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1. Introduction
Convexity plays a very important role in the study of analy-

sis. One such concept is the study of convex function which is
specially important in the study of optimization problems. In
Fourier analysis W.H. Young found certain convex functions
ϕ : R→ R̄+ which satisfies ϕ(0) = 0, ϕ(−x) = ϕ(x) and
limx→∞ ϕ(x) = ∞ The importance of studying convex func-
tions were only recognized from the work of W.H. Young
in 1912. But their role in the study of abstract analysis
evolves only with the fundamental ideas of Z.W. Birnbaum
and W.Orlicz in the year 1931. However study of convex
function and Young functions were done on the set of real
numbers system which is very rich in structure. We have
made an attempt to study the concept of convex functions and
Young function on the set of hyperbolic number system which
is considered to be an affordable replacement for the real
number system.The study of hyperbolic numbers which we
denote by D was initiated by James Cockle way back in 1848
[7] and then in 1893 Lie and Scheffers [16] continued this

study. Hyperbolic number system has widely been studied due
to its commutative Clifford algebraic properties.The impor-
tance of hyperbolic numbers can be seen from the fact that the
Minkowski geometry were developed solely using this system
of numbers ( see, [3],[9],[27],[28], [4]). Hyperbolic numbers
were used in studying various other areas of mathematics and
physics such as in function theory, Fourier transformation, rel-
ativistic quantum physics and many more. Many papers has
appeared studying hyperbolic numbers from various points
of view (see, [5], [22], [6], [11] ,[13]) and references therein.
During the past several years focus has been on developing
hyperbolic numbers as an affordable replacement for the real
number system. However a recent paper [10] has appeared
which studied this system of numbers as the only(natural)
generalization of real numbers, into Archimedean f-algebra
of dimension two. They generalized the fundamental prop-
erties of real numbers to this number system. In this paper
we shall define some special types of D-convex function and
D-Young’s functions on the set of hyperbolic number and
derive a D-integral representation for them. We shall also
prove D-Young’s inequality.

2. Preliminaries
Now we shall go through a brief review of hyperbolic

numbers system. The hyperbolic numbers denoted by D is a
commutative ring of all numbers of the form Z = a+ kb, a,b
∈ R, with k satisfying k2 = 1.

i.e D =
{

a+ kb : a,b ∈ R,k2 = 1,k /∈ R
}
.
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It is very well known that we can also decompose every ele-
ment Z ∈D as

Z = x1e+ x2e† (2.1)

where e = 1
2 (1+ k) and e† = 1

2 (1− k) are two zero divisors
in the set D and x1 = a+ b and x2 = a− b. The two zero
divisors satisfies the following properties

ee† = 0, e+ e† = 1, e− e† = k, e2 = e and
(
e†)2

= e†

We call equation (2.1), the idempotent decomposition of D .
All the zero divisors are either of the form x1e or x2e† with
x1 6= 0 and x2 6= 0 and we denote the set of all zero divisors of
D by N C and call it the null cone of D . It is also important
to mention here that D is a module over itself. Also the set of
positive hyperbolic number denoted by D+ are the set of all
those hyperbolic numbers whose idempotent components are
non negative.

D+ =
{

αe+βe† : α,β ≥ 0
}

(2.2)

We shall define a partial order relation on D as follows. Given
x,y ∈D , we write x≤′ y if y− x ∈D+. It is easy to see that
this relation is reflexive, symmetric and antisymmetric and so
it defines a partial order relation on D . Also for x,y ∈ D , if
x≤′ y, then we say that y is D-larger than x and x is D-smaller
than y. The notion of upper and lower bounds also exists in
the context of hyperbolic plane. Given a subset S of D we
can define D-upper bounds and D-lower bounds of this set
S. Using this bounds, this set can be made D-bounded from
above and D-bounded from below if it exists. Now if the set
is D-bounded from above as well as from below then we say
that the set is D-bounded.

We further define the notion of the supremum of a given
subset of D . Supremum of S ⊂ D denoted by supD S is de-
fined usually as the least of all D-upper bounds of the given
set. Similarly infD S is the greatest of all D-lower bounds of
the set. However due to the idempotent decomposition of D ,
we can find a convenient expression as follows:

For a subset S of D which is D- bounded from above, we
consider the set C1 =

{
α : αe+βe† ∈ S

}
and

C2 =
{

β : αe+βe† ∈ S
}
. Then the supremum of the set S de-

noted by supD S is defined as supD S = supC1 · e+ supC2 · e†

where supC1 and supC2 is the supremum taken over the sub-
set C1 and C2 of real numbers. Finally the hyperbolic modulus
of any hyperbolic number Z = αe+βe† denoted by |Z|k is
given by the formula |Z|k = Z ·Z∗ = |α|2 e+ |β |2 e† where ”*”
denotes the ∗-conjugation(see [2]). For further basic proper-
ties and results on hyperbolic numbers (see [2] [10] and [18]).
The set BC of bicomplex numbers is defined as

BC = {Z = xo + x1i+ x2 j+ x3i j : xo,x1,x2,x3 ∈ R} (2.3)

= {Z = z1 + jz2 : z1,z2 ∈ C(i)} , (2.4)

where i and j are two imaginary units satisfying i j = ji with
i2 = j2 = −1 and C(i) is the set of complex numbers with
imaginary units i and C( j) is the set of complex numbers with
imaginary units j.The set of hyperbolic number D lies inside
the set BC with k = i j. For more details on this one can refer
to [2].

3. Product Type Hyperbolic Convex
Functions

We shall begin with some definition which will be used
throughout this paper.

Definition 3.1. [21] A subset A ⊂BC is called a product
type set if A = Π1,i(A )e+Π2,i(A )e† where Πk,i are the
idempotent projection to C(i) for k = 1,2 and denote A1 =
Π1,i(A ) and A2 = Π2,i(A ) where BC denotes the set of
bicomplex numbers

We can also take D the set of hyperbolic number instead
of BC to get a product type subset of the set of hyperbolic
numbers using the projections πk : D → R.

Definition 3.2. [21] A function ϕBC : A = A1e+A2e† ⊆
BC 7−→ BC is called a product type function if ∃ maps
ϕ1 : A1 7−→ C and ϕ2 : A2 7−→ C such that

ϕBC (x1e+x2e†) = ϕ1(x1)e+ϕ2(x2)e† ∀ x1e+x2e† ∈A .

(3.1)

Similarly we can take D in place of BC and R in place of
C and get product type hyperbolic valued functions. Further it
is to be noted that a function ϕD : A = A1e+A2e† ⊆D 7−→
D can also be written as a product type function defined by

ϕD (x1e+ x2e†) = ϕ1(x1)e+ϕ2(x2)e†

if there exixts ϕ1 : A1 = π1(A ) 7−→R and ϕ2 : A2 = π2(A ) 7−→
R and πk : D → R are the projection onto the coordinate axis
in R.
The concept of Riemann D-Integral for bicomplex Func-
tions(hyperbolic functions) was developed in a very recent
paper [21] by Juan, Cesar and Shapiro. We shall use this
concept to develop an D-integral representation for product
type convex function.

Definition 3.3. [21] Let Φ : [X ,Y ]D →D be a product type
function. Then the D-integral of the function Φ is defined by

limBSum(Φ) =
∫
[X ,Y ]D

Φ(Z)dZ∧dZ† (3.2)

where limBSum(Φ) is the D-integral sum of Φ.

For more details on D-integral sum one can refer to [21]

Theorem 3.4. [21] If a product type function Φ : [X ,Y ]D →
D is D-integrable then

∫
[X ,Y ]D

Φ(Z)dZ∧dZ† =
∫ y1

x1

φ1(ζ1)dζ1e+
∫ y2

x2

φ2(ζ2)dζ2e†

(3.3)

where Φ(a1e+b1e†) = φ1(a1)e+φ2(a2)e† is a product type
function.
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Using the concept of product type function defined above
we shall now define product type convex function.

Definition 3.5. A function ϕD : D → D
+

is said to be a D-
convex function if for every X ,Y ∈ D with 0 ≤′ α ≤′ 1 , we
have that

ϕD (αX +(1−α)Y )≤′ αϕD (X)+(1−α)ϕD (Y ).

Example 3.6. Let ϕD : D→D
+

be defined by ϕD (X) = |X |k
for every X ∈D . Then clearly ϕD is a D-convex function.

Note that if ϕD : D→D
+

is a function, then ϕD (X)∈D+

and it can be written as

ϕD (X) = ψ1(X)+ψ2(X)k = ϕD1(X)e+ϕD2(X)e†,

where ψ1,ψ2 are functions satisfying (ψ1)
2− (ψ2)

2 ≥ 0 and
(ψ1)≥ 0 and φD1 ,φD2 are the idempotent components given
by

ϕD1 = ψ2 +ψ1 ≥ 0 and ϕD2 = ψ1−ψ2 ≥ 0.

Note that both the idempotent components ϕD1 and ϕD2 are
both real valued with hyperbolic domain D which does not
serves our purpose..Thus in order to make hyperbolic convex
function as an idempotent decomposed type of function where
each of the component functions will be functions from subset
of real to real. We have the following theorem.
Further in order to reduce the lengthy equations and make
equations more simpler. We shall give some short notations
as follows Iϕi = ϕi(λixi +(1−λi)yi), IEϕi = λiϕi(xi)+(1−
λi)ϕi(yi) ,IEϕ

(n)
i j = λ

(n)
i ϕi(xi)e + λ

(n)
j ϕ j(x j)e† for n = 0,1

and ˜IEϕ
(n)
i j = (1−λi)

(n)ϕi(yi)e+(1−λ j)
(n)ϕ j(yi)e† for n =

0,1.
Now we shall prove the following theorem.

Theorem 3.7. Let A be a product type subset of D and ϕ1 :
A1→ R and ϕ2 : A2→ R be two R- convex functions. Then
the hyperbolic valued product type function ϕD : A ⊆D→D
defined by

ϕD (X) = IEϕ
(0)
12 ∀ X = x1e+ x2e† ∈D (3.4)

is a D-convex function.

Proof. For this let X ,Y ∈ A , 0 ≤ λ1 ≤ 1 and 0 ≤ λ1 ≤ 1
be such that 0 ≤′ λ ≤′ 1 where λ = λ1e+λ2e†. Now since
ϕ1 : A1→ R and ϕ2 : A2→ R are R-convex function and so
we have for xi = πi(X) and yi = πi(Y ) for i = 1,2

Iϕ1 ≤ IEϕ1 and Iϕ2 ≤ IEϕ2 (3.5)

Multiplying the first part of the equation in (3.5) by e and the
second part of the equation in (3.5) by e† and adding we get

Iϕ1e+ Iϕ2e† ≤′ IEϕ1e+ IEϕ2e† (3.6)

So that

ϕD (λX +(1−λ )Y ) = Iϕ1e+ Iϕ2e†

≤′ IEϕ1e+ IEϕ2e†

≤′ IEϕ
(1)
12 + ˜IEϕ

(1)
12

= λ IEϕ
(0)
12 +(1−λ ) ˜IEϕ

(0)
12

= λϕD (X)+(1−λ )ϕD (Y )

Thus we have

ϕD (λX +(1−λ )Y )≤′ λϕD (X)+(1−λ )ϕD (Y )

This proves that ϕD is a hyperbolic valued convex function.

Theorem 3.8. Let ϕD : A ⊆ D → D be a product type D-
convex function. Then the two R-functions ϕ1 : A1→ R and
ϕ2 : A2→R where A is a product type subset of D such that

ϕD (X) = IEϕ
(0)
12 ∀ X = x1e+ x2e†. (3.7)

are R-convex functions.

Proof. Suppose that ϕD be a D-convex function.Then we
shall proof that ϕ1 and ϕ2 are R-convex. For this suppose
that 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1 be such that 0 ≤′ λ ≤′ 1
where λ = λ1e+λ2e†. Now since ϕD is a D-convex function
implies that

ϕD (λX +(1−λ )Y )≤′ λϕD (X)+(1−λ )ϕD (Y )

Since ϕD is a product type function, we have by expanding

Iϕ1e+ Iϕ2e† ≤′ IEϕ
(1)
12 + ˜IEϕ

(1)
12

= IEϕ1e+ IEϕ2e†

So that we have the following equation

Iϕ1e+ Iϕ2e† ≤′ IEϕ1e+ IEϕ2e† (3.8)

Now first multiplying equation (3.8) by e we get

Iϕ1e≤′ IEϕ1e (3.9)

which implies that

ϕ1(λ1x1+(1−λ1)y1)≤ λ1ϕ1(x1)+(1−λ1)ϕ1(y1) (3.10)

Similarly multiplying equation 3.8 by e† we find that

Iϕ2e† ≤′ IEϕ2e† (3.11)

so that

ϕ2(λ2x2+(1−λ2)y2)≤ λ2ϕ2(x2)+(1−λ2)ϕ2(y2) (3.12)

Thus equation (3.10) and (3.12) proves that ϕ1 and ϕ2 are
R-convex functions.
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Corollary 3.9. A product type function ϕD : D →D defined
by

ϕD (X) = IEϕ
(0)
12 ∀ X = x1e+ x2e†, (3.13)

is D-convex function iff each of the function ϕ1 : A1 → R
and ϕ2 : A2→ R where A is a product type subset of D are
R-convex function.

We call such type of D-convex functions as the Product
Type Hyperbolic convex functions

Example 3.10. Let ϕ1 : A1→R and ϕ2 : A2→R be defined
by

ϕ1(x1) = logxx1
1 and ϕ2(x2) = logxx2

2

on (0,∞) be R-functions. We know that ϕ1 and ϕ2 are R
convex functions. Now if we take

ϕD (X) = IEϕ
(0)
12 = logxx1

1 e+ logxx2
2 e†.

Then it is clearly easy to show that ϕD is a product type
hyperbolic convex function.

The proof of the following theorem is straightforward.

Theorem 3.11. A Product type function ϕD : D →D defined
by ϕD (X) = IEϕ

(0)
12 for X = x1e+ x2e† is continuous iff ϕ1 :

A1→ R, ϕ2 : A2→ R are continuous.

Definition 3.12. A hyperbolic valued function ϕD : D→D is
said to be D-monotonically increasing function iff ϕD (X)≤′
ϕD (Y ) whenever X ≤′ Y.

Theorem 3.13. A product type function ϕ : A ⊆ D → D
defined by

ϕD (X) = IEϕ
(0)
12 , X = x1e+ x2e† ∈A , (3.14)

is D-monotonically increasing function iff each of the function
ϕ1 : A1 → R and ϕ2 : A2 → R where A is a product type
subset of D are R-monotonically increasing function.

Proof. First suppose that each ϕ1 and ϕ2 are R- monotoni-
cally increasing function.To show that ϕD is a D-monotonically
increasing function. Let C = c1e+ c2e† and D = d1e+d2e†

be two hyperbolic numbers such that C≤′ D. This implies that
c1≤ d1 and c2≤ d2. Now since ϕ1 and ϕ2 are R-monotonically
increasing function implies that

ϕ1(c1)≤ ϕ1(d1) and ϕ2(c2)≤ ϕ2(d2) (3.15)

Multiplying the first part in equation 3.15 by e and second
part by 3.15 by e† and adding we get

ϕ1(c1)e+ϕ2(c2)e† ≤′ ϕ1(d1)e+ϕ2(d2)e†

Consequently for C ≤′ D we have

ϕD (C)≤′ ϕD (D) (3.16)

This ϕD is a D-monotonically increasing function. Con-
versely we can prove by tracing back the proof.

Theorem 3.14. Let ϕD : (A,B)D →D be a product type func-
tion. Then ϕD is a product type D-convex function iff for each
[C,D]D ⊂ (A,B)D , ϕD has a D-integral representation as

ϕD (X) = ϕD (C)+
∫
[C,X ]D

Φ(Z)dZ∧dZ† (3.17)

where Φ : D →D is a D-monotone increasing product type
function which is left continuous and has left as well as right
derivative at each point of (A,B)D .

Note that (A,B)D is a hyperbolic interval defined in [21]
with A = a1e+a2e† and B = b1e+b2e†

Proof. Suppose that the product type function ϕD : (A,B)D→
D is D-convex function. This means that there exits R-
convex function ϕ1 : (a1,b1)→R and ϕ2 : (a2,b2)→R where
(ai,bi) = πi((A,B)D ) for i = 1,2 such that

ϕD (X) = IEϕ
(0)
12 where X = x1e+ x2e†

By Theorem 1 Page no.7 in [24] we see that ϕ1 : (a1,b1)→R
and ϕ2 : (a2,b2)→R are R-convex iff there exits subintervals
(c1,d1)⊂ (a1,b1) and (c2,d2)⊂ (a2,b2) such that

ϕ1(x1) = ϕ1(c1)+
∫ x1

c1

φ1(ζ1)dζ1 ∀ c1 ≤ x1 ≤ d1

ϕ2(x2) = ϕ2(c2)+
∫ x2

c2

φ2(ζ2)dζ2 ∀ c2 ≤ x2 ≤ d2

where each of φi : R→ R is a monotone increasing and left
continuous function with φi has left as well as right derivative.
Now by Thoerem 3.11 and Theorem 3.13 we see that the
product type function defined by Φ(Y ) = φ1(y1)e+φ2(y2)e†

is also monotone increasing, left continuous and has left as
well as right derivative at each point because each of fi are
monotone increasing, left continuous and has left as well as
right derivative at each point except at a countable number
of points. So that by using Riemann D-integral as defined in
[21], we have

ϕD (X)

= IEϕ
(0)
12

=

[
ϕ1(c1)+

∫ x1

c1
φ1(ζ1)dζ1

]
e+
[

ϕ2(c2)+
∫ x2

c2
φ2(ζ2)dζ2

]
e†

=
[
ϕ1(c1)e+ϕ2(c2)e†]+[∫ x1

c1
φ1(ζ1)dζ1e+

∫ x2

c2
φ2(ζ2)dζ2e†

]
= ϕD (C)+

∫
[C,X ]D

Φ(Z)dZ∧dZ†

i.e., ϕD (X) = ϕD (C)+
∫
[C,X ]D

Φ(Z)dZ∧dZ† (3.18)

This completes the proof
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4. Product type hyperbolic Young
Function

Definition 4.1. A hyperbolic convex function ϕD : D →D
+

is said to be a hyperbolic Young function if it satisfies the
following condition

(i) ϕD (0) = 0.

(ii) ϕD (X) = ϕD (−X).

(ii) limX→∞ ϕD (X) = +∞

where we assume the convention that +∞ = αe+∞e† = ∞e+
βe† = ∞e+∞e†

and limx→∞ ϕD (x) means that the limit must exists along any
curve passing through infinity in the hyperbolic plane and
must be equal.

Theorem 4.2. Let ϕ1 : R→R+
and ϕ2 : R→R+

be two real
Young function. Then the hyperbolic product type function
ϕD : D →D

+
defined by

ϕD (X) = IEϕ
(0)
12 ∀ X = x1e+ x2e† ∈D

is a hyperbolic product type Young function.

Proof. Since ϕ1 and ϕ2 are real Young function implies that
ϕ1(0) = ϕ2(0) = 0,ϕ1(−x1) = x1 and ϕ2(−x2) = x2 implies
that ϕD (0)=ϕ1(0)e+ϕ2(0)e† = 0 and ϕD (−X)=ϕ1(−x1)e+
ϕ2(−x2)e† =ϕ1(x1)e+ϕ2(x2)e† =ϕD (X). Further limx1→∞ ϕ1(x1)=
∞ and limx2→∞ ϕ2(x2) = ∞. We have three cases for X→∞ =
αe+∞e† = ∞e+βe† = ∞e+∞e†

Case I If X → αe+∞e† then
limX→∞ ϕD (X)= limx1→α ϕ1(x1)e+limx2→∞ ϕ2(x2)e† =
γ1e+∞e† = ∞

Case II If X → ∞e+βe† then
limX→∞ ϕD (X)= limx1→∞ ϕ1(x1)e+limx2→β ϕ2(x2)e† =

∞e+ γ2e† = ∞

Case III If X → ∞e+∞e† then
limX→∞ ϕD (X)= limx1→∞ ϕ1(x1)e+limx2→∞ ϕ2(x2)e† =
∞e+∞e† = ∞

Thus in each cases we see that limX→∞ ϕD (X) = ∞ This
proves that ϕD : D →D

+
is a product type hyperbolic Young

function.

Let us construct an example in this direction.

Example 4.3. Consider ϕD : D+→D
+

defined by ϕD (X) =
X p for p > 1. Then it is easy to check that ϕD is a product
type hyperbolic Young function function with

ϕD (X) = xp
1e+ xp

2e† = X p, where X = x1e+ x2e†.

Thus we have the following definition

Definition 4.4. A product type hyperbolic convex function
ϕD : D →D

+
is said to be a product type hyperbolic Young

function if ∃ two real Young functions ϕ1 : R→ R+
and ϕ2 :

R→ R+
such that

ϕD(X) = IEϕ
(0)
12 ∀ X = x2e+ x2e† ∈D . (4.1)

Next theorem is a D-integral representation for product
type hyperbolic Young function.

Theorem 4.5. Let ϕD : D+→D
+

be a product type Young
function. Then ϕD has a D-integral representation as

ϕD (X) =
∫
[0,X ]D

Φ(Z)dZ∧dZ† ∀ X ∈D+ (4.2)

where Φ(0) = 0 and Φ : D+ → D
+

is a product type D-
monotone increasing left continuous function.

Proof. The proof of the theorem follows from Theorem 3.14

Theorem 4.6. Let (ϕ1,ψ1) and (ϕ2,ψ2) be two pair of com-
plementary real Young function. Then the pair (ϕD ,ψD )
where ϕD is a product type hyperbolic Young function defined
by ϕD = ϕ1e+ϕ2e† and ψD is a product type hyperbolic
Young function defined by ψD = ψ1e+ψ2e† satisfies

ψD (Y ) = sup
X∈D+

{XY −ϕD (X)} for X ,Y ∈D+ (4.3)

Proof. Let X = x1e+x2e†,Y = y1e+y2e†. Then since (ϕ1,ψ1)
and (ϕ2,ψ2) are complementary pair of real Young function
implies that

ψ1(y1) = sup
x1∈R+

{x1y1−ϕ1(x1)} and ψ2(y2) = sup
x2∈R+

{x2y2−ϕ2(x2)} . (4.4)

So that

ψD (Y ) = ψ1(y1)e+ψ2(y2)e†

= sup
x1∈R+

{x1y1−ϕ1(x1)}e+ sup
x2∈R+

{x2y2−ϕ2(x2)}e†

= sup
X∈D+

{
(x1y1e+ x2y2e†)− IEϕ

(0)
12

}
= sup

X∈D+

{XY −ϕD (X)}

Thus

ψD (Y ) = sup
X∈D+

{XY −ϕD (X)} (4.5)
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We call ψD as a product type hyperbolic complementary
Young function corresponding to ϕD .

Theorem 4.7. Let ϕD be a product type hyperbolic Young
function and ψD be the product type hyperbolic complemen-
tary pair of ϕD . Then the pair (ϕD ,ψD ) satisfies the D-
Young’s inequality

XY ≤′ ϕD (X)+ψD (Y ), X ′ > 0,Y ′ > 0 (4.6)

with equality in (4.6) holds if Y = Φ1(X) or X = Φ2(Y ) or
Z = Φ3(W ) or W = Φ4(Z) where X = x1e+ x2e†,Y = y1e+
y2e†,Z = y1e+ x2e† and W = x1e+ y2e†

Proof. Since (ϕD ,ψD ) is a complementary pair of hyperbolic
Young function implies that the corresponding (ϕ1,ψ1) and
(ϕ2,ψ2) are also two complementary pair of Young function.
This means that the pairs (ϕ1,ψ1) satisfies R-Young’s inequal-
ity as

x1y1 ≤ ϕ1(x1)+ψ1(y1), x1 > 0,y1 > 0 (4.7)

with equality holds if y1 = φ1(x1) or x1 = φ2(y1) where φ1 :
R+ → R+

and φ2 : R+ → R+
are R- monotone increasing

and left continuous function associated with ϕ1 and ψ1 in its
integral representation respectively given on Corollary 2 Page
no. 10 [24]. Similarly the other pair (ϕ2,ψ2) also satisfies
R-Young’s inequality as

x2y2 ≤ ϕ2(x2)+ψ2(y2), x2 > 0,y2 > 0 (4.8)

with equality holds if y2 = φ3(x2) or x2 = φ4(y2) where φ3 :
R+→R+

and φ4 : R+→R+
are R-monotone increasing and

left continuous function associated with ϕ2 and ψ2. Multiply-
ing equation 4.7 by e and equation 4.8 by e† and then adding,
we get

XY = x1y1e+ x2y2e†

≤′ (ϕ1(x1)+ψ1(y1))e+(ϕ2(x2)+ψ2(y2))e†

= IEϕ
(0)
12 +

(
ψ1(y1)e+ψ2(y2)e†)

= ϕD (X)+ψD (Y )

So that

XY ≤′ ϕD (X)+ψD (Y ), X ′ > 0,Y ′ > 0 (4.9)

Now for equality to hold in equation (4.9), we have the fol-
lowing cases.

Case I If y1 = φ1(x1) and y2 = φ3(x2). Then Y = y1e+y2e† =
φ1(x1)e+φ3(x2)e†. So that Y =Φ1(x1e+x2e†)=Φ1(X)
where Φ1 : D→D is a D-monotone increasing left con-
tinuous product type function in the D-integral repre-
sentation of the product type hyperbolic Young function
ϕD = ϕ1e+ϕ2e†

Hence Y = Φ1(X)

Case II If x1 = φ2(y1) and x2 = φ4(y2).Then X = x1e+ x2e† =
φ2(y1)e+φ4(y2)e†. So that X =Φ2(y1e+y2e†)=Φ2(Y )
where Φ2 : D+→D

+
is a D-monotone increasing left

continuous product type function in the D-integral rep-
resentation of the product type hyperbolic Young func-
tion ψD = ψ1e+ψ2e†

Hence X = Φ2(Y )

Case III If y1 = φ1(x1) and x2 = φ4(y2). Then Z = y1e+x2e† =
φ1(x1)e+φ4(y2)e†. So that Z =Φ3(x1e+y2e†)=Φ3(W ),
where Φ3 : D+→D

+
is a D-monotone increasing left

continuous product type function in the D-integral rep-
resentation of the product type hyperbolic Young func-
tion defined by using ϕ1 and ψ2.
Hence Z = Φ3(W )

Case IV Similarly when x1 = φ2(y1) and y2 = φ3(x2) Then W =

Φ4(Z) where Φ4 : D+→D
+

is a D-monotone increas-
ing left continuous product type function in the D-
integral representation of the product type hyperbolic
Young function defined by using ψ1 and ϕ2
Hence W = Φ4(Z)

Thus this prove that equality in equation (4.6) holds if Y =
Φ1(X) or X = Φ2(Y ) or Z = Φ3(W ) or W = Φ4(Z) for X ′ >
0,Y ′ > 0,Z′ > 0 and W ′ > 0

5. Conclusion
The concept of the product type hyperbolic convex func-

tion and hyperbolic Young functions and its various properties
and some other properties still to be proven further may pave
way for us to study Product Type Orlicz spaces which consid-
erably uses the concept of Young function.
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