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A parameter uniform numerical method for a
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Abstract
In this paper an initial value problem for a singularly perturbed first order differential equation with Robin initial
condition is considered on the interval (0,1]. A numerical method composed of a classical finite difference
scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be first - order convergent
in the maximum norm uniformly in the perturbation parameters. A numerical illustration is provided to support
the theory.
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1. The Continuous Problem
Consider the initial value problem with robin boundary

condition on the finite interval [0,1]

εu′(x)+a(x)u(x) = f (x) for all x ∈Ω, (1.1)

u(0)− εu′(0) = l (1.2)

where Ω = (0,1], the functions a(x), f (x) ∈ C2(Ω) and as-
sume that the singular perturbation parameter ε satisfies 0 <
ε ≤ 1. It is assumed furthermore that the coefficient function
satisfies the condition

a(x)≥ α > 0, for all x ∈Ω. (1.3)

The above problem can be rewritten in the operator form

Lu = f on Ω (1.4)

with

βu(0) = l (1.5)

where the operators L,β are defined by

L = εD+a, β = I− εD

where I is the identity operator, D =
d
dx

is the first order
differential operator. The reduced problem corresponding to
(1.1) - (1.2) is

u0(x) =
f (x)
a(x)

. (1.6)
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2. Analytical Results

The operator L satisfies the following maximum principle.

Lemma 2.1. Let ψ be any function in the domain of L such
that βψ(0)≥ 0. Then Lψ(x)≥ 0 on (0,1] implies that ψ(x)≥
0 on [0,1].

Proof. Let x∗ be a point such that ψ(x∗) = min
x

ψ(x) and

assume that ψ(x∗)< 0. For x∗ = 0, then

βψ(0) = ψ(0)− εψ
′(0)

< 0, which is a contradiction.

Therefore, x∗ 6= 0.
Suppose x∗ ∈ (0,1], then

Lψ(x∗) = εψ
′(x∗)+a(x∗)ψ(x∗)

≤ a(x∗)ψ(x∗)

< 0, which is a contradiction.

Hence our assumption ψ(x∗) < 0 is wrong. It follows that
ψ(x∗)≥ 0 and thus that ψ(x)≥ 0, for all x ∈Ω, which proves
the lemma.

As an immediate consequence of the above lemma the
stability result is established in the following

Lemma 2.2. If ψ is any function in the domain of L such that
for each x ∈ [0,1], then

|ψ(x)| ≤max{||βψ(0)||, 1
α
||Lψ||}

Proof. The following two functions are defined:

θ
±(x) = max

{
‖ βψ(0) ‖, 1

α
‖ Lψ ‖

}
± ψ(x)

θ
±(x) = M±ψ(x)

where M = max{||βψ(0)||, 1
α
||Lψ||}. Then, it is not hard to

verify that βθ±(0) ≥ 0 and Lθ±(x) ≥ 0 on Ω. It follows
from Lemma 2.1 that θ±(x) ≥ 0 on Ω. Hence,

|ψ(x)| ≤max{||βψ(0)||, 1
α
||Lψ||}.

Lemma 2.3. Let u be the solution of (1.1), (1.2). Then, there
exists a constant C such that

|u(x)| ≤C{‖ l ‖+ ‖ f ‖}
|u′(x)| ≤Cε

−1 {‖ l ‖+ ‖ f ‖}
|u′′(x)| ≤Cε

−2{‖ l ‖+ ‖ f ‖+ ‖ f ′ ‖
}

Proof. From Lemma 2.2, it is evident that,

|u(x)| ≤ ||βψ(0)||+ 1
α
||Lψ||.

Thus,

|u(x)| ≤C{‖ l ‖+ ‖ f ‖} .

From (1.1), we get

u′(x) = ε
−1( f (x)−a(x)u(x)).

Hence, |u′(x)| ≤Cε
−1(||l||+ || f ||).

Differentiating once the equation (1.1), we get

εu′′(x)+a(x)u′(x) = f ′(x)−a′(x)u(x).

Using the bounds of u′ and u

|u′′(x)| ≤ ε
−1[| f ′(x)|+Cε

−1(||l||+ || f ||)
+C(||l||+ || f ||)]

and hence,

|u′′(x)| ≤Cε
−2[|| f ′||+ ||l||+ || f ||].

3. The Shishkin Decomposition
The Shishkin decomposition of the solution u of (1.1) is

given by

u = v+w (3.1)

where the smooth component v of the solution u satisfies

Lv = f on Ω (3.2)

with

βv(0) = u0(0)− εu′0(0) (3.3)

and the singular component w is the solution of

Lw(x) = 0 on Ω (3.4)

with

βw(0) = l−βv(0). (3.5)

Lemma 3.1. The smooth component v, satisfies for x ∈Ω,

|v(x)| ≤C(1+ ε), |v ′(x)| ≤C, |v ′′(x)| ≤Cε
−1.

Proof. The smooth component v is further decomposed into

v = v0 + εv1 (3.6)
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where v0 is the solution of the reduced problem

v0(x) =
f (x)
a(x)

. (3.7)

The component v1 satisfies the following equation

εv′1 +av1 =−v′0(x) (3.8)

with

v1(0)− εv′1(0) = 0. (3.9)

From the expressions (3.7) and using Lemma 2.2, it is found
that for k = 1,2,

|v(k)0 (x)| ≤C. (3.10)

From (3.8) and (3.10), the following bounds hold:

|v(k)1 (x)| ≤Cε
−k, k = 1,2 (3.11)

Substitute (3.10) and (3.11) in (3.6), we get

|v(k)(x)| ≤Cε
−k, k = 1,2

as required.

Bounds on the singular component w of u and its derivatives
are contained in

Lemma 3.2. There exists a constant C, such that, for each
x ∈ [0,1]

|w(x)| ≤Ce−
αx
ε

|w′(x)| ≤Cε
−1e−

αx
ε

|w′′(x)| ≤Cε
−2e−

αx
ε

Proof. To derive the bound of w, define the two functions

ψ
±(x) =Ce−αx/ε ±w(x).

For a proper choice of C, βψ±(0)≥ 0 and for x ∈Ω

Lψ
±(x) =−Cε

α

ε
e−αx/ε +Cae−αx/ε ≥ 0.

By Lemma 2.2, ψ± ≥ 0 on Ω and it follows that

|w(x)| ≤Ce−αx/ε .

From (3.4) and differentiating (3.4) once, and using Lemma
2.2, it is not hard to see that

|w′(x)| ≤Cε
−1e−

αx
ε

and

|w′′(x)| ≤Cε
−2e−

αx
ε

as required.

4. The Shishkin mesh

A piecewise uniform Shishkin mesh ΩN =
{

x j
}N

1 with N
mesh-intervals is now constructed on Ω = [0,1] as follows. A
simpler construction requiring just one parameter τ suffices.
The interval [0,1] is subdivided into 2 sub-intervals [0,τ)∪
(τ,1]. The parameter τ which determine the point separating
the uniform mesh, is defined by

τ = min
{

1
2
,

ε

α
lnN

}
(4.1)

Clearly,

0 < τ ≤ 1
2

Then, on each of the sub-intervals [0,τ) and (τ,1], a uniform
mesh of N

2 mesh points is placed.

5. The Discrete Problem
The initial value problem (1.1) is discredited using the

backward Euler scheme applied on the piecewise uniform
fitted mesh Ω

N
=
{

x j
}N

0 . The discrete problem is

LNU(x j) = εD−U(x j)+a(x j)U(x j) = f (x j), j = 1(1)N (5.1)

U(x0)− εD+U(x0) = l. (5.2)

The problem (5.1) can also be written in the operator form

LNU = f on Ω
N with

β
NU(0) = l

where LN = εD−+a with

β
N = I− εD+

and D+, D− are the difference operators

D−U(x j)=
U(x j)−U(x j−1)

x j− x j−1
, D+U(x j)=

U(x j+1)−U(x j)

x j+1− x j
.

Lemma 5.1. Let ΩN be any mesh on Ω. Assume that the
mesh function Φi satisfies βΦ0 ≥ 0. Then LNΦi ≥ 0, for all
1≤ i≤ N, implies that Φi ≥ 0, for all 0≤ i≤ N.

Proof. Let k be such that Φk = min
0≤i≤N

Φi and assume that

Φk < 0. Suppose that k = 0, then

β
N

Φ0 = Φ0− εD+
Φ0

< 0, which is a contradiction

Therefore, k 6= 0.
Suppose Φk ∈ΩN , then

LN
Φk = εD−Φk +aΦk.
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Then, clearly, Φk−Φk−1 ≤ 0 and so

LN
Φk = ε

Φk−Φk−1

xk− xk−1
+Φk < 0

which is false. Therefore Φk ≥ 0 and hence Φi ≥ 0, for all i,
0≤ i≤ N, as required.

Lemma 5.2. Let ΩN be any mesh on Ω. Then, for any mesh
function Φ, the following estimate holds for all i,0≤ i≤ N,

|Φi| ≤ |β N
Φ0|+ max

0≤ j≤N
|LN

Φ j|.

Proof. Consider the two mesh functions

Ψ
±
i = |Φ0|+ max

0≤ j≤N
|LN

Φ j|±Φi.

It is not hard to see that β NΨ
±
0 ≥ 0 and that LNΨ

±
i ≥ 0. Ap-

plying the discrete maximum principle (Lemma 5.1) then
gives Ψ

±
i ≥ 0, and so

|Φi| ≤ |Φ0|+ max
0≤ j≤N

|LN
Φ j|

as required.

6. The Local Truncation Error
From the discrete stability result, it is seen that in order to

bound the error U−u, it suffices to bound LN(U−u). Notice
that, for x j ∈ΩN ,

LN(u(x j)−U(x j)) = LNu(x j)−LNU(x j)

= LNu(x j)− f (x j)

= LNu(x j)−Lu(x j)

= ε

(
D−− d

dx

)
u(x j).

Using integration by parts to reduce the order of differentiation
in the integral, it is not hard to verify that(

D−− d
dx

)
u(x j)=

1
x j− x j−1

∫ x j

x j−1

(x j−1−s)u′′(s)ds. (6.1)

It follows that∣∣∣∣(D−− d
dx

)
u(x j)

∣∣∣∣≤ |u|2
x j− x j−1

∫ x j

x j−1

(s− x j−1)ds

≤ 1
2
|u|2(x j− x j−1).

Therefore,∣∣LN(uε(x j)−Uε(x j))
∣∣≤ ∣∣∣ε

2
|u|2(x j− x j−1)

∣∣∣ . (6.2)

Analogous to the continuous case, the discrete solution U
can be decomposed into V and W which are defined to be
solutions of the following discrete problems

(LNV )(x j) = εD−V (x j)+a(x j)V (x j) = f (x j) on Ω
N

V (0)− εD+V (0) = v(0)− εv′(0)

and

(LNW )(x j) = εD−W (x j)+a(x j)W (x j) = 0 on Ω
N

W (0)− εD+W (0) = w(0)− εw′(0).

The error at each point x j ∈Ω
N is denoted by U(x j)−u(x j).

Then the local truncation error LN(U−u)(x j) has the decom-
position

LN(U−u)(x j) = LN(V − v)(x j)+LN(W −w)(x j).

It is to be noted that for any smooth function φ , the follow-
ing two distinct estimates of the local truncation of its first
derivative hold.

|(D−−D)φ(x j)| ≤ 2max
s∈I j
|φ ′(s)| (6.3)

and

|(D−−D)φ(x j)| ≤
h j

2
max
s∈I j
|φ ′′(s)| (6.4)

where I j = x j− x j−1.
The error in the smooth and singular components are bounded
in the following section.

7. Error estimate
The proof of the theorem on the error estimate is broken

into two parts. First, a theorem concerning the error in the
smooth component is established. Then the error in the singu-
lar component is established.

The following theorem gives the estimate of the error in the
smooth component V .

Theorem 7.1. Let v denote the smooth component of the
solution of (1.1), (1.2) and V denote the smooth component
of the solution of the problem (5.1), (5.2). Then

|LN(V − v)(x j)| ≤CN−1.

Proof. From the expression (6.4),

|β N(V − v)(0)| ≤C(x1− x0) max
s∈[x0,x1]

|v′′(s)| (7.1)

≤CN−1.

From the differential and difference equations

LN(V − v) = LNV −LNv

= Lv−LNv

= ε

(
D−− d

dx

)
v .
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By the local truncation error, we have∣∣LN(V − v)(x j)
∣∣≤Cε(x j− x j−1)|v|2

It is to be noted that x j−x j−1 ≤ 2N−1 holds for all choices of
the piecewise uniform mesh the estimate for v obtained above
then yields

|LN(V − v)(x j)| ≤C2N−1 (7.2)
≤CN−1.

The following theorem gives the estimate of the error in the
singular component W .

Theorem 7.2. Let w be the singular component of the solu-
tion of (1.1), (1.2) and W be the singular component of the
solution of the problem (5.1), (5.2). Then

|LN(W −w)(x j)| ≤CN−1 lnN.

Proof. The solution argument depends on whether the transi-

tion parameter τ =
1
2

or τ =
ε

α
lnN.

Case (i) τ =
1
2

When τ =
1
2

, the mesh is uniform and it satisfies
ε

α
lnN ≥ 1

2
.

From the expression (6.4)

|β N(W −w)(0)| ≤Cε(x1− x0) max
s∈[x0,x1]

|w′′(s)| (7.3)

≤CN−1 lnN.

The solution argument used above then yields∣∣LN(W −w)(x j)
∣∣≤Cε(x j− x j−1)|w|2.

Since x j− x j−1 ≤ 2N−1, the estimate for |w|2 obtained which
gives ∣∣LN(W −w)(x j)

∣∣≤ ε

2
(x j− x j−1)|w|2

≤ εN−1Cε
−2e−

αx
ε

≤Cε
−1N−1.

Therefore,∣∣LN(W −w)(x j)
∣∣≤CN−1 lnN, since ε

−1 ≤ 2lnN
α

.

(7.4)

Case (ii): τ =
ε

α
lnN

In the second case the mesh is peicewise uniform, with the

mesh spacing
2τ

N
in the subinterval [0,τ] and

2(1− τ)

N
in

the subinterval [τ,1]. A different argument is used to bound

|Wε −wε | in each of these subintervals.

In the subinterval [τ,1], with no boundary layer, both Wε

and wε are small, and because |Wε −wε | ≤ |Wε |+ |wε |, it suf-
fices to bound wε and Wε separately.

Sub - case (i): For the subinterval [0,τ].

Since the mesh is peicewise uniform, with the mesh spacing
2τ

N
in the subinterval [0,τ]. It is to be noted that

|β N(W −w)(0)| = W (0)− εD+W (0)−w(0)+ εD+w(0)

= ε

[
D+− d

dx

]
w(x0)

≤ εC(x1− x0)|w|2

≤ εC
2τ

N
Cε
−2e−

αx
ε

≤ Cε
−1N−1 ε

α
lnN

≤ CN−1 lnN.

The classical argument leads, to the following estimate of the
local truncation error

|LN(W −w)(x j)| ≤
ε

2
(x j− x j−1)|w|2

≤ ε

2
2τ

N
Cε
−2e−

αx
ε

≤ CN−1 lnN, since τ =
ε

α
lnN.

The above estimates show that, in the interval [0,τ]

|(W −w)(x j)| ≤CN−1 lnN. (7.5)

Sub - case (ii): For the subinterval [τ,1]

From Lemma 2.2 it is not hard to see that

|w(x j)| ≤CN−1 for j ≥ N
2

Consider the barrier function

ψ
±(x j) =CBN(x j)±W (x j), 0≤ j ≤ N.

where

BN(x j) =
j

∏
i=1

(
1+

αhi

ε

)−1

By applying Lemma 5.2, it can be show that

LN
ψ
±(x j) = εD−ψ(x j)+a(x j)ψ(x j)

= εD−BN(x j)+a(x j)BN(x j)±LNW (x j)

= εD−BN(x j)+a(x j)BN(x j)

=−αBN(x j−1)+a(x j)BN(x j)

≥−αBN(x j−1)+a(x j)BN(x j−1)

≥ 0.
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It is not hard to find that

β
N

ψ
±(0) =Cβ

N(BN(x0))±BN(W (x0))

= BN(x0)− ε

[
BN(x1)−BN(x0)

x1− x0

]
≥ 0.

Hence, LNψ± ≥ 0 and β Nψ± ≥ 0, by applying Lemma 5.1
we have ψ±(x j)≥ 0, 0≤ j ≤ N.

Hence,

|W (x j)| ≤C
j

∏
i=1

(
1+

αhi

ε

)−1

Then,

|W (x j)|

≤C
(

1+
αhi

ε

)−N
2
, j ≥ N

2

≤C
(

1+
2lnN

N

)−N
2
(sinceh1 =

2τ

N
,τ =

ε

α
lnN)

≤CN−1

as required.

Theorem 7.3. Let u be the solution of the continuous problem
(1.1), (1.2) and U be the solution of the discrete problem (5.1),
(5.2). Then

||U−u|| ≤CN−1

Proof. From Lemma 5.2, it is clear that, in order to prove the
above theorem it suffices to to prove that ||(LN(U − u))|| ≤
CN−1. But, ||(LN(U − u))|| ≤ ||(LN(V − v))||+ ||(LN(W −
w))||. Hence using theorems 7.1 and 7.2, the above result is
derived.

8. Numerical Illustration
The numerical method proposed above is illustrated through

an example presented in this section.

Example 8.1. Consider the initial value problem

εu′(x)+(1+ x)u(x) = 5, ∀ x ∈ (0,1] with

u(0)− εu′(0) = 2.

The numerical solution obtained by applying the fitted
mesh method (5.1) and (5.2) to the Example is shown in
Figure 1. The order of convergence and the error constant are
calculated and are presented in Table 1.

Table 1. Values of DN
ε , DN , pN , p∗ and CN

p∗ generated for
the example

η
Number of mesh points N

32 64 128 256 512
0.100E+01 0.193E+00 0.145E+00 0.781E-01 0.405E-01 0.206E-01
0.125E+00 0.159E+00 0.109E+00 0.694E-01 0.420E-01 0.245E-01
0.156E-01 0.156E+00 0.107E+00 0.680E-01 0.411E-01 0.240E-01
0.195E-02 0.156E+00 0.107E+00 0.678E-01 0.410E-01 0.240E-01
0.244E-03 0.156E+00 0.107E+00 0.678E-01 0.410E-01 0.239E-01

DN 0.193E+00 0.145E+00 0.781E-01 0.420E-01 0.245E-01
pN 0.411E+00 0.895E+00 0.895E+00 0.776E+00
CN

p 0.324E+01 0.324E+01 0.232E+01 0.166E+01 0.129E+01
The order of ~ε -uniform convergence p∗ = 0.411E +00

Computed ~ε -uniform error constant, CN
p∗ = 0.324E +01

Figure 1
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