

https://doi.org/10.26637/MJM0801/0048

Common fixed point theorems for three self maps of a complete S-metric space

V. Kiran^{1*}, K. Rajani Devi² and J. Niranjan Goud³

Abstract

In this present paper we prove a common fixed point theorem for three self maps of a S-metric space which satisfy certain conditions.

Keywords

S-metric space, Compatible mappings, Fixed point, Associated sequence of a point relative to three self maps, contractive modulus.

AMS Subject Classification

54H25,47H10.

1,2,3*Department of Mathematics, Osmania University, Hyderabad-500007, Telangana, India.* ***Corresponding author**: ¹ kiranmathou@gmail.com **Article History**: Received **24** November **2019**; Accepted **16** February **2020** ©2020 MJM.

Contents

1. Introduction

In an attempt to generalize metric space Gahler [2,3] introduced the notion of 2-metric spaces while B.C.Dhage [1] initiated the notion of *D*- metric spaces.Subsequently several researchers have proved that most of their claims are not valid.As probable modification to *D*- metric spaces,very recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [4] introduced *D* ∗ - metric spaces. In 2006 Zead Mustafa and Brailey Sims [7] have initiated *G*- metric spaces, while Shaban Sedghi, Nabi Shobe and Abdelkrm Aliouche [5] considered *S*-mertic spaces in 2012.Of these three generalizations, the *S*-metric space seen evinced interest in many researchers.

The purpose of this paper is to prove a common fixed point theorem for three self maps of a S-metric space.Also as a consequence, we prove a common fixed point theorem for three self maps of a complete S-metric space. Further we show that a common fixed point theorem for three self maps of a metric space proved by S.L.Singh and S.P.Singh ([6] pp 1584-1586) follows as a particular case of our theorem.

Now we recall some basic definitions and lemmas required in

the sequel in section 2 and establish main results in section 3

2. Preliminaries

Definition 2.1. *Let X be a non empty set.By S-metric we* $\emph{mean a function }$ S : X^3 \rightarrow $[0,\infty)$ *which satisfies the following conditions for each* $x, y, z, w \in X$ $(a) S(x, y, z) \ge 0$

(*b*) $S(x, x, y) = 0$ *if and only if* $x = y = z$. $(S(x, y, z) \leq S(x, x, w) + S(y, y, w) + S(z, z, w)$ *In this case* (*X*,*S*) *is called a S-metric space*

Example 2.2. *Let* $X = \mathbb{R}$ *and* $S : \mathbb{R}^3 \to [0, \infty)$ *be defined by* $S(x, y, z) = |y + z - 2x| + |y - z|$ *for* $x, y, z \in \mathbb{R}$ *, then* (X, S) *is a S-metric space.*

Example 2.3. *Let* (*X*,*d*) *be a metric space. Define* S_d : $X^3 \to [0, \infty)$ *by* $S_d(x, y, z) = d(x, y) + d(y, z) + d(z, x)$ *then S^d is a S-metric on X and we call this as the S-metric induced by d.*

Remark 2.4. *It is shown ([5], Lemma 2.5) in a S-metric space that*

 $S(x, x, y) = S(y, y, x)$ *for all* $x, y \in X$. Also we need the follow*ing notions given in [6].*

Definition 2.5. *Let* (X, S) *be an S-metric space. Let* $x \in X$ *and r* > 0, *then the open ball with centre at x and radius r is given by* $B(x, r) = \{y \in X : S(y, y, x) < r\}$

Remark 2.6. *Let* (X, S) *be an S-metric space and* $A \subset X$. *(1) It has been proved in [5] that B*(*x*,*r*) *is an open set in X and that the topology generated by the open balls as a basis is a topology called the topology induced by the S-metric on X. (2) If for every x* ∈ *A*, *there exists a r* > 0 *such that* $B_s(x, r)$ ⊂ *A*, *then the subset A is called an open subset of X.*

(3) A sequence $\{x_n\}$ *in X said to converge to x if* $S(x_n, x_n, x) \rightarrow$ 0*;* that is for each $\varepsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that *for all* $n \geq n_0$ *, we have* $S(x_n, x_n, x) < \varepsilon$ *and we write this by* $\lim_{n\to\infty} x_n = x$ *in this case.*

(4)A sequence {*xn*} *in X is called a Cauchy sequence if to each* $\varepsilon > 0$ *, there exists* $n_0 \in \mathbb{N}$ *such that* $S(x_n, x_n, x) < \varepsilon$ for *each* $n, m \geq n_0$.

(5) In [5] it has been proved that if {*xn*} *is a sequence in S-metric space* (*X*,*S*) *that converges to x is unique and that* {*xn*} *is a Cauchy sequence.*

(6) An S-metric space (*X*,*S*) *is said to be complete if every Cauchy sequence in it converges.*

Definition 2.7. *Let* (*X*,*S*) *be an S-metric space, If there exists sequences* $\{x_n\}$ *and* $\{y_n\}$ *such that* $\lim_{n\to\infty} x_n = x$ *and* $\lim_{n\to\infty} y_n = y$ *then* $\lim_{n\to\infty} S(x_n, x_n, y_n) = S(x, x, y)$ *, then we say that* $S(x, y, z)$ *is continuous in x and y.*

It is well known now that the commutativity of maps is generalized as follows

Definition 2.8. *If g and f are self maps of a S-metric space* (*X*,*S*) *such that for every sequence* {*xn*} *in X with* $\lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_n = t$ *for some* $t \in X$ *we have* $\lim_{n\to\infty} S(gfx_n, gfx_n, fgx_n) = 0$ then g and f are said to be com*patible*

Trivially commuting self maps of a S-metric space are compatible but not conversely. For example

Example 2.9. *Let* $X = [0, 1]$ *and* $S(x, y, z) = |x - y| + |y - z| + |z - x|$ *for* $x, y, z \in X$. *Defining* $f: X \to X, g: X \to X$ *by* $gx = \frac{x^2}{2}$ $\frac{x^2}{2}$ *and* $fx = \frac{x^2}{3}$ $rac{r}{3}$ for *x* ∈ *X then it is easy to see that g,f are compatible but not commutative.*

Lemma 2.10. *Let* (X,d) *be any metric space and* S_d *be the S-metric induced by d. For any sequence* $\{x_n\}$ *in* (X, S_d) *, is a Cauchy sequence if and only if* {*xn*} *is a Cauchy sequence in* $(X,d).$

Proof. First observe that $d(x, y) \leq S_d(x, x, y) \leq 2d(x, y)$ for all $x, y \in X$. Now the lemma follows immediately in view of the above inequality \Box

Corollary 2.11. Let (X,d) be any metric space and S_d be the *S-metric on X. Then* (X, S_d) *is a complete if and only if* (X, d) *is complete*

Proof. Follows from Lemma [2.10](#page-1-1)

Definition 2.12. *If f*,*g and h be self maps of a non empty set X* such that $f(X) \cup g(X) \subseteq h(X)$, then for any $x_0 \in X$, there is a *sequence* $\{x_n\}$ *in X such that* $f x_{2n} = h x_{2n+1}, g x_{2n+1} = h x_{2n+2}$ *for* $n \geq 0$ *then* $\{x_n\}$ *is called an associated sequence of* x_0 *relative to three self maps f*,*g and h.*

The existence of an associated sequence of x_0 relative to *f*,*g* and *h* is ensured.

In fact, if $x_0 \in X$ then $fx_0 \in f(X)$ and $f(X) \subseteq h(X)$ imply that there is a $x_1 \in X$ such that $fx_0 = hx_1$. Now $gx_1 \in g(X)$ and $g(X) \subseteq h(X)$ imply that there is a $x_2 \in X$ with $gx_1 = hx_2$. Again $fx_2 \in f(X)$ and $f(X) \subseteq h(X)$ then we get $x_3 \in X$ with $fx_2 = hx_3$ and $gx_3 \in g(X), g(X) \subseteq h(X)$ gives $gx_3 = hx_4$ for some $x_4 \in X$. Repeating this process, alternatively using the fact $f(X) \subseteq h(X)$ and $g(X) \subseteq h(X)$ we can find a sequence ${x_n}$ with $f_{x_{2n}} = hx_{2n+1}$ and $gx_{2n+1} = h_{2n+2}$ for $n \ge 0$.

It may be noted that for a given point $x_0 \in X$ there may be more than one sequence $\{x_n\}$ with the above condition. For example

Example 2.13. *Suppose* $X = \mathbb{R}$ *with* $S(x, y, z) = |x - y| + |y - z|$ *z*|+|*z*−*x*| *for x*, *y*,*z* ∈ *X. Define self maps f* : *X* → *X, g* : *X* → *X* and $h: X \to X$ by $fx = gx = \frac{x^2}{3}$ $\frac{x^2}{3}$ and $h(x) = x^2$. Then as *explained above we get a sequence* $\{x_n\}$ *with* $fx_{2n} = hx_{2n+1}$ *and* $gx_{2n+1} = h_{2n+2}$ *for* $n \geq o$ *where each* x_n *has two choices viz* $\frac{x_0}{(\sqrt{3})^n}$ *or* $\frac{-x_0}{(\sqrt{3})^n}$ $\frac{-x_0}{(\sqrt{3})^n}$ for $n \geq 0$. Hence to each $x_0 \in X$, there are *infinitely many associated sequences* {*xn*}.

Definition 2.14. *A mapping* ϕ : $[0, \infty) \rightarrow [0, \infty)$ *is said to be a contractive modulus if* $\phi(0) = 0$ *and* $\phi(t) < t$ *for* $t > 0$

Example 2.15. *The mapping* ϕ : $[0, \infty) \rightarrow [0, \infty)$ *defined by* $\phi(t) = ct$ where $0 \leq c < 1$ *is a contractive modulus.*

3. Main Results

Theorem 3.1. *Suppose f*,*g and h be three self maps of Smetric space* (*X*,*S*) *satisfying the conditions*

$$
(i) f(X) \cup g(X) \subseteq h(X)
$$

(*ii*) $S(fx, fx, gy) \leq \phi\left(\lambda(x, y)\right)$ *for all x*, $y \in X$ *where* ϕ *is an upper semi continuous contractive modulus and* $\lambda(x, y) = \max\{S(hx, hx, hy), S(fx, fx, hx), S(gy, gy, hx),\}$ $\frac{1}{2}[S(fx, fx, hy) + S(gy, gy, hx)]\}$

- *(iii) Either* (*f*,*h*) *or* (*g*,*h*) *is compatible pair and*
- *(iv) h is continuous Further if*
- *(v) There is a point x*⁰ ∈ *X and an associated sequence* ${x_n}$ *of* x_0 *relative to the three self maps such that the sequence* $fx_0, gx_1, fx_2, gx_3, \cdots fx_{2n}, gx_{2n+1}, \cdots$ *converge to some point* $z \in X$.

Then z is the unique common fixed point for f,*g and h.*

 \Box

Before proving the main theorem, we establish a lemma which is noteworthy.

Lemma 3.2. *Suppose f*,*g and h be three self maps of S-metric space* (*X*,*S*) *satisfying the conditions (i),(ii),(iv) and (v) of the Theorem [3.1.](#page-1-2) Then for the associated sequence* $\{x_n\}$ *of* x_0 *relative to f*,*g and h we have*

 (a) $\lim_{n \to \infty} \lambda(hx_{2n}, x_{2n+1}) = S(z, z, hz)$ *if* (f, h) *is compatible* $\lim_{n \to \infty} \lambda(x_{2n}, hx_{2n+1}) = S(z, z, hz)$ *if* (g, h) *is compatible*

Proof. Since by (v), each of the sequence fx_{2n} and gx_{2n+1} converges to $z \in X$ and since $fx_{2n} = hx_{2n+1}$ and $gx_{2n+1} =$ h_{2n+2} for $n \geq 0$, we have

$$
fx_{2n}, gx_{2n+1}, hx_{2n+1}, hx_{2n+2} \rightarrow z \text{ as } n \rightarrow \infty \tag{3.1}
$$

Now since h is continuous, we have

$$
hf x_{2n} \to h z, \qquad h^2 x_{2n} \to h z \text{ as } n \to \infty \tag{3.2}
$$

(a) If the pair (f,h) is compatible, we have

$$
\lim_{n \to \infty} S(hfx_{2n}, hfx_{2n}, fhx_{2n}) = 0 \tag{3.3}
$$

since fx_{2n} , $hx_{2n} \rightarrow z$ as $n \rightarrow \infty$ by [3.1](#page-2-0) Now, in view of [3.2](#page-2-1) and [3.3,](#page-2-2) we get

$$
f h x_{2n} \to h z \text{ as } n \to \infty \tag{3.4}
$$

Also from (ii) we have

$$
\lambda(hx_{2n}, x_{2n+1})
$$

= max{ $S(h^2x_{2n}, h^2x_{2n}, hx_{2n+1}), S(fhx_{2n}, fhx_{2n}, h^2x_{2n}),$
 $S(gx_{2n+1}, gx_{2n+1}, hx_{2n+1}),$

$$
\frac{1}{2}[S(fhx_{2n}, fhx_{2n}, hx_{2n+1}) + S(gx_{2n+1}, gx_{2n+1}, h^2x_{2n})]\}
$$

So that, in view of Remark [2.4](#page-0-2) , we have

$$
\lim_{n \to \infty} \lambda(hx_{2n}, x_{2n+1})
$$

= max{ $S(hz, hz, z)$, $S(hz, hz, hz)$, $S(z, z, z)$ },

$$
\frac{1}{2}[S(hz, hz, z) + S(z, z, hz)]
$$
}
= $S(z, z, hz)$

Proving part (a) of the lemma (b) If the pair (g,h) is compatible, we have by [3.1](#page-2-0)

$$
\lim_{n \to \infty} S(hgx_{2n+1}, hgx_{2n+1}, ghx_{2n}) = 0 \tag{3.5}
$$

Also since h is continuous, we have again by [3.1,](#page-2-0) that

$$
h^2 x_{2n+1} \to hz \text{ and } hgx_{2n+1} \to hz \text{ as } n \to \infty \tag{3.6}
$$

Now, in view of [3.5](#page-2-3) and [3.6,](#page-2-4) we get

 $ghx_{2n+1} \to hz$ as $n \to \infty$ (3.7)

Now, from (ii) we have

$$
\lambda(x_{2n}, hx_{2n+1}) = \max\{S(hx_{2n}, hx_{2n}, h^2x_{2n+1}),\qquad(3.8)
$$

$$
S(fx_{2n}, fx_{2n}, hx_{2n}), S(ghx_{2n+1}, ghx_{2n+1}, \qquad (3.9)
$$

$$
h^{2}x_{2n+1}), \frac{1}{2}[S(fx_{2n}, fx_{2n}, h^{2}x_{2n+1}) + (3.10)
$$

$$
S(ghx_{2n+1}, ghx_{2n+1}, hx_{2n})]\}
$$
(3.11)

 \Box

Now, letting $n \to \infty$ in [3.8](#page-2-5) and using the continuity of $S(x, y, z)$ in x and y [,3.1,](#page-2-0) [3.6,](#page-2-4) [3.7](#page-2-6) we get

$$
\lim_{n \to \infty} \lambda(x_{2n}, hx_{2n+1})
$$

= max{ $S(z, z, hz), S(z, z, z), S(hz, hz, hz)$),

$$
\frac{1}{2}[S(z, z, hz) + S(hz, hz, z)]
$$
}
= $S(z, z, hz)$

Proving part (b) of the lemma

Proof of the Theorem 3.1

In this section we first prove the existence of a common fixed point in one of the two cases of the condition (iii) and the other case follows similarly with appropriate changes. Here we prove in case the pair (f,h) is compatible. Now from (ii), we have

$$
S(fhx_{2n}, fhx_{2n}, gx_{2n+1}) \le \phi\left(\lambda(hx_{2n}, x_{2n+1})\right) \quad (3.12)
$$

in which on letting $n \to \infty$ and using Lemma [3.2](#page-2-7) and the continuity of $S(x, y, z)$ in x and y we get

$$
S(hz, hz, z) \le \phi\left(S(hz, hz, z)\right) \tag{3.13}
$$

And this leads to a contradiction if $hz \neq z$. Therefore $hz = z$. Again from the condition (ii), we have

$$
S(fz, fz,gx_{2n+1}) \leq \phi\bigg(\lambda(z,x_{2n+1})\bigg) \tag{3.14}
$$

But

$$
\lambda(z, x_{2n+1}) = \max\{S(hz, hz, hx_{2n+1})
$$

$$
S(fz, fz, hz), S(gx_{2n+1}, gx_{2n+1}, hx_{2n+1})),
$$

$$
\frac{1}{2}[S(fz, fz, hx_{2n+1}) + S(gx_{2n+1}, gx_{2n+1}, hz)]\}
$$

In which on letting $n \rightarrow \infty$, we find

$$
\lim_{n \to \infty} \lambda(z, x_{2n+1}) = \max \{ S(hz, hz, z), S(fz, fz, z),
$$

$$
S(z, z, z), \frac{1}{2} [S(fz, fz, z) + S(z, z, z)] \}
$$

$$
= \max \{ 0, S(fz, fz, z), 0, \frac{1}{2} [S(fz, fz, z) + 0] \}
$$

$$
= S(fz, fz, z)
$$

Now, letting $n \to \infty$ in [3.14,](#page-2-8) we get by the upper semicontinuity of ϕ , that

$$
S(fz, fz, z) \le \phi\left(S(fz, fz, z)\right) \tag{3.15}
$$

which leads to a contradiction if $f z \neq z$. Therefore $f z = z$. Now, again from the condition (ii), we have

$$
S(fx_{2n}, fx_{2n}, gz) \le \phi\left(\lambda(x_{2n}, z)\right) \tag{3.16}
$$

But

$$
\lambda(x_{2n}, z) = \max\{S(hx_{2n}, hx_{2n}, hz),S(fx_{2n}, fx_{2n}, hx_{2n}), S(gz, gz, hz)),\frac{1}{2}[S(fx_{2n}, fx_{2n}, hz) + S(gz, gz, hx_{2n})]\}
$$

so that

$$
\lim_{n \to \infty} \lambda(x_{2n}, z) = \max \{ S(z, z, hz), S(z, z, hz), S(gz, gz, z), \n\frac{1}{2} [S(z, z, z) + S(gz, gz, z)] \}
$$
\n
$$
= S(gz, gz, z) = S(z, z, gz)
$$

Now, letting $n \to \infty$ in [3.16,](#page-3-0) we get by the upper semicontinuity of ϕ , that

$$
S(z, z, gz) \le \phi\left(S(z, z, gz)\right) \tag{3.17}
$$

and this leads to a contradiction if $gz \neq z$. Therefore $gz = z$. Hence $z = fz = gz = hz$

Showing that z is a common fixed point of f,g and h.

We now prove the uniqueness of the common fixed point.If possible let z' be another common fixed point of f,g and h. Then from condition (ii), we have

$$
S(z, z, z') = S(fz, fz, gz') \le \phi\left(\lambda(z, z')\right) \tag{3.18}
$$

where

$$
\lambda(z, z') = \max\{S(hz, hz, hz'), S(fz, fz, hz), S(gz', gz', hz')\},\
$$

$$
\frac{1}{2}[S(fz, fz, hz') + S(gz', gz', hz)]\}
$$

$$
= \max\{S(z, z, z'), 0, 0, \frac{1}{2}[S(z, z, z') + S(z', z', z)]\}
$$

$$
= S(z, z, z')
$$

Therefore [3.18](#page-3-1) gives

$$
S(z, z, z') \le \phi\left(S(z, z, z')\right) \tag{3.19}
$$

which leads to a contradiction if $z \neq z'$. Hence z is the unique common fixed point of f,g and h.

Hence the Theorem [3.1](#page-1-2) is completely proved.

Theorem 3.3. *Suppose* (*X*,*S*) *is a S-metric space satisfying the conditions (i) to (iv)of Theorem [3.1.](#page-1-2) Further if (v)'* (*X*,*S*) *is complete Then* f *,* g and h have a unique common fixed point $z \in X$.

Before proving the main theorem, we establish an essential lemma.

Lemma 3.4. Suppose (X, S) is a S-metric space (X, S) and *f*,*g and h be three self maps of X such that*

(i)
$$
f(X) \cup g(X) \subseteq h(X)
$$

\n(ii) $S(fx, fx, gy) \le c(\lambda(x, y))$ for all $x, y \in X$ where
\n $0 \le c < \frac{1}{2}$ and
\n $\lambda(x, y) = \max\{2S(hx, hx, hy), S(fx, fy, hx), S(gy, gy, hx), \frac{1}{2}[S(fx, fx, hy) + S(gy, gy, hx)]\}$ and

(iii) (*X*,*S*) *is complete*

Then for any $x_0 \in X$ *and for any of its associated sequence* ${x_n}$ *relative to the three self maps, the sequence* $f{x_0, gx_1, fx_2,}$ $gx_3, \dots f x_{2n}, gx_{2n+1}, \dots$ *converge to some point* $z \in X$.

Proof. Suppose *f*,*g* and *h* be self maps of a S-metric space (X, S) for which condition (i) and (ii) hold.

Let $x_0 \in X$ and $\{x_n\}$ be an associated sequence of x_0 relative to the three self maps. Then since $fx_{2n} = hx_{2n+1}$ and $gx_{2n+1} = hx_{2n+2}$ for $n \ge 0$. Note that $\lambda(x_{2n}, x_{2n+1}) = \max\{2S(hx_{2n}, hx_{2n}, hx_{2n+1}),\}$ $S(fx_{2n}, fx_{2n}, hx_{2n}), S(gx_{2n+1}, gx_{2n+1}, hx_{2n+1}),$ $\frac{1}{2}[S(fx_{2n},fx_{2n},hx_{2n+1}) + S(gx_{2n+1},gx_{2n+1},hx_{2n})]$ $=$ max $\{2S(hx_{2n},hx_{2n},hx_{2n+1}), S(hx_{2n+1},hx_{2n+1},hx_{2n}),\}$ $S(hx_{2n+2},hx_{2n+2},hx_{2n+1}), \frac{1}{2}[S(hx_{2n+1},hx_{2n+1},hx_{2n+1}) +$ $S(hx_{2n+2}, hx_{2n+2}, hx_{2n})$ } $=$ max $\{2S(hx_{2n}, hx_{2n}, hx_{2n+1}), S(hx_{2n+2}, hx_{2n+2}, hx_{2n+1}),\}$ $\frac{1}{2}S(hx_{2n+2},hx_{2n+2},hx_{2n})\}$ *andsince* $\frac{1}{2}S(hx_{2n+2},hx_{2n+2},hx_{2n})$ $\leq S(hx_{2n+2},hx_{2n+2},hx_{2n+1}) + \frac{1}{2}S(hx_{2n},hx_{2n},hx_{2n+1})$ and $\alpha + \beta \leq 2 \max(\alpha, \beta)$ for any $\alpha \geq 0, \beta \geq 0$, we get $\frac{1}{2}S(hx_{2n+2},hx_{2n+2},hx_{2n})$ \leq 2 max $\{S(hx_{2n+2}, hx_{2n+2}, hx_{2n+1}), \frac{1}{2}S(hx_{2n}, hx_{2n}, hx_{2n+1})\}$ $=$ max $\{2S(hx_{2n+2},hx_{2n+2},hx_{2n+1}), S(hx_{2n},hx_{2n},hx_{2n+1})\}$ It follows that $\lambda(x_{2n}, x_{2n+1}) \leq \max\{2S(hx_{2n}, hx_{2n}, hx_{2n+1}),\}$ $2S(hx_{2n+2},hx_{2n+2},hx_{2n+1})\}$ Now by (ii) and ?? we have $S(hx_{2n+1},hx_{2n+1},hx_{2n+2})$

$$
= S(fx_{2n}, fx_{2n}, gx_{2n+1})
$$

\n
$$
\le c\lambda (x_{2n}, x_{2n+1})
$$

\n
$$
\le 2c \max \{ S(hx_{2n}, hx_{2n}, hx_{2n+1}),
$$

\n
$$
S(hx_{2n+2}, hx_{2n+2}, hx_{2n+1}) \}
$$

therefore, in view of Remark [2.4](#page-0-2) and the fact $0 < 2c < 1$, we get

$$
S(hx_{2n+1}, hx_{2n+1}, hx_{2n+2}) \le 2cS(hx_{2n}, hx_{2n}, hx_{2n+1}) \quad (3.20)
$$

Similarly we can prove that

$$
S(hx_{2n}, hx_{2n}, hx_{2n+1}) \leq 2cS(hx_{2n-1}, hx_{2n-1}, hx_{2n}) \quad (3.21)
$$

From [3.20](#page-4-0) and [3.21](#page-4-1) we have for any $m \ge 1$ that

$$
S(hx_m, hx_m, hx_{m+1}) \le 2cS(hx_{m-1}, hx_{m-1}, hx_m) \quad (3.22)
$$

which on repeated application yields

$$
S(hx_m, hx_m, hx_{m+1}) \le 2cS(hx_{m-1}, hx_{m-1}, hx_m)
$$

\n
$$
\le 4c^2S(hx_{m-2}, hx_{m-2}, hx_{m-1})
$$

\n...
\n
$$
\le (2c)^mS(hx_1, hx_1, hx_0)
$$

which imply that the sequence $\{hx_n\}$ and hence

 $f_{x_0}, g_{x_1}, f_{x_2}, g_{x_3}, \cdots, f_{x_{2n}}, g_{x_{2n+1}}, \cdots$ is a Cauchy sequence in the complete metric space (X, S) and therefore converges to a point say $z \in X$, proving the lemma. \Box

Remark 3.5. *The converse of the above lemma is not true. That is, suppose f*,*g and h are self maps of a S-metric space* (*X*,*S*) *satisfying conditions (i) and (ii) of Lemma [3.4.](#page-3-2) Even if for each* $x_0 \in X$ *and for each associated sequence* $\{x_n\}$ *of* x_0 *relative to f*,*g and h.*

The sequence $fx_0, gx_1, fx_2, gx_3, \cdots fx_{2n}, gx_{2n+1}, \cdots$ *converges in X*

Then (*X*,*S*) *need not be complete as shown in the following example.*

Example 3.6. *Let* $X = [0, 1)$ *and* $d(x, y) = |x - y|$ *for* $x, y \in X$. *Then we know that* (*X*,*d*) *is a metric space,which is not complete. Now if* $S_d(x, y, z) = d(x, y) + d(y, z) + d(z, x)$ *for* $x, y, z \in X$. Then (X, S_d) *is a S-metric space and it is not complete by Corollary [2.11](#page-1-3)*

Now define self maps f,*g and h of X by*

$$
f(x) = g(x) = \begin{cases} \frac{1}{3} & \text{if } x = 0\\ \frac{11}{20} & \text{if } x \in (0,1) \end{cases}
$$

and $h(x) = \frac{3x+1}{4}$ *if* $x \in [0,1)$ *Then* $f(X) = g(X) = \left\{ \frac{1}{3}, \frac{11}{20} \right\}$ *and* $h(X) = \left[\frac{1}{4}, 1 \right)$, *so that* $f(X) ∪ g(X) ⊆ h(X)$ *Also suppose* $x, y \in X$. We now prove

$$
S_d(fx, fx, gy) \le c.\lambda(x, y) \text{ for some } c \tag{3.23}
$$

case (i): $x = y = 0$ *then* $S_d(fx, fx, gy) = 0, S_d(hx, hx, hy) = 0, S_d(fx, fx, hx) = \frac{1}{6},$ $S_d(gy,gy,hy) = \frac{1}{6}, \frac{1}{2}[S_d(fx, fx, hy) + S_d(gy, gy, hx)] = \frac{1}{6}$ *so that* $\lambda(x, y) = \max\{0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\} = \frac{1}{6}$

Therefore [3.23](#page-4-2) *holds with c satisfying* $0 \leq c < \frac{1}{2}$ *.* **case (ii):** $x = 0$ *and* $y \neq 0$ *. Then* $S_d(fx, fx, gy) = \frac{13}{30}, \quad S_d(hx, hx, hy) = 3y, S_d(fx, fx, hx) = \frac{1}{6},$ $S_d(gy, gy, hy) = \frac{|15y - 6|}{10}$ and $\frac{1}{2}[S_d(fx, fx, hy) + S_d(gy, gy, hx)] = \frac{3|y-1|}{4} + \frac{3}{10}$
and since $\frac{13}{30} \leq c \max\{3y, \frac{1}{6}, \frac{115y-6}{10}, \frac{3|y-1|}{4} + \frac{3}{10}\}$ holds for $\frac{13}{90} \leq c < \frac{1}{2}$ is true in this case. *In the other cases of (iii)* $x \neq 0$, $y = 0$ *and (iv)x* $\neq 0$, $y \neq 0$ *also [3.23](#page-4-2) holds.*

Thus conditions (i) and (ii) of Lemma [3.4](#page-3-2) hold for all these self maps f,*g and h.*

Now, to prove that if $\{x_n\}$ *is an associated sequence of any* $x_0 \in X$, then the sequence $fx_0, gx_1, fx_2, gx_3, \cdots fx_{2n}, gx_{2n+1}, \cdots$ *converges. We consider the cases if* $x_0 = 0$ *and* $x_0 \neq 0$ *separately.*

Let $x_0 = 0$ *so that* $fx_0 = \frac{1}{3}$ *and* $x_1 \in X$ *with* $fx_0 = hx_1$ *is given* $by x_1 = \frac{1}{9}$ *. Now* $x_2 \in X$ *with* $gx_1 = hx_2$ *is* $x_2 = \frac{2}{5}$ *. Now* $x_3 \in X$ *with* $f x_2 = h x_3$ *is* $x_3 = \frac{2}{5} A g \sin x_4 \in X$ *such that* $g x_3 = h x_4$ *is* $x_4 = \frac{2}{5}.$

Thus the sequence $fx_0, gx_1, fx_2, gx_3, \cdots fx_{2n}, gx_{2n+1}, \cdots$ *is given by* $\frac{1}{3}$, $\frac{11}{20}$, $\frac{11}{20}$, $\frac{11}{20}$, *in case* $x_0 = 0$ *. Proceeding in this manner if* $x_0 \neq 0$, we get the sequence

 $f x_0, g x_1, f x_2, g x_3, \cdots f x_{2n}, g x_{2n+1}, \cdots \text{ as } \frac{11}{20}, \frac{11}{20}, \frac{11}{20}.$ *In any case the sequence* $f x_0, g x_1, f x_2, g x_3, \cdots f x_{2n}, g x_{2n+1}, \cdots$ *converges to a point* $\frac{11}{20} \in X$.

However X is not a complete metric space.

Proof of Theorem [3.3](#page-3-3)

In view of Lemma [3.4,](#page-3-2) the condition (v)' of Theorem [3.1](#page-1-2) holds in view of (v)', hence the theorem follows from Theorem [3.1](#page-1-2)

Corollary 3.7. *([6] pp1584-1586) Let f*,*g and h be self maps of a metric space* (*X*,*d*) *such that*

- *(i) f*(*X*)∪*g*(*X*) ⊆ *h*(*X*)
- (iii) $d(fx, gy) \leq c\lambda_0(x, y)$ *for all* $x, y \in X$ *where* $\lambda_0(x, y) = \max\{d(hx, hy), d(fx, hx), d(gy, hx),\}$ $\frac{1}{2}[d(fx, hy) + d(gy, hx)]\}$ *and* $0 \le c < 1$
- *(iii) h is continuous and*
- *(iv)* $fh = hf$ *and gh* = hg *Further if*
- *(v) X is complete*

Then f,*g* and *h* have a unique common fixed point $x \in X$.

Proof. Given that (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If

 $S_d(x, y, z) = d(x, y) + d(y, z) + d(z, x)$ then (X, S_d) is a S-metric space.

Also (ii) can be written as $S_d(fx, fy, fy) \leq c\lambda(x, y)$ for all $x, y \in X$ where

 $\lambda(x, y) = \max\{S_d(hx, hy, hy), s_d(fx, fx, hx), S_d(gy, gy, gy)\},\$ $\frac{1}{2}[S_d(fx, fx, hy) + S_d(gy, gy, hx)]\}$

which is same as the condition (ii) of Theorem [3.3.](#page-3-3) Also since (X, d) is complete, we have (X, S) is complete, by Theorem.. Now, f, g and h are self maps on (X, S) satisfying conditions of Theorem [3.3](#page-3-3) and hence the corollary follows

 \Box

References

- [1] B.C. Dhage, Generalized metric spaces and mappings with fixed point, *Bull. Cal. Math. Soc.*, 84(1992), 329– 336.
- [2] S. Gahler, 2- metrische Raume and ihre topologische struktur, *Math.Nachr*, 26(1963), 115–148.
- [3] S.Gahler, Zur geometric 2-metriche raume, *Revue Roumaine de Mathmatiques pures et Appliquees*, 11(1966), 665–667.
- [4] S. Sedghi, N. Shobe and H. Zhou, A Common fixed point theorem in *D* ∗ -metric spaces, *Fixed point Theory Appl.*, (2007), 1–3.
- [5] S. Sedghi,N.Shobe and Abdelkrim Aliouche, A generalization of fixed point theorems in *S*-metric spaces, *Mat. Vesnik*, 64(3)(2012), 258–266.
- [6] S.L. Singh and S.P. Singh, A fixed point theorems, *Indian J.Pure and Applied. Math.,* 11(1980), 1584–1586.
- [7] Zead Mustafa and B. Sims A new approach to generalized metric spaces, *J Nonlinear and Convex Analysis*, 7(2006), 289–297.

 $* * * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

