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Abstract
In this paper, we obtain the analytical solution of a non-integer order differential equation which is associated
with a RLC electrical circuit. The order of fractional differential equation depends upon α and β , where α ∈ (1,2]
and β ∈ (0,1]. Further, we use Elzaki transform with its different properties to obtain the solution of fractional
differential equation and obtain the solution in terms of three parameter Mittag-Leffler function. In the last, we
have presented an example to show effectiveness of Elzaki transform in solving electrical circuit problems.

Keywords
Model of RLC circuit, non-integer order differential equation, Elzaki transform, Mittag-Leffler function.

AMS Subject Classification
00A71, 34A08, 35A22, 33E12.

1,2Department of Mathematics, NIILM University, Kaithal, Haryana-136027, India.
*Corresponding author: 1 anju.gill11@gmail.com; 2dr.manjeet.jakhar@gmail.com
Article History: Received 02 December 2019; Accepted 22 March 2020 c©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

2 Mathematics Prerequisites. . . . . . . . . . . . . . . . . . . . . . . .421

3 Mathematical model for RLC Electrical Circuit . . . 422

4 Formulation of fractional differential equation and its
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .423

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

1. Introduction
Fractional calculus is a generalization of differentiation

and integration to non-integer orders. In the last few years, the
number of studied on fractional differential equations have
increased dramatically since it can be used in many areas of
science and engineering such as electromagnetism, fluid me-
chanics, signal processing, electrochemistry and so on. The
theory of fractional differential equations helps to translate the
real world problems in a better and systematic manner. Math-
ematical models’ involving fractional order derivatives has
become a powerful and widely used tool for better modeling.
Fractional model for electrical circuits such as RL, RC, RLC
have already been proposed by many researchers, for details,
see [1–3]. In order to stimulate more interest in subject and

to show its utility, this paper is devoted to new and recent
application of fractional calculus.

2. Mathematics Prerequisites
Gosta Mittag-Leffler introduced a function in 1903, is

called Mittag-Leffler function Eβ (z) [4], defined as

Eδ (z) =
∞

∑
k=0

zk

Γ(δk+1)
, z ∈C;R(ε)> 0, (2.1)

In [5], Wiman gave the generalization of Eδ (z)

Eδ ,ρ(z) =) =
∞

∑
k=0

zk

Γ(δk+ρ)
, (2.2)

δ ,ρ ∈C, R(ρ)> 0, R(δ )> 0.

Prabhakar [6] investigated the three-parameter Mittag-Leffler
function Eγ

β ,ρ(z) as

Eγ

δ ,ρ(z) =
∞

∑
k=0

((γ)k)

Γ(δk+ρ)

zk

k!
, (2.3)

δ ,ρ,γ ∈C,R(ρ)> 0,R(δ )> 0,R(γ)> 0.

In Eq. (2.3), (γ)k is called Pochhammer symbol, introduced
by Leo August Pochhammer, written in the form

(γ)k = (γ)(γ +1)...(γ +(k−1)).
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Here, we are giving some basic definitions of fractional calcu-
lus as follows [7–9]:

Definition 2.1. A real function (t), t > 0 is said to be in the
space Cµ if µ ∈ R, there exists a real number p > µ and the
function f1(t) ∈C[0,∞) such that f (t) = t p f1(t). Moreover,
if f (n) ∈Cµ , then f (t) is said to be in the space Cn

µ ,n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral of
order σ ≥ 0 for a function f (t) is defined as

Iσ f (t) =

{
1

Γ(σ)

∫ t
0(t− τ)σ−1 f (τ)dτ,σ > 0

f (t), σ = 0
(2.4)

Where Γ(·) denotes the Gamma function.

Definition 2.3. The Riemann-Liouville fractional derivative
of order σ > 0 for a function f (t) is defined as

Dσ f (t) =
dn

dtn In−σ f (t),n ∈ N,n−1 < σ ≤ n (2.5)

Definition 2.4. The Caputo fractional derivative of order
σ > 0 is defined as

Dσ f (t) =

{ dn f (t)
dtn , σ = n, n ∈ N

1
Γ(n−σ)

∫ t
0

f (n)(τ)
(t−τ)σ−n+1 dτ, 0 < n−1 < σ ≤ n,

(2.6)

Where n is an integer, t > 0 and f (t) ∈Cn
1 .

Definition 2.5. A new integral transform called Elzaki trans-
form [10] is defined on the set of functions

A = { f (t);∃M, k j > 0, j = 1,2,

| f (t)|< M e
|t|
k j , i f t ∈ (−1) j× [0,∞)}

For a function f (t) in the set A, the constant M must be finite
number, k1,k2 may be finite or infinite, then Elzaki transform
of f (t) is defined as

E[ f (t)] = E[ f (t),v] = T (v)

= v
∫

∞

0
f (t)e

−t
v dt, t ≥ 0,k1 < v < k2,0≤ t < ∞.

(2.7)

Equivalently form of Eq. (2.7), is

E[ f (t)] = E[ f (t),v] (2.8)

= T (v) = v2
∫

∞

0
f (vt)e−tdt. (2.9)

Using duality of Laplace [11], Elzaki transform of the Caputo
fractional derivative (2.6) of order σ > 0, can be obtained
and get as

E[Dσ f (t),v] =
T (v)
vσ
−

n−1

∑
k=0

vk−σ+2 f (k)(0),n−1 < σ ≤ n,

(2.10)

In Eq. (2.10), T (v) represents the Elzaki transform of the
function f (t).

Following result will be used in our main findings

E−1[vρ+1(1−ωuδ )−γ ] = tρ−1Eγ

δ ,ρ(ωtδ ) (2.11)

Definition 2.6. (Convolution theorem) [12], Let f (t) and g(t)
be two functions, defined in set A, have Elzaki transform is
M(v) and N(v), then the Elzaki transform of the convolution
of f (t) and g(t) is

E[ f (t)×g(t)] =
1
v

M(v)N(v),

where

f (t)×g(t) =
∫ t

0
f (t− τ)g(τ)dτ, (2.12)

whenever the integral is defined.

3. Mathematical model for RLC Electrical
Circuit

The integrated process of translating real world problem
into mathematical problem is termed as mathematical model-
ing. It includes mathematical concepts such as function, vari-
ables, constants, inequality etc. taken from different branches
of mathematics. Here, we formulate the model for electrical
circuit which is very useful in physics and engineering. When
we connected resistor(R), inductor (L) and capacitor (C) with
voltage (E) then we get an electrical circuit which is known as
RLC electrical circuit. There are a lot of connecting of these
three elements across voltage supply. In this proposed model,
we consider an electrical circuit in which these three elements
are connected in series with voltage as shown in figure 1. Here,
in this model we have considered these three components i.e.
capacitance (C), inductance (L) and resistor(R) are positive
constants.

Here, E(t) represents for power source’s voltage which is
measured in volts (V), I(t) represents the current in the circuit
at time t which is measured in amperes (A), Q(t) represents
the charge on the capacitor (or charge flow to capacitor plates)
at time t (measured in Coulombs). As we know there is a
relation between current and charge i.e. I(t) = d

dt Q(t). Here R
is denoted for the resistance of the resistor which is measured
in ohms (V/A), L is denoted for the inductance of the inductor
which is measured in henry (H) and C is denoted for the
capacitance of the capacitor which is measured in farads (F =
C/V ).

Figure 1: RLC Circuit
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4. Formulation of fractional differential
equation and its solution

The equations associated with resistor, inductor and ca-
pacitor in RLC circuit are:

The voltage drop across resistor, i.e.,

VR(t) = RI(t) = R
d
dt

Q(t).

The voltage drop across inductor, i.e.,

VL(t) = L
d
dt

I(t) = L
d2

dt2 Q(t).

The voltage drop across capacitor, i.e.,

VC(t) =
1
C

∫ t

0
I(ξ )dξ =

Q(t)
C

.

On using Kirchhoff’s voltage law, around any loop in
a circuit, the voltage rises must equal to the voltage drops.
Therefore we will get the following equation for RLC electric
circuit represented in figure 1

L
d2

dt2 Q(t)+R
d
dt

Q(t)+
Q(t)

C
= E(t), (4.1)

In the form of current the equation of the RLC electric circuit
represented in figure 1 is given in [13] as

L
d2

dt2 I(t)+R
d
dt

I(t)+
I(t)
C

= E(t), (4.2)

In this paper, we will find the analytic solution of a fractional
differential equation associated with RLC electrical circuit.
So convert Eq. (4.2) into fractional differential equation, as

LDα I(t)+RDβ I(t)+
1
C

I(t) = E(t), (4.3)

where

Dα I(t) =
dα I
dtα

and

Dβ I(t) =
dβ I
dtβ

,1 < α ≤ 2,0 < β ≤ 1,

when

lim
α→2

dα
dα I
dtα

Idtα = d
d2I
dt2

and

lim
β→1

dα
dβ I
dtβ

Idtα = d
dI
dt

Applying Elzaki transform on Eq. (4.3) by assuming the initial
condition I(0) = A and I′(0) = B and further using (2.10), we
get

E{LDα I(t)}+E{RDβ I(t)}+E{ 1
C

I(t)}= E{E(t)},

⇒ L{v−α I(v)− v2−α I(0)− v3−α I′(0)}

+R{v−β I(v)− v2−β I(0)}+ 1
C
{I(v)}= E(v) (4.4)

Putting I(0) = A and I′(0) = B, (4.4) reduces to

⇒ L{v−α I(v)− v2−α A− v3−α B}

+R{v−β I(v)− v2−β A}+ 1
C
{I(v)}= E(v)

⇒{Lv−α +Rv−β +
1
C
}I(v)

= E(v)+LAv2−α +LBv3−α +RAv2−β

⇒ I(v) =C
E(v)

{LCv−α +RCv−β +1}

+LAC
v2−α

{LCv−α +RCv−β +1}

+LBC
v3−α

{LCv−α +RCv−β +1}

+RAC
v2−β

{LCv−α +RCv−β +1}
(4.5)

Some simplification will be done in equation (4.5) and then
we will take the Inverse Elzaki transform of it, also Eq. (2.11)
and (2.12) will get use, after that we will get following result

I(t) =C
∫ t

0
E(t− τ)

∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+α−1

Er+1
α,(α−β )r+α

(− 1
LC

τ
α)dτ

+LAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r

Er+1
α,(α−β )r+1(−

1
LC

τ
α)

+LBC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+1

Er+1
α,(α−β )r+2(−

1
LC

τ
α)

+RAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )(r+1)

Er+1
α,(α−β )(r+1)+1(−

1
LC

τ
α) (4.6)

where 1 < α ≤ 2 and 0 < β ≤ 1 also α−β > 0. Eq. (4.6) is
the required analytic solution of Eq. (4.3).

Special cases

Case I. When constant electromotive force is applied, i.e.,
E(t) = E0 , then (4.3) reduces into

L
dα I
dtα

+R
dβ I
dtβ

+
1
C

I(t) = E0, (4.7)

The technique we have applied to find out the analytic solution
of Eq. (4.3), same technique we will apply to find out the
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solution of Eq. (4.7) and the analytic solution of (4.7) will be

I(t) =CE0

∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+α−1

Er+1
α,(α−β )r+α+1(−

1
LC

τ
α)

+LAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r

Er+1
α,(α−β )r+1(−

1
LC

τ
α)

+LBC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+1

Er+1
α,(α−β )r+2(−

1
LC

τ
α)

+RAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )(r+1)

Er+1
α,(α−β )(r+1)+1(−

1
LC

τ
α)

Case II. When periodic electromotive force is applied, i.e.,
E(t) = E0cosωt, where E0 and ω are constants, then (4.3)
yields,

L
dα I
dtα

+R
dβ I
dtβ

+
1
C

I(t) = E0cosωt, (4.8)

The technique with which we have solved Eq. (4.3), same
technique we will use to find out the solution of Eq. (4.8) and
the analytic solution of (4.8) will be

I(t) =CE0

∫ t

0
cosω(t− τ)

∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+α−1

Er+1
α,(α−β )r+α

(− 1
LC

τ
α)dτ

+LAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r

Er+1
α,(α−β )r+1(−

1
LC

τ
α)

+LBC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+1

Er+1
α,(α−β )r+2(−

1
LC

τ
α)

+RAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )(r+1)

Er+1
α,(α−β )(r+1)+1(−

1
LC

τ
α)

Case III. When periodic electromotive force is applied, i.e.,
E(t) = E0sinωt, where E0 and ω are constants, then (4.3)
yields,

L
dα I
dtα

+R
dβ I
dtβ

+
1
C

I(t) = E0sinωt, (4.9)

On the same line as we got the analytic solution of Eq. (4.3),
we will solve the Eq. (4.8) and the analytic solution of (4.9)
will be

I(t) =CE0

∫ t

0
sinω(t− τ)

∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+α−1

Er+1
α,(α−β )r+α

(− 1
LC

τ
α)dτ

+LAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r

Er+1
α,(α−β )r+1(−

1
LC

τ
α)

+LBC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )r+1

Er+1
α,(α−β )r+2(−

1
LC

τ
α)

+RAC
∞

∑
r=0

(−RC)r(LC)−r−1
τ
(α−β )(r+1)

Er+1
α,(α−β )(r+1)+1(−

1
LC

τ
α)

Case IV. When we take β = 1 in (4.3), it reduces to the form,

L
dα I
dtα

+R
dI
dt

+
1
C

I(t) = E0, 1 < α ≤ 2 (4.10)

We will get the solution of Eq. (4.10), just as we got the
solution of Eq. (4.3).

Case V. When we take α = 2 in (4.3), it reduces to the
form,

L
d2I
dt2 +R

dβ I
dtβ

+
1
C

I(t) = E0, 0 < β ≤ 1 (4.11)

Solution of Eq. (4.11), can also be obtained as we got the
solution of Eq. (4.3).

Case VI. When we take α = 2,β = 1 and E(t) = 0 in
Eq. (4.3), this reduces to second order homogeneous linear
ordinary differential equation, as

L
d2I
dt2 +R

dI
dt

+
1
C

I(t) = 0, (4.12)

Solution of Eq. (4.12) can also be obtained by similar manners
as we got the solution of Eq. (4.3).

Now we are presenting an example, to demonstrate how
applicable the Elzaki transform in solving electrical circuit
problems.

Example: An inductor of 2 henrys, a resistor of 16 ohms
and a capacitor of 0.02 farads are connected in series with an
e.m.f. of E volts. At t = 0 the charge on the capacitor and
current in the circuit are zero. Find the charge and current at
any time t > 0 If (a)E = 300(Volts) (b)E = 100sin3t (Volts).

Solution: Let Q and I be the instantaneous charge and
current respectively at time t. By Kirchhoff’s laws, i.e. by Eq.
(2.2), we have

L
d2

dt2 Q(t)+R
d
dt

Q(t)+
Q(t)

C
= E(t), (4.13)
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On putting the value of L = 2,R = 16,C = 0.02 in (4.13)

2
d2

dt2 Q(t)+16
d
dt

Q(t)+50Q(t) = E(t), (4.14)

The given initial conditions are Q(0) = 0, I(0) = Q′(0) = 0.
(a) If E = 300(Volts), then (4.14) becomes

d2

dt2 Q(t)+8
d
dt

Q(t)+25Q(t) = 150, (4.15)

Applying Elzaki transform on Eq. (4.15) and on using the
various results mentioned in [10, 11, 14, 15], we get

E[Q(t)]
v2 −Q(0)− vQ′(0)

+8
[E[Q(t)]

v
− vQ(0)

]
+25E[Q(t)] = 150v2,

Taking E[Q(t)] = T (v) and using given initial conditions, we
get

⇒T (v)
v2 +8

T (v)
v

+25T (v) = 150v2,

⇒
( 1

v2 +8
1
v
+25

)
T (v) = 150v2,

⇒T (v) =
150v4

25v2 +8v+1
,

⇒T (v) = 6v2− 48v3

25v2 +8v+1
− 6v2

25v2 +8v+1
,

⇒T (v) = 6v2− 6[4v3 +4v3 + v2]

25v2 +8v+1

⇒T (v) = 6v2− 6[v2(1+4v)+4v3]

25v2 +8v+1

⇒T (v) = 6v2−6
(1+4v)v2

(1+4v)2 +32v2 −8
3v3

(1+4v)2 +32v2

(4.16)

Taking inverse Elzaki transform on both sides of Eq.(4.16),
get

Q(t) = 6−6e−4tcos3t−8e−4tsin3t. (4.17)

Since I(t) = d
dt Q(t), so on differentiate (4.17) w.r.t. t, we get

I(t) = 50e−4tsin3t.

(b) If E = 100sin3t (Volts), then (4.14) becomes

d2

dt2 Q(t)+8
d
dt

Q(t)+25Q(t) = 50sin3t, (4.18)

The technique with which we have solved Eq. (4.15), same
technique we will used to find out the solution of Eq. (4.18),
and we get

Q(t) =
25
26

sin3t− 75
52

cos3t +
25
26

e−4tsin3t +
75
52

e−4tcos3t

=
25
52

(2sin3t−3cos3t)+
25
52

e−4t(2sin3t +3e−4tcos3t).

(4.19)

On differentiating (4.19) w.r.t. t, we get

I(t) =
d
dt

Q(t) =
75
52

(2cos3t +3sin3t)

− 25
52

e−4t(17sin3t +6cos3t).

For large t, those terms of Q(t) or I(t) which involve e−4t are
negligible.

5. Conclusion
In the present paper, we have obtained the analytical so-

lution of a non-integer order differential equation which is
associated with a RLC electrical circuit via Elzaki transform
method. The analytic solution obtained in terms of Mittag-
Leffler function which is useful for computational study of
current. We can apply this same methodology in the analysis
of electromagnetic transients’ problems in electrical systems,
machine windings and in power electronics.
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