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A note on the zeros of polar derivative of a
polynomial

K. Praveen Kumar'* and B. Krishna Reddy?

Abstract

In [4, 7], Enestrom Kakeya theorem has stated as the following. If f(z) = ;?:ijz/ is the n'" degree polynomial
with real coefficients such that 0<ky < k; < ... <k, » < k,—1 <k, then all zeros of f(z) lies in |z| < 1. In [1], Aziz
and Mahammad, showed that zeros of f(z) satisfies |z| > _*; are simple, under the same conditions. In this
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paper, we extend the above result to the polar derivative by relaxing the hypothesis in different ways.
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1. Introduction

Let f(z) be the n'" degree polynomial with real coefficients.
Let Dy, f(z) be the polar derivative of f(z) w.r.t the point o
and it is defined by Dy f(z) = nf(z) + (¢ —2)f (2).

In this case the degree of Dy f(z) is at most n— 1 and if o
tends to oo then it generalize the ordinary derivative

i.e lim
o—r
Regarding the distribution of zeros of f(z), Enestrom
Kakeya proved the folowing result.

Theorem 1.1. Let f(z) =Yk 7/ be the n' degree polyno-
mial with real coefficients such that for some 0<ky < k; <
oo <kp—p < kn_y <k, then all zeros of f(z) lies in |z| < 1.

Regarding the multiplicity of zeros of f(z), Aziz and Ma-
hammad [1] proved the folowing result

Theorem 1.2. Let f(z) =Y k;z/ be the n'" degree polyno-
mial with real coefficients such that for some 0<ko < k; <
oo. < ky then all zeros of f(2) of modulus greater than or equal
to ;1 are simple.

Gulzar, Zargar, Akhter [6] have extended the above results
to the polar derivatives, there exist some generalizations and
extentions of Enestrom kakeya theorem in [2, 3, 5, 8, 9].

In this paper we prove the interesting results by relaxing
the hypethesis by replacing b, with (t — 1)[ratk; + (n — (t —
1)ki—1] for t=23,4,...n

2. Main Results

Theorem 2.1. Let f(z) = Y_okjz/ be the n'" degree poly-
nomial with real coefficients. Let o be a real number, s > 1,
0<d < 1 such that for some

Sbnzbnfl 22b42b32b2_6

then all zeros of Dy f (z) which does not lie in

sbp — by + by +26
lis—1] < 22 1b2]
||
are simple, where by = (t — 1) [totk; + (n— (t — 1)) k;—1]
for t=23,4,...n
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Corollary 2.1. If f(z) = Lj_ok 7 is the n'* degree polyno-
mial with real coefficients, and o be a real number, s > 1,
0< 8 < 1 such that for some

sby >by_1>...>2bs>b3>by—86>0

then all zeros of Do f (z) which does not lie in

sb, +26
lz+s— 1| < —
|5n]
are simple, where b, = (t — 1)[tatk, + (n— (t — 1))k,—1]
for t=23,4,...n

Corollary 2.2. If f(z) = Lj_ok 2 is the n'™* degree polyno-
mial with real coefficients, and & be a real number, such that
for some

by >by_12>..>2by>b3>b
then all zeros of Do f (z) which does not lie in

b,—by+|b
[Ba]

are simple, where b, = (t — 1)[totk, + (n — (t — 1)) ky—1]
for t=234,...n

Corollary 2.3. If f(z) = ¥i_k;z/ is the n'" degree polyno-
mial with real coefficients, and & be a real number; such that
for some

bnzbnfl 22b42b3 ZbZZO
then all zeros of Dy f(2) which does not lie in
lz] <1

are simple, where b, = (t — 1)[tatk, + (n— (t — 1))k,—1]

for t=23,4,...n

Corollary 2.4. If f(z) = Lj_ok 7 is the n'* degree polyno-
mial with real coefficients, and s > 1, 0<8 < 1 such that for

some
SCp>Cp1>..2¢42>¢3>20—0

then all zeros of Dy f (z) which does not lie in

cn—ca+|ca| +28

|enl

s

lz+s—1] <
are simple, where ¢, = (t — 1)[(n— (t — 1) )ky—1]
for t=23,4,...n

Corollary 2.5. If f(z) = L kjz/ is the n'" degree polyno-
mial with real coefficients, such that for some s > 1, 0<6 < 1

SCh>Cp1>..>ca>c3>c—6>0
then all zeros of Dy f (z) which does not lie in

ts—1] < scp+20
|eal

are simple, where ¢, = (t — 1)[(n— (t — 1)) k—1]
for t=234,...n
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Corollary 2.6. If f(z) = ¥j_k 7/ is the n'" degree polyno-
mial with real coefficients, such that for some

Ch>Cpe1>...2c42>c32>02>0
then all zeros of Do f(z) which does not lie in
|2 <1

are simple, where ¢, = (t — 1)[(n— (t — 1) )k,_1]
for t=23,4,...n

Corollary 2.7. If f(z) = ¥i_k;z/ is the n'" degree polyno-
mial with real coefficients, and s > 1, 0<6 < 1 such that for
some

SChp>Cpo1 > .. 20420320 —0

then all zeros of Dy f (z) which does not lie in

scp—cy+ |ea| +20

|cnl

lz+s—1| <
are simple, where ¢, = (t — 1)[(n— (t — 1) )k;_1]
for t=23,4,...n

Remark 2.1. . By substituting by > 0 in Theorem 2.1,
then it gives Corollary 2.1.

2. By substituting s =1, 6 = 0 in Theorem 2.1, then it
gives Corollary 2.2.

3. By substituting 8 =0, s =1 and b; > 0 in Theorem 2.1,
then it gives Corollary 2.3.

4. By substituting oo = 0 in Theorem 2.1, then it gives
Corollary 2.4.

5. By substituting & = 0 and ¢; > 0 in Theorem 2.1, then
it gives Corollary 2.5.

6. By substituting oo =0, s =1, 6 =0 and ¢; > 0 in Theo-
rem 2.1, then it gives Corollary 2.6.

7. By substituting 8 =0, s =1, o« = 0 in Theorem 2.1,
then it gives Corollary 2.7.

Theorem 2.2. Let f(z) =Y/ k;z/ be the n'" degree polyno-
mial with real coefficients, and o be a real number, 6 > 0,
0 < r < 1 such that for some

rhy >by 1> ...>2by>b3>by—6
then all zeros of Do f(2) which does not lie in

|bn| 4+ 7(by — |bn|) — b+ |b2| +26

7l <
o ]

are simple, where by = (t — 1) [totk; + (n— (t — 1)) k;—1]
for t=23,4,...n
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Corollary 2.8. If f(z) = ¥Lj_k 12/ is a polynomial of degree n
with real coefficients, and o, be a real number, § > 0,0 <r <1
such that for some

rby >by 1> ... 2 by >b3>by—06>0
then all zeros of Dy f(2) which does not lie in

[bn]

lz] <

are simple, where b, = (t — 1)[totk, + (n— (1 — 1)) ky—1]
for t=234,...n

Corollary 2.9. If f(z) = ¥ kjz/ is the n'" degree polyno-
mial with real coefficients, and & be a real number, such that
for some

by>by1>...2by>b3>by

then all zeros of Dy f(2) which does not lie in
|Z| S bn - bZ - ‘b2|
[n]
are simple, where by = (t — 1)[tatk; + (n— (t — 1)) k—1]
for t=234 ..n

Corollary 2.10. If f(z) = ¥i_ok;z/ is the n'™ degree polyno-
mial with real coefficients, and & > 0, 0 < r < 1 such that for
some

FCp > Cpe] > ... 2C42>032>20— 06

then all zeros of Dy f (z) which does not lie in

lenl +r(cn—|cnl) — 2+ |ca| +26

7| <

are simple, where ¢, = (t — 1)[(n— (t — 1) )k,—1]

for t=234 ..n

Corollary 2.11. If f(z) = ¥i_ok;z/ is the n'™ degree polyno-
mial with real coefficients, and & > 0, 0 < r < 1 such that for

some
FCy > Cp1 2 .. >c4>c32c—82>0

then all zeros of Dof (z) which does not lie in

lenl +r(cn—|cnl) +26

7| <

are simple, where ¢; = (t — 1)[(n— (t — 1) )k;—1]
for t=234 ..n

Corollary 2.12. If f(z) = ¥i_ok;z/ is the n'™ degree polyno-
mial with real coefficients, such that for some

CpZCp—] 2 ... 2C42C3 20
then all zeros of Dof(z) which does not lie in

Cp —Cy) — |C
o] < =2 |es]
|cal

are simple, where ¢, = (t — 1)[(n— (t — 1) )k;—1]
for t=234,...n

407

Remark 2.2. 1. By substituting b; > 0 in Theorem 2.2,
then it gives Corollary 2.8.

2. By substituting 86 =0, r = 1 in Theorem 2.2, then it
gives Corollary 2.9.

3. By substituting § =0, r =1 and b; > 0 in Theorem 2.2,
then it gives Corollary 2.3.

4. By substituting o0 = 0 in Theorem 2.2, then it gives
Corollary 2.10.

5. By substituting o = 0 and ¢; > 0 in Theorem 2.2, then
it gives Corollary 2.11.

6. By substituting & =0, r=1, 6 =0 and ¢; > 0 in Theo-
rem 2.2, then it gives Corollary 2.6.

7. By substituting 6 =0, r = 1, o« = 0 in Theorem 2.2,
then it gives Corollary 2.12.

Theorem 2.3. Let f(z) = Y_okjz/ be the n'" degree poly-
nomial with real coefficients, and o be a real number, s > 1,
0<6 < 1 such that for some

§by <bp1 <...<bs <b3<by+9
then all zeros of Dy f(2) which does not lie in

by + |by| —sb, +26

z+s—1| <
| | X

are simple, where by = (t — 1) [totk; + (n— (t — 1)) ky—1]
for t=23,4,...n

Corollary 2.13. If f(z) = ¥i_k;z/ is the n'™ degree polyno-
mial with real coefficients, and o be a real number, s > 1,
0<6 < 1 such that for some

0<sby<by_1 <...<bs <b3<by+96
then all zeros of Dy f (2) which does not lie in

2by — sb, +268

z+s—1| <
| | X

are simple, where by = (t — 1) [totk; + (n— (t — 1)) ks—1]
for t=23,4,...n

Corollary 2.14. If f(z) = ¥i_k;z/ is the n'™ degree polyno-
mial with real coefficients, and o be a real number such that
for some

bngbnfl <.. Sb4§b3 SbZ

then all zeros of Do f(2) which does not lie in

oy < ot Il =y
- b

are simple, where by = (t — 1) [totk; + (n— (t — 1)) k;—1]
for t=23,4,...n
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Corollary 2.15. If f(z) = ¥} _k 7/ is the n' degree polyno-
mial with real coefficients, and o be a real number such that
for some

0<b,<by1<...<bs <b3< by
then all zeros of Do f(2) which does not lie in

2by — b,
z| <
<<=

are simple, where b, = (t — 1)[totk, + (n — (t — 1)) ky—1]
for t=234,...n
Corollary 2.16. If f(z) = ¥} _k 7/ is the n' degree polyno-
mial with real coefficients, and s > 1, 0<8 < 1 such that for
some

Sch<ep1<..<cs<e3<er+9

then all zeros of Dy f (z) which does not lie in

cr+lea| —scn +28

|eal

lz4+s—1| <
are simple, where ¢, = (t — 1)[(n— (t — 1) )k;—1]
for t=234 ..n

Corollary 2.17. If f(z) = ¥} _k 7/ is the ' degree polyno-
mial with real coefficients, and s > 1, 0<8 < 1 such that for
some

0<sc,<cp1<...<cy<c3<er+6

then all zeros of Dof(z) which does not lie in

ts—1] < 2¢y —sc, +26
o |eal

are simple, where ¢, = (t — 1)[(n— (t — 1)) ky—1]
for t=23,4,...n

Corollary 2.18. If f(z) = Yok 7/ is the n'™ degree polyno-
mial with real coefficients, such that for some

0<ai<cp1<...Sau<ca<a
then all zeros of Dy f (z) which does not lie in

2cy — ¢y

lz] <

[cnl

are simple, where ¢, = (t — 1)[(n— (t — 1))k;_1]

for t=234 ..n

Corollary 2.19. If f(z) = ¥} _k 7/ is the n' degree polyno-

mial with real coefficients, such that for some
<1< <ae

then all zeros of Dof(z) which does not lie in

4ol —cy

7l <
|2 o

are simple, where ¢, = (t — 1)[(n— (t — 1) )k;—1]
for t=234,...n

408

Remark 2.3. 1. By substituting b; > 0 in Theorem 2.3,
then it gives Corollary 2.13.

2. By substituting 86 =0, s = 1 in Theorem 2.3, then it
gives Corollary 2.14.

3. By substituting 8 =0, s =1 and b; > 0 in Theorem 2.3,
then it gives Corollary 2.15.

4. By substituting oo = 0 in Theorem 2.3, then it gives
Corollary 16.

5. By substituting & = 0 and ¢; > 0 in Theorem 2.3, then
it gives Corollary 2.17.

6. By substituting oo =0, s =1, 6 =0 and ¢; > 0 in Theo-
rem 2.3, then it gives Corollary 2.18.

7. By substituting 6 =0, s = 1, &« = 0 in Theorem 2.3,
then it gives Corollary 2.19.

Theorem 2.4. Let f(z) = Y ok 7/ be the n'™ degree poly-
nomial with real coefficients, Let & be a real number, § > 0,
0<r < 1 such that for some

thy <bp1 <...<by <b3<by+6
then all zeros of Do f(z) which does not lie in

|bn| — r(by + |bn|) + b2 + | 2| +26

zl <
& ]

are simple, where by = (t — 1) [totk; + (n— (t — 1)) ks—1]
for t=23,4,...n

Corollary 2.20. If f(z) =X _k 7/ is the ' degree polyno-
mial with real coefficients, and o be a real number, § > 0,
0<r < 1 such that for some

0<rb,<b, 1 <..<by<b3<by+96
then all zeros of Do f(z) which does not lie in

(1=2r)by, +2by +26
|0n]

lz] <

are simple, where by = (t — 1) [totk; + (n— (t — 1)) ky—1]
for t=23,4,...n

Corollary 2.21. If f(z) = ¥}_k;z/ is the n'™ degree polyno-
mial with real coefficients, and & be a real number, such that
for some

by <bp, 1 <...<by<b3<h

then all zeros of Do f(z) which does not lie in

ol < —by + by + | by
B |bn|

are simple, where by = (t — 1) [totk; + (n— (t — 1)) k;—1]
for t=23,4,...n
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Corollary 2.22. If f(z) = ¥ _k 7/ is the n' degree polyno-
mial with real coefficients, and o be a real number; such that
for some

0<b,<b, 1 <...<bs<b3< b

then all zeros of Do f (z) which does not lie in

are simple, where b, = (t — 1)[tatk, + (n— (t — 1) )k,—1]

for t=23,4,...n

Corollary 2.23. If f(z) = Yok 7/ is the n'" degree polyno-
mial with real coefficients, and 6 > 0, 0<r < 1 such that for

some
rep<cp1 << <e3<e+o

then all zeros of Dy f (z) which does not lie in

len| = r(cn+cnl) + 2+ |ca| +26

7| <
2] o

are simple, where ¢, = (t — 1)[(n— (t — 1) )ky—1]
for t=23,4,...n

Corollary 2.24. If f(z) = ¥} _k 7/ is the n'" degree polyno-
mial with real coefficients, and 6 > 0, 0<r < 1 such that for
some

0<rb, <b, 1 <..<by<b3<by+$6
then all zeros of Dof (z) which does not lie in

(1=2r)cn+2c2+26

z| <
i 5

are simple, where ¢, = (t — 1)[(n— (t — 1)) k;—1]
for t=234,...n

Corollary 2.25. If f(z) = ¥} _k 7/ is the ' degree polyno-
mial with real coefficients, such that for some

0<ce <1 L. <3<
then all zeros of Dof(z) which does not lie in

2] < —Cp+202
|cnl

are simple, where ¢, = (t — 1)[(n— (t — 1)) k—1]
for t=234,...n

Corollary 2.26. If f(z) = ¥} _k 7/ is the ' degree polyno-
mial with real coefficients, such that for some

<1 <. <<
then all zeros of Dof (z) which does not lie in

ol < —cn+ca+ e
- |cnl

are simple, where ¢, = (t — 1)[(n— (t — 1) )k;—1]
for t=234,...n

409

Remark 2.4. 1. By substituting b; > 0 in Theorem 2.4,
then it gives Corollary 2.20.

2. By substituting 86 =0, r = 1 in Theorem 2.4, then it
gives Corollary 2.21.

3. By substituting § =0, r =1 and b; > 0 in Theorem 2.4,
then it gives Corollary 2.22.

4. By substituting o0 = 0 in Theorem 2.4, then it gives
Corollary 2.23.

5. By substituting o = 0 and ¢; > 0 in Theorem 2.4, then
it gives Corollary 2.24.

6. By substituting & =0, r=1, 6 =0 and ¢; > 0 in Theo-
rem 2.4, then it gives Corollary 2.25.

7. By substituting 6 =0, r = 1, o« = 0 in Theorem 2.4,
then it gives Corollary 2.26.

3. Proof of the theorems

Proof of the Theorem 2.1.

Let f(z) = kn2" +ky—12" "' + ...+ kiz + ko be the n'"" de-
gree polynomial with real coefficients. by the definition of
polar derivative, Do f(z) = nf(z) + oof (z) —2f (2)
there fore,

Do f(2) = nlkn?" +kn12""" + ... +kiz+ko)
+a(nkp "+ (n— Dkyo12 2+ 4 k)
—z2(nkp 2V (n— Dy 12" 2 4 ..+ k)
= [notky + (n— (n—1))kp_1]2"

+[(n=1)thy_1 + (n— (n—2))ky_2]2" >
+...+ [206](2 + (n — 1))k1]Z + [akl +nk0]

Now find D, f(z), we get

D f(2) = bp2" 2 4 by12" > 4 o+ ba + b3z + by
where by = (t — 1)[tok; + (n— (t — 1))ks—1]  for
t=2,3,4,...n.

Now Consider g(z) = (1—2)D,,f(z), so that

2(2) = (1 =2)[bp" 2+ by 12" 2+ by 22+ ..+ by 7
+b3z+ by,

then

~ 1
18(2)] > |bullz]" 2{\Z+s—1\— il |{|Sbn_bn71|
n

n |bn1—bn 2| | |ba2—bn 3]
l2] |z[? T gt

|bs —ba|  |bo] }
+
|Z|n73 ‘Z‘n72}
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If |z|>1 then ‘—i‘<1
_ 1
> |anZ|n 2 |Z+S*l|*m{|$bn*bn,1|+
n

+|b3—5—(b2—5)|+|b2|}}

S 1
Z |anZ|n 2 |Z+s—1|—m{|sbn—bn_1|
L n
+...+b3—(b2—5)|+|5|+b2|}]
> |ballz]" 2 ||z 45— s |{ (sby —bp_1) + ...

S

+ (b3 — 2+5)+|6|+|b2|}}

> |by||2" 2

[ 1

lz+s—1| —|b|{sb,,—b2+26+|b2|}}
L n

Hence |g(z)| > 0 if

1
|Z+S_1| > m{sbn—b2+25+|b2|}
n

This implies that all zeros of g(z) whose modulus is greater

than 1 are lie in

1
lz+s—1| < m{sbn—b2—|—25+|b2|}.
n

Since the zeros of g(z) whose modulus is less than or equal to
1 are already lie in

lz+s—1] < —{sb, —by+25 +|ba|},

Ibl

it follows that all the zeros of g(z) lie in
1
lz+s—1] < m{sb,,—1;2+25+ b2}
n
Since all the zeros of g(z) are also the zeros of D f(z) lie in
1
|Z+S— 1| S m{sbn—b2+26+ |b2|}
n

Thus all the zeros of D, f(z) lie in

lz+s— {sby—by+28+ b2}

Ibl

In other words all zeros of D f(z) which does not lie in
1
lz+s—1] < m{s19,1—192+26+ b2}
n

are simple, where b; = (r — 1) [ratk; + (n— (t — 1)) ks—1]
for t=23,4,...n

Proof of the Theorem 2.2.

Let f(z) = kn2" +kn—12""1 + ... + k12 + ko be the n'" degree
polynomial with real coefficients. by the definition of polar

derivative, Do f(z) = nf(z) + af (z) —zf (2)
therefore,
Do f(z) = (k2" +ky 12"+ ...+ kiz+ ko)
(n—1ky12" 2+ ...+ k1)
—2(nkp " + (n— Dy 12" 24 ...+ k)
= [natk, + (n— (n—1))k,_1]2"!
+[(n—1)0thy_1 + (n— (n—2))kn_2]" >
+ ..t [20ky + (n—1))k1]z + [atky + nko)

+ ou(nky "'+

Now find D, f(z), we get

ocf() b7 2+bn 12" 34 -‘rb4Z +b3z+ by
where b, = (t — 1)[rak, + (n— (t — 1) )ks—1]

for t=23,4,..n

Now Consider g(z) = (1—2)D,,f(z), so that

8(z2) = (1—2)[bu2" 2+ by12" 3 + ...+ bsz® + b3z + by], then
‘bn—l _bn—Zl +

1
18] 2[ballel" [mf L byl +
Bk E

)

|bg — b3
|2~

‘b37b7
|Z‘n 3

|b2]
|z‘n 2

+

If |z|>1 then ‘Z%'<1

n—. l
18] > Ballel" @z\ = iy (=t b b

ot b3 =8 — (b2 —5)|+\b2\}]

_ 1
> lbullel” 2@1\7 oo+, b

+..4+\b37(b275)\+|5|+\b2\}]

> bl @z\ = = Dlbul + (rbu—buy)

1
Bt
+@7h+®H&Hmﬂ

> |bal|z" 2 @z\ 1) |ba| + rby — by +25+\b2\}]

Bl
bl r{ba b)) —

(D]

" by +25 + |bs
> bl z[m 211

Hence |g(z)| > 0 if

2] > |{|bn\+r —|ba|) —b2+28 + |bo] }.

This implies that all zeros of g(z) whose modulus is greater
than 1 are lie in
o] <

|{|bn\+r —|bu]) = b2 +28 + |ba |}

|bn

Since the zeros of g(z) whose modulus is less than or equal to
1 are already lie in

2| < b |{|b n| + (b — |by|) — b2 +28 + |b2| },

410
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it follows that all the zeros of g(z) lie in

|z < |{|b|+r —|bul) —b2+28 +|bal}.

Since all the zeros of g(z) are also the zero of D), f(z) lie in

|z < b |{|b n| +r(by — |by|) — by +28 + |by |}

Thus all the zeros of D, f(z) lie in

\z|<|b|{|b|+r — [bal) = b2 +25 + b }.

In other words all zeros of Dy, f(z) which does not lie in

| < |ba] + 7By — [ba]) — b2+ 28 + |2}

Ibl{

are simple, where b, = (r — 1)[ratk; + (n— (t — 1)) k;—1]
for t=2,3,4,
Proof of the Theorem 2.3.

Let f(z) = knZ" 4+ ko 12""" + ... + k12 + ko be the /" degree
polynomial with real coefficients. by the definition of polar

derivative, Do f(z) = nf(z) + ch/ (z) — Zf/ (2)

there fore,

Do f(z) = n(kn" + k12" " + ... + kiz+ ko)
+a(nk, "+ (0= k124 4 Ky)
—z(nk,,z”_l +(n— l)k,,,lz"_2 +...+ki)

= [n0tky + (n— (n—1))kp_1]2""!
+[(n—1)0thy_1 + (n— (n—2))kp_2]2" >
+..+[20ky + (n—1))ki |z + [otky + nko)

Now find D), f(z), we get

D,af(z) = by 24 by 1+ ba? b3z by
where by = (t — 1)[ratk, + (n— (£ — 1)) k1]

for t=234 ..n

Now Consider g(z) = (1 —z)D,.f(z), so that
g(z)=

. 1
|g(Z)|Z|anZ‘ 2 ‘Z+S_1|_|b |{|Sbn_bn71|
n

+ ‘bnfl _bn72| |bn72 _bn73|
2| |
[ba—bs| | |bs—ba| Do )
R T

(1—2)[bu2" 2+ bp12"3 + ...+ byz* + b3z + by, then
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If |z|>1 then I%\<1

_ 1
lg(2)] = |ball2""2 {\ZH* 1= o= {Isbn —bu-1|

Ib,ll{
+.u+\b3+6—(b2+6)|+\b2\}]

> |anZ‘”72 @Z"!‘S—l‘ {lS’b,, by l‘

B
+...+\bsf<bz+6>\+|a|+\bz\}]
1
> |byl|z"2 {\ersf 1 - m{(b,,,, —sby)+
+(b2+6—b3)+\5\+|b2|}]

> [by||z|" 2@z+s 1|— |{26+b2+\b2\ sby }]

Hence |g(z)| > 0 if

lz+s—1]

n)

1
> 7{25+b2+|b2‘ —sb,
|b

This implies that all zeros of g(z) whose modulus is greater
than 1 are lie in

bu}-

lz4+s—1] < ) |{26+b2+|bz\

Since the zeros of g(z) whose modulus is less than or equal to
1 are already lie in

|z+s—1|<|b|{26+bz+|bz\ bu},
it follows that all the zeros of g(z) lie in
1
lz4+s—1] < m{26+bz+ |ba| — kby }.
n
Since all the zeros of g(z) are also the zeros of D/a f(z) liein
lz+s—1] < — |b | {28 + by + |by| — sby }.
Thus all the zeros of D), f(z) lie in

lz+s—1| <

n)

1
7{25+b2+ |ba| —sb
|n]
In other words all zeros of D, f(z) which does not lie in

(t— Dtotk, + (n— (t — 1))kr_1]

1
lz+s—1] < m{25+b2+|b2‘ —sby

are simple. where b, =
for t=2,34
Proof of the Theorem 2.4.

Let f(z) = knZ" +kn_12" "' + ... + k12 + ko be the n'" degree
polynomial with real coefficients. by the definition of polar
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derivative, Do f(z) = nf (z) + af (z) —zf (2)

there fore,
Do f(z) = n(kn?" +kn 12" + ...+ K12+ ko)
+a(nk, "+ (= k12 + oK)
—z2(nkn 2" 4 (n— Dk 12" 2 4.4 ky)
= [notky + (n— (n—1))ky_1)""

+[(n—=1)0thy_1 + (n— (n—2))k,_2]2" >
+ ...+ 20k + (n—1))ki]z + [tk + nko]

Now find D), f(z), we get

Do f(z) = bud" 2 4+bp 12" 3+ ...+ byt +byz+ by
where b, = (t — 1)[tatk, + (n— (t — 1)) k;—1]
for t=234 ..n
Now Consider g(z) = (1 —z)Dy f(2), so that
8(z) =(1=2)[bn2" 2 + 12" + ...+ baz® + b3z + b), then
18(2)] 2[bllzl" 2| |2] - |b|{\b b1
|bn 1= n72| ‘ban_bnfB‘
2l l2I?
[ba—b3| | b3 —ba| _|bo] }]
|Z‘n74 |Z|n73 |Z‘n 2

If |z|>1 then é<1

_ 1
> Ibull<l" 2[|z|—w|{bn—rbn+rbn—bn_1
n
—‘r|bn_1—bn_2|—|-...+|b4—b3‘
+|b3+5—(b2+6)|+|b2|}}
> 2 il o=+ = bl
+ |by—1 — by—2| + ...+ |bsa — b3|
+|b3—(bz+5)+|5|+|b2|}}
Plbal + (b

> ‘anZ|n72 |:|Z| |b |{ -1 _rbn)+

+(b2+6—b3)+|6|+|b2|}]

- 1—7)|by| —rby+by+28+1b
> byl |2 2|:|Z|_( r)|bn| — rby 2 | 2|:|

|bn|
|bn| — r(by + |bn|) + b2+ 26 + | b2
|bn|

> bl [|z| -
Hence |g(z )| > 0if

This 1mphes that all zeros of g(z) whose modulus is greater
than 1 are lie in

2| < ) |{|b nl = 7(bn 4 |bal) + b2 +28 + b }.

412

Since the zeros of g(z) whose modulus is less than or equal to
1 are already lie in

1
lz| < m{lbn\ — r(bp+|ba|) + b2 +28 + |ba |},
n

it follows that all the zeros of g(z) lie in

1
2] < W{Van\ — 1 (bn+ |bal) + b2+ 28 + |bo}.
n

Since all the zeros of g(z) are also the zeros of D, f(z) lie in

1
2| < W{Ibn\ — r(by+ |ba]) + b2 +28 + b2}
n

Thus all the zeros of D), f(z) lie in

1
lz] < m{|bn\ —r(bp+ |bu|) + b2 +28 + |y }.
n

In other words all zeros of D f(z) which does not lie in

1
2| < W{lbn\ — r(bu+|bal) + b2 +28 + b2 }.

(t—Dtak,+ (n—(r—1))k—1]

are simple, where b, =
for 1=234 .n
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