x,y) = S(y,y,x) for all x,y ∈ X. Also we need the follow-
ing notions given in [6].

Definition 2.5. Let (X ,S) be an S-metric space. Let x ∈ X
and r > 0, then the open ball with centre at x and radius r is
given by B(x,r) = {y ∈ X : S(y,y,x)< r}
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Remark 2.6. Let (X ,S) be an S-metric space and A⊂ X.
(1) It has been proved in [5] that B(x,r) is an open set in X
and that the topology generated by the open balls as a basis is
a topology called the topology induced by the S-metric on X.
(2) If for every x∈A, there exists a r > 0 such that Bs(x,r)⊂A,
then the subset A is called an open subset of X.
(3) A sequence {xn} in X said to converge to x if S(xn,xn,x)→
0; that is for each ε > 0, there exists an n0 ∈ N such that
for all n ≥ n0, we have S(xn,xn,x) < ε and we write this by
lim
n→∞

xn = x in this case.

(4)A sequence {xn} in X is called a Cauchy sequence if to
each ε > 0, there exists n0 ∈ N such that S(xn,xn,x)< ε for
each n,m≥ n0.
(5) In [5] it has been proved that if {xn} is a sequence in
S-metric space (X ,S) that converges to x is unique and that
{xn} is a Cauchy sequence.
(6) An S-metric space (X ,S) is said to be complete if every
Cauchy sequence in it converges.

Definition 2.7. Let (X ,S) be an S-metric space, If there exists
sequences {xn} and {yn} such that lim

n→∞
xn = x and lim

n→∞
yn = y

then lim
n→∞

S(xn,xn,yn) = S(x,x,y), then we say that S(x,y,z) is

continuous in x and y.

It is well known now that the commutativity of maps is
generalized as follows

Definition 2.8. If g and f are self maps of a S-metric space
(X ,S) such that for every sequence {xn} in X with
lim
n→∞

gxn = lim
n→∞

f xn = t for some t ∈ X we have

lim
n→∞

S(g f xn,g f xn, f gxn) = 0 then g and f are said to be com-

patible

Trivially commuting self maps of a S-metric space are
compatible but not conversely. For example

Example 2.9. Let X = [0,1] and
S(x,y,z) = |x− y|+ |y− z|+ |z− x| for x,y,z ∈ X.
Defining f : X → X ,g : X → X by gx = x2

2 and f x = x2

3 for
x ∈ X then it is easy to see that g,f are compatible but not
commutative.

Lemma 2.10. Let (X ,d) be any metric space and Sd be the
S-metric induced by d. For any sequence {xn} in (X ,Sd), is a
Cauchy sequence if and only if {xn} is a Cauchy sequence in
(X ,d).

Proof. First observe that d(x,y) ≤ Sd(x,x,y) ≤ 2d(x,y) for
all x,y ∈ X . Now the lemma follows immediately in view of
the above inequality

Corollary 2.11. Let (X ,d) be any metric space and Sd be the
S-metric on X. Then (X ,Sd) is a complete if and only if (X ,d)
is complete

Proof. Follows from Lemma 2.10

Definition 2.12. If f ,g and h be self maps of a non empty set
X such that f (X)∪g(X)⊆ h(X), then for any x0 ∈X,there is a
sequence {xn} in X such that f x2n = hx2n+1,gx2n+1 = hx2n+2
for n ≥ 0 then {xn} is called an associated sequence of x0
relative to three self maps f ,g and h.

The existence of an associated sequence of x0 relative to
f ,g and h is ensured.
In fact, if x0 ∈ X then f x0 ∈ f (X) and f (X) ⊆ h(X) imply
that there is a x1 ∈ X such that f x0 = hx1. Now gx1 ∈ g(X)
and g(X)⊆ h(X) imply that there is a x2 ∈ X with gx1 = hx2.
Again f x2 ∈ f (X) and f (X)⊆ h(X) then we get x3 ∈ X with
f x2 = hx3 and gx3 ∈ g(X), g(X)⊆ h(X) gives gx3 = hx4 for
some x4 ∈ X . Repeating this process, alternatively using the
fact f (X) ⊆ h(X) and g(X) ⊆ h(X) we can find a sequence
{xn} with f x2n = hx2n+1 and gx2n+1 = h2n+2 for n≥ 0.
It may be noted that for a given point x0 ∈ X there may be
more than one sequence {xn} with the above condition. For
example

Example 2.13. Suppose X =R with S(x,y,z) = |x−y|+ |y−
z|+ |z−x| for x,y,z∈ X. Define self maps f : X→ X, g : X→
X and h : X → X by f x = gx = x2

3 and h(x) = x2. Then as
explained above we get a sequence {xn} with f x2n = hx2n+1
and gx2n+1 = h2n+2 for n≥ o where each xn has two choices
viz x0

(
√

3)n or −x0
(
√

3)n for n≥ 0. Hence to each x0 ∈ X, there are

infinitely many associated sequences {xn}.

Definition 2.14. A mapping φ : [0,∞)→ [0,∞) is said to be
a contractive modulus if φ(0) = 0 and φ(t)< t for t > 0

Example 2.15. The mapping φ : [0,∞)→ [0,∞) defined by
φ(t) = ct where 0≤ c < 1 is a contractive modulus.

3. Main Results
Theorem 3.1. Suppose f ,g and h be three self maps of S-
metric space (X ,S) satisfying the conditions

(i) f (X)∪g(X)⊆ h(X)

(ii) S( f x, f x,gy) ≤ φ

(
λ (x,y)

)
for all x,y ∈ X where φ is

an upper semi continuous contractive modulus and
λ (x,y)=max{S(hx,hx,hy),S( f x, f x,hx),S(gy,gy,hx),

1
2 [S( f x, f x,hy)+S(gy,gy,hx)]}

(iii) Either ( f ,h) or (g,h) is compatible pair and

(iv) h is continuous
Further if

(v) There is a point x0 ∈ X and an associated sequence
{xn} of x0 relative to the three self maps such that the se-
quence f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · · converge
to some point z ∈ X.

Then z is the unique common fixed point for f ,g and h.
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Before proving the main theorem, we establish a lemma
which is noteworthy.

Lemma 3.2. Suppose f ,g and h be three self maps of S-metric
space (X ,S) satisfying the conditions (i),(ii),(iv) and (v) of
the Theorem 3.1. Then for the associated sequence {xn} of x0
relative to f ,g and h we have
(a) lim

n→∞
λ (hx2n,x2n+1) = S(z,z,hz) if ( f ,h) is compatible

(b) lim
n→∞

λ (x2n,hx2n+1) = S(z,z,hz) if (g,h) is compatible

Proof. Since by (v), each of the sequence f x2n and gx2n+1
converges to z ∈ X and since f x2n = hx2n+1 and gx2n+1 =
h2n+2 for n≥ 0, we have

f x2n,gx2n+1,hx2n+1,hx2n+2→ z as n→ ∞ (3.1)

Now since h is continuous, we have

h f x2n→ hz, h2x2n→ hz as n→ ∞ (3.2)

(a) If the pair ( f ,h) is compatible, we have

lim
n→∞

S(h f x2n,h f x2n, f hx2n) = 0 (3.3)

since f x2n,hx2n→ z as n→ ∞ by 3.1
Now, in view of 3.2 and 3.3, we get

f hx2n→ hz as n→ ∞ (3.4)

Also from (ii) we have

λ (hx2n,x2n+1)

= max{S(h2x2n,h2x2n,hx2n+1),S( f hx2n, f hx2n,h2x2n),

S(gx2n+1,gx2n+1,hx2n+1),

1
2
[S( f hx2n, f hx2n,hx2n+1)+S(gx2n+1,gx2n+1,h2x2n)]}

So that, in view of Remark 2.4 , we have

lim
n→∞

λ (hx2n,x2n+1)

= max{S(hz,hz,z),S(hz,hz,hz),S(z,z,z)),
1
2
[S(hz,hz,z)+S(z,z,hz)]}

= S(z,z,hz)

Proving part (a) of the lemma
(b) If the pair (g,h) is compatible, we have by 3.1

lim
n→∞

S(hgx2n+1,hgx2n+1,ghx2n) = 0 (3.5)

Also since h is continuous, we have again by 3.1, that

h2x2n+1→ hz and hgx2n+1→ hz as n→ ∞ (3.6)

Now, in view of 3.5 and 3.6, we get

ghx2n+1→ hz as n→ ∞ (3.7)

Now, from (ii) we have

λ (x2n,hx2n+1) = max{S(hx2n,hx2n,h2x2n+1), (3.8)
S( f x2n, f x2n,hx2n),S(ghx2n+1,ghx2n+1, (3.9)

h2x2n+1),
1
2
[S( f x2n, f x2n,h2x2n+1)+ (3.10)

S(ghx2n+1,ghx2n+1,hx2n)]}
(3.11)

Now, letting n→∞ in 3.8 and using the continuity of S(x,y,z)
in x and y ,3.1, 3.6, 3.7 we get

lim
n→∞

λ (x2n,hx2n+1)

= max{S(z,z,hz),S(z,z,z),S(hz,hz,hz)),
1
2
[S(z,z,hz)+S(hz,hz,z)]}

= S(z,z,hz)

Proving part (b) of the lemma

Proof of the Theorem 3.1
In this section we first prove the existence of a common fixed
point in one of the two cases of the condition (iii) and the
other case follows similarly with appropriate changes. Here
we prove in case the pair ( f ,h) is compatible. Now from (ii),
we have

S( f hx2n, f hx2n,gx2n+1)≤ φ

(
λ (hx2n,x2n+1

)
(3.12)

in which on letting n→ ∞ and using Lemma 3.2 and the
continuity of S(x,y,z) in x and y we get

S(hz,hz,z)≤ φ

(
S(hz,hz,z)

)
(3.13)

And this leads to a contradiction if hz 6= z. Therefore hz = z.
Again from the condition (ii), we have

S( f z, f z,gx2n+1)≤ φ

(
λ (z,x2n+1)

)
(3.14)

But

λ (z,x2n+1) = max{S(hz,hz,hx2n+1)

S( f z, f z,hz),S(gx2n+1,gx2n+1,hx2n+1)),

1
2
[S( f z, f z,hx2n+1)+S(gx2n+1,gx2n+1,hz)]}

In which on letting n→ ∞, we find

lim
n→∞

λ (z,x2n+1) = max{S(hz,hz,z),S( f z, f z,z),

S(z,z,z),
1
2
[S( f z, f z,z)+S(z,z,z)]}

= max{0,S( f z, f z,z),0,
1
2
[S( f z, f z,z)+0]}

= S( f z, f z,z)
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Now, letting n→ ∞ in 3.14, we get by the upper semicontinu-
ity of φ , that

S( f z, f z,z)≤ φ

(
S( f z, f z,z)

)
(3.15)

which leads to a contradiction if f z 6= z. Therefore f z = z.
Now, again from the condition (ii), we have

S( f x2n, f x2n,gz)≤ φ

(
λ (x2n,z)

)
(3.16)

But

λ (x2n,z) = max{S(hx2n,hx2n,hz),

S( f x2n, f x2n,hx2n),S(gz,gz,hz)),
1
2
[S( f x2n, f x2n,hz)+S(gz,gz,hx2n)]}

so that

lim
n→∞

λ (x2n,z) = max{S(z,z,hz),S(z,z,hz),S(gz,gz,z),

1
2
[S(z,z,z)+S(gz,gz,z)]}

= S(gz,gz,z) = S(z,z,gz)

Now, letting n→ ∞ in 3.16, we get by the upper semicontinu-
ity of φ , that

S(z,z,gz)≤ φ

(
S(z,z,gz)

)
(3.17)

and this leads to a contradiction if gz 6= z. Therefore gz = z.
Hence z = f z = gz = hz
Showing that z is a common fixed point of f,g and h.
We now prove the uniqueness of the common fixed point.If
possible let z′ be another common fixed point of f,g and h.
Then from condition (ii), we have

S(z,z,z′) = S( f z, f z,gz′)≤ φ

(
λ (z,z′)

)
(3.18)

where

λ (z,z′)

= max{S(hz,hz,hz′),S( f z, f z,hz),S(gz′,gz′,hz′)),
1
2
[S( f z, f z,hz′)+S(gz′,gz′,hz)]}

= max{S(z,z,z′),0,0, 1
2
[S(z,z,z′)+S(z′,z′,z)]}

= S(z,z,z′)

Therefore 3.18 gives

S(z,z,z′)≤ φ

(
S(z,z,z′)

)
(3.19)

which leads to a contradiction if z 6= z′. Hence z is the unique
common fixed point of f,g and h.
Hence the Theorem 3.1 is completely proved.

Theorem 3.3. Suppose (X ,S) is a S-metric space satisfying
the conditions (i) to (iv)of Theorem 3.1. Further if
(v)’ (X ,S) is complete
Then f ,g and h have a unique common fixed point z ∈ X.

Before proving the main theorem, we establish an essential
lemma.

Lemma 3.4. Suppose (X ,S) is a S-metric space (X ,S) and
f ,g and h be three self maps of X such that

(i) f (X)∪g(X)⊆ h(X)

(ii) S( f x, f x,gy)≤ c
(

λ (x,y)
)

for all x,y ∈ X where

0≤ c < 1
2 and

λ (x,y)=max{2S(hx,hx,hy),S( f x, f y,hx),S(gy,gy,hx),
1
2 [S( f x, f x,hy)+S(gy,gy,hx)]} and

(iii) (X ,S) is complete

Then for any x0 ∈ X and for any of its associated sequence
{xn} relative to the three self maps, the sequence f x0,gx1, f x2,
gx3, · · · f x2n,gx2n+1, · · · converge to some point z ∈ X.

Proof. Suppose f ,g and h be self maps of a S-metric space
(X ,S) for which condition (i) and (ii) hold.
Let x0 ∈ X and {xn} be an associated sequence of x0 rel-
ative to the three self maps.Then since f x2n = hx2n+1 and
gx2n+1 = hx2n+2 for n≥ 0.
Note that λ (x2n,x2n+1) = max{2S(hx2n,hx2n,hx2n+1),
S( f x2n, f x2n,hx2n),S(gx2n+1,gx2n+1,hx2n+1),

1
2 [S( f x2n, f x2n,hx2n+1)+S(gx2n+1,gx2n+1,hx2n)]}
= max{2S(hx2n,hx2n,hx2n+1),S(hx2n+1,hx2n+1,hx2n),
S(hx2n+2,hx2n+2,hx2n+1),

1
2 [S(hx2n+1,hx2n+1,hx2n+1)+

S(hx2n+2,hx2n+2,hx2n)]}
=max{2S(hx2n,hx2n,hx2n+1),S(hx2n+2,hx2n+2,hx2n+1),

1
2 S(hx2n+2,hx2n+2,hx2n)}

andsince
1
2 S(hx2n+2,hx2n+2,hx2n)

≤ S(hx2n+2,hx2n+2,hx2n+1)+
1
2 S(hx2n,hx2n,hx2n+1)

and α +β ≤ 2max(α,β ) for any α ≥ 0,β ≥ 0,
we get
1
2 S(hx2n+2,hx2n+2,hx2n)

≤ 2max{S(hx2n+2,hx2n+2,hx2n+1),
1
2 S(hx2n,hx2n,hx2n+1)}

= max{2S(hx2n+2,hx2n+2,hx2n+1),S(hx2n,hx2n,hx2n+1)}
It follows that
λ (x2n,x2n+1)≤max{2S(hx2n,hx2n,hx2n+1),

2S(hx2n+2,hx2n+2,hx2n+1)}
Now by (ii) and ?? we have

S(hx2n+1,hx2n+1,hx2n+2)

= S( f x2n, f x2n,gx2n+1)

≤ cλ (x2n,x2n+1)

≤ 2cmax{S(hx2n,hx2n,hx2n+1),

S(hx2n+2,hx2n+2,hx2n+1)}
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therefore, in view of Remark 2.4 and the fact 0 < 2c < 1, we
get

S(hx2n+1,hx2n+1,hx2n+2)≤ 2cS(hx2n,hx2n,hx2n+1) (3.20)

Similarly we can prove that

S(hx2n,hx2n,hx2n+1)≤ 2cS(hx2n−1,hx2n−1,hx2n) (3.21)

From 3.20 and 3.21 we have for any m≥ 1 that

S(hxm,hxm,hxm+1)≤ 2cS(hxm−1,hxm−1,hxm) (3.22)

which on repeated application yields

S(hxm,hxm,hxm+1)≤ 2cS(hxm−1,hxm−1,hxm)

≤ 4c2S(hxm−2,hxm−2,hxm−1)

· · ·
· · ·
≤ (2c)mS(hx1,hx1,hx0)

which imply that the sequence {hxn} and hence
f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · · is a Cauchy sequence in
the complete metric space (X ,S) and therefore converges to a
point say z ∈ X , proving the lemma.

Remark 3.5. The converse of the above lemma is not true.
That is, suppose f ,g and h are self maps of a S-metric space
(X ,S) satisfying conditions (i) and (ii) of Lemma 3.4. Even if
for each x0 ∈ X and for each associated sequence {xn} of x0
relative to f ,g and h.
The sequence f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · · converges
in X
Then (X ,S) need not be complete as shown in the following
example.

Example 3.6. Let X = [0,1) and d(x,y) = |x−y| for x,y∈ X.
Then we know that (X ,d) is a metric space,which is not
complete. Now if Sd(x,y,z) = d(x,y) + d(y,z) + d(z,x) for
x,y,z ∈ X.Then (X ,Sd) is a S-metric space and it is not com-
plete by Corollary 2.11
Now define self maps f ,g and h of X by

f (x) = g(x) =

{
1
3 if x = 0
11
20 if x ∈ (0,1)

and h(x) = 3x+1
4 if x ∈ [0,1)

Then f (X) = g(X) = { 1
3 ,

11
20} and h(X) =

[ 1
4 ,1
)
,

so that f (X)∪g(X)⊆ h(X)
Also suppose x,y ∈ X. We now prove

Sd( f x, f x,gy)≤ c.λ (x,y) for some c (3.23)

case (i): x = y = 0 then
Sd( f x, f x,gy) = 0,Sd(hx,hx,hy) = 0, Sd( f x, f x,hx) = 1

6 ,

Sd(gy,gy,hy) = 1
6 , 1

2 [Sd( f x, f x,hy)+Sd(gy,gy,hx)] = 1
6

so that λ (x,y) = max{0, 1
6 ,

1
6 ,

1
6}=

1
6

Therefore 3.23 holds with c satisfying 0≤ c < 1
2 .

case (ii): x = 0 and y 6= 0. Then
Sd( f x, f x,gy)= 13

30 , Sd(hx,hx,hy)= 3y,Sd( f x, f x,hx)= 1
6 ,

Sd(gy,gy,hy) = |15y−6|
10

and 1
2 [Sd( f x, f x,hy)+Sd(gy,gy,hx)] = 3|y−1|

4 + 3
10

and since 13
30 ≤ cmax{3y, 1

6 ,
|15y−6|

10 , 3|y−1|
4 + 3

10} holds for
13
90 ≤ c < 1

2 is true in this case.
In the other cases of (iii) x 6= 0,y = 0 and (iv)x 6= 0,y 6= 0 also
3.23 holds.
Thus conditions (i) and (ii) of Lemma 3.4 hold for all these
self maps f ,g and h.
Now, to prove that if {xn} is an associated sequence of any
x0 ∈X, then the sequence f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · ·
converges. We consider the cases if x0 = 0 and x0 6= 0 sepa-
rately.
Let x0 = 0 so that f x0 =

1
3 and x1 ∈ X with f x0 = hx1 is given

by x1 =
1
9 . Now x2 ∈ X with gx1 = hx2 is x2 =

2
5 . Now x3 ∈ X

with f x2 = hx3 is x3 =
2
5 .Again x4 ∈ X such that gx3 = hx4 is

x4 =
2
5 .

Thus the sequence f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · · is given
by 1

3 ,
11
20 ,

11
20 ,

11
20 , in case x0 = 0. Proceeding in this manner if

x0 6= 0, we get the sequence
f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · · as 11

20 ,
11
20 ,

11
20 .

In any case the sequence f x0,gx1, f x2,gx3, · · · f x2n,gx2n+1, · · ·
converges to a point 11

20 ∈ X.
However X is not a complete metric space.

Proof of Theorem 3.3
In view of Lemma 3.4, the condition (v)’ of Theorem 3.1 holds
in view of (v)’, hence the theorem follows from Theorem 3.1

Corollary 3.7. ([6] pp1584-1586) Let f ,g and h be self maps
of a metric space (X ,d) such that

(i) f (X)∪g(X)⊆ h(X)

(ii) d( f x,gy)≤ cλ0(x,y) for all x,y ∈ X
where
λ0(x,y) = max{d(hx,hy),d( f x,hx),d(gy,hx),
1
2 [d( f x,hy)+d(gy,hx)]} and 0≤ c < 1

(iii) h is continuous
and

(iv) f h = h f and gh = hg
Further if

(v) X is complete

Then f ,g and h have a unique common fixed point x ∈ X.

Proof. Given that (X ,d) is a metric space satisfying condition
(i) to (v) of the corollary. If
Sd(x,y,z)= d(x,y)+d(y,z)+d(z,x) then (X ,Sd) is a S-metric
space.
Also (ii) can be written as Sd( f x, f y, f y)) ≤ cλ (x,y) for all
x,y ∈ X where
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λ (x,y) = max{Sd(hx,hy,hy),sd( f x, f x,hx),Sd(gy,gy,gy),
1
2 [Sd( f x, f x,hy)+Sd(gy,gy,hx)]}

which is same as the condition (ii) of Theorem 3.3. Also since
(X ,d) is complete, we have (X ,S) is complete, by Theorem..
Now, f ,g and h are self maps on (X ,S) satisfying conditions
of Theorem 3.3 and hence the corollary follows
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