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Abstract
Mercury is the planet which gains maximum radiation pressure from the Sun. On 20th October 2018 Bepicolombo
was launched to do the comprehensive study of the magnetic field, magnetosphere, surface and internal structure
of the Mercury. For this we need to maintain the nominal multi-revolution halo orbits. In this paper, we have
considered the Sun-Mercury-satellite in the model of restricted three body problem with zero eccentricity. Here
continuation method have been used to obtain the halo orbits around the Libration points L1 and L2 . We observe
that the frequencies remain constant throughout the time interval using wavelet transform. The ridge plot at the
initial guess confirms the periodicity of the halo orbits.
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1. Introduction
Mercury is the fastest and smallest planet situated in the

innermost region of the Solar system. Interplanetary missions

to the Mercury have become a topic of debate after Mariner
10 and MESSENGER’s exploration. On 20th October 2018,
Bepicolombo was launched to do the comprehensive study
of Mercury. It will study the magnetic field, magnetosphere,
surface and internal structure of Mercury which could reveal
the origin and evolution of planets in Solar system formation.
Halo orbits is a three-dimensional periodic orbit about the
libration points. A. C. Clarke pointed out the importance of
L2. According to him we can relay earth based program to
another side of the Moon through trans-lunar libration point
L2 [1].The idea of Clarke was overwhelming but one more
question was still unanswered i.e. in which trajectory we can
put our communication satellite? This question was solved
in 1968 by R. Farquhar. He investigated some trajectories
around L2 and named it as halo orbits. According to his idea
one can establish a continuous link from Earth to another side
of Moon through establishing a communication satellite in
the halo orbits around L2. [2]. Nowadays people are inter-
ested in the halo orbits of the CR3BP (Circular Restricted
Three-Body Problem), particularly halo orbits around L1 and
L2. The libration point L1, L2 are considered as the bound-
ary point where the gravitational force of the secondary body
exist. Now a days L1, L2 points are observed as the most
suitable points through which we can transfer interplanetary
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spacecraft with minimum required energy. [3, 4]. Trajectories
around L1 in the Sun-Mars system in the restricted three-body
problem with photo gravitational effect have been studied by
[5]. They investigated that the radiation pressure makes longer
the halo orbits also the radiation pressure push the halo orbits
towards the sun when we increase its time period. [6] have
also computed halo and Lissajous orbits. They investigated
the Sun-Earth-satellite system with photogravitational effect
of the Sun and oblateness of the Earth. They observed that
radiation pressure and oblateness increases the time period
around L1 and decreases around L2. [7] and [8] have nicely
explained the geometry and motions at the collinear points of
the centre manifold. [9] used Lissajous trajectories around L1
and L2 and evaluated the performance of a Lunar Global Posi-
tioning system. They also checked the applicability of Lunar
global Communication system on both sides of the Moon. As
we all know that there are various chaotic indicators or tools to
investigate the nonlinear dynamical system i.e. the structure
of the phase space. Time-frequency analysis based on wavelet
transform is one of them, which deals the motion in the plane
of time and frequency . Therefore the TFA (time frequency
analysis) is a tool to detect the nature of the motion i.e. peri-
odic or aperiodic. Here we solve a given mathematical model
numerically. We are using time-frequency analysis based on
the extraction of the instantaneous frequency.The extraction
have been done from the phase of the continuous wavelet
transform. The graph plotted using this method is known
as ridge-plot. In ridge-plot, if frequency remains constant
throughout a time interval, then we term that as a periodic
trajectory. CWT (continuous wavelet transform) have two
important base of analysis one is phase and another is am-
plitude.Analysis of frequency with time based on phase of
CWT have been done by Vela-Arevalo and Marsden and also
used by Gupta and Kumar. [10, 11] . Time-frequency analysis
based on the amplitude of CWT can be seen in the work of
Chandre et.al. and also used by Gupta and Kumar[11–13].
Restricted three body problem with zero eccentricity is a very
good mathematical model of asymptotic analytic signal with
phase variation. So for getting better insight of its motion we
can apply time-frequency analysis based on phase of CWT.
[12]. In this paper, our objective was to draw Halo orbits and
analyze its stability through time-frequency analysis. Orga-
nization of this paper are as follows: In Section 2, we have
described the configuration of the Sun-Mercury-satellite in
the restricted three body problem with zero eccentricity. In
perturbation theory, we need to approximate the periodic solu-
tions uniformly which can remove secular terms. For this, we
have used a continuation method for the computation of halo
orbits which are described in Section 3. Analysis of frequency
with time based on the phase of CWT have been explained in
Section 4. In Section 5 we describe the results and discussion
followed with conclusion of the paper in Section 6.

2. Configuration of Sun-Mercury-satellite
model and Equations of Motion

In our mathematical model we have considered the circu-
lar restricted three body problem consisting of three bodies:
The Sun, The Mercury and an infinitesimal mass (artificial
satellite) with masses m1, m2,and m respectively. Here the
artificial satellite is of negligible mass and is moving under the
gravitational influence of the Sun and Mercury. Let (x′,y′,z′)
be the coordinates of the satellite in the sidereal system [14].
We have supposed that initially the line along Sun to Mercury
is perpendicular on y′ axis i.e the line along Sun to Mercury
is perpendicular on x′y′− plane.

Sun
Mercury

Satellite

r2

r1

Barycentre

X

Figure 1. A Planar view of synodic coordinates (x, y, z) and
sideral coordinates (x′, y′, z′) of the satellite. The origin is
located at the centre of mass of the sun and Mercury.

Let µ = m2
m1+m2

is the mass parameter and q = 1− Fp
Fg

[15]
as the mass radiation factor accounts the effect of radiation
force in the system. Here the unit of length is assumed such
that the constant separation of two masses is unity. The model
of the problem under consideration is shown in Fig.(1). The
equation of motion of for the considered model as written as
[5, 16, 17]

ẍ−2ẏ =
∂U
∂x

, (2.1)

ÿ+2ẋ =
∂U
∂y

, (2.2)

z̈ =
∂U
∂ z

, (2.3)

U =
(x2 + y2)

2
+

(1−µ)q
r1

+
µ

r2
, (2.4)

where,

r1 =

√
(x+µ)2 + y2 + z2,

r2 =

√
(x+µ−1)2 + y2 + z2. (2.5)
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3. Continuation method for the halo
orbits

Continuation method or Lindstedt-Poincaré method is an
important technique for uniformly approximating periodic
solutions which remove secular terms arising in the straight-
forward application of perturbation theory to weakly nonlinear
problems with finite oscillatory solutions [18]. By the help
of expansion theorem and the periodicity of the solution, we
find convergent series approximations of periodic solutions.
Here nonlinear terms alter the frequency of the linearized sys-
tem [4]. [19] developed a third order periodic solution using
Poincaré-Lindstedt type of successive approximations. This
third order approximation provides much qualitative insight
but insufficient for the serious study of proper motion near L1
or L2. [6] computed the halo orbit in the photogravitational
Sun-earth system with oblateness using this method, extend-
ing it to fourth order by translating origin at the Lagrangian
points L1 and L2. We have considered only the radiation effect
of the Sun excluding the effect of oblateness, as it is known
that in the case of the Sun-Mercury system the radiation fac-
tors is more dominant.

X = x+µ± γ−1, Y = y, Z = z, (3.1)

Using the above tranlation our equations of motion 2.1-2.3
changed in the following form

γ(Ẍ−2Ẏ ) =
∂Ω

∂X
, (3.2)

γ(Ÿ +2Ẋ) =
∂Ω

∂Y
, (3.3)

γZ̈ =
∂Ω

∂Z
, (3.4)

Ω =
X2 +Y 2

2
+

(1−µ)q
R1

+
µ

R2
(3.5)

and R1 and R2 changed to following form

R1 =

√
(Xγ +1∓ γ)2 +(Y γ)2 +(Zγ)2,

R2 =

√
(Xγ∓ γ)2 +(Y γ)2 +(Zγ)2.

On expanding the non-linear terms of equation 3.5, as in [20]
it reduces to

Ω = γ
(X2 +Y 2)

2
+

1
γ2

{
(1−µ)qγ

1− γ
+µ

}
+

X
γ2

{
− (1−µ)qγ2

(1− γ)2

}
+
(2X2−Y 2−Z2)

2γ2

{
(1−µ)qγ3

(1− γ)3

}
+

1
γ2

{
∞

∑
m>3

Cmρ
mPm

(
X
ρ

)}
. (3.6)

So, after some algebraic manipulation, equations of motion
changes in the following form

Ẍ−2Ẏ − (1+2C2)X =
∂

∂X

∞

∑
m>3

Cmρ
mPm

(
X
ρ

)
, (3.7)

Ÿ +2Ẋ +(C2−1)Y =
∂

∂Y

∞

∑
m>3

Cmρ
mPm

(
X
ρ

)
, (3.8)

Z̈ +C2Z =
∂

∂Z

∞

∑
m>3

Cmρ
mPm

(
X
ρ

)
. (3.9)

where,

Cm =
1
γ3

{
(−1)mq(1−µ)γm+1

(1∓ γ)m+1 +(±1)m (µ)

}
, (3.10)

where m = 0,1,2,3, .... Considering only linear terms the
solution of linearized equations 3.7-3.9 is

X(t) = A11eαt +A22e−αt +A33cosλ t

+A44sinλ t, (3.11)
Y (t) =−κ1A11eαt +κ1A22e−αt

−κ2A33sinλ t +κ2A44cosλ t, (3.12)
Z(t) = A55cos

√
C2t +A66sin

√
C2t, (3.13)

where A11, A22, A33, A44, A55, and A66 are arbitrary constants
whereas

α =

√√√√−(2−C2)+
√

9C2
2 −8C2

2
,

λ =

√√√√ (2−C2)+
√

9C2
2 −8C2

2
,

κ1 =
(2C2 +1)−α2

2α
,

κ2 =
(2C2 +1)+λ 2

2λ
.

In above linearized equations, two roots are real and equal
with opposite signs, which give rise to a saddle point. So we
take A11 = A22 = 0 and

A33 =−AX cosφ , A44 = AX sinφ ,
A55 = AZ sinψ , and A66 = AZ cosψ ,

to switch off the real modes for bounded solution, and the
linearized equations have solutions of the form [4].

X(t) =−AX cos(λ t +φ),

Y (t) = κAX sin(λ t +φ), (3.14)

Z(t) = AZ sin(
√

C2t +ψ),
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where AX and AZ are the amplitudes, λ and C2 are the frequen-
cies, φ and ψ are the phases of the in plane and out of plane
motions respectively. The two frequencies λ and

√
C2 are re-

sponsible for the halo orbits. To obtain a halo orbits we have
to equate these two frequencies by introducing a frequency
correct relation ∆ = λ 2−C2. However, we compute the orbits
upto fourth order approximation with radiation pressure. To
avoid secular terms which appear as a result of the successive
approximation procedure, a new independent variable τ and
a frequency connection ω are introduced through, τ = ωt
and truncating the equations of motion (3.7)-(3.9) at degree 4.
Then the equations are written in terms of new independent
variable τ as given in [6].

ω
2X ′′−2nωY ′− (n2 +2C2)X =

3
2

C3(2X2

−Y 2−Z2)+2C4(2X2−3Y 2−3Z2)X +
5
8

C5[
8X2{X2−3(Y 2 +Z2)}+3(Y 2 +Z2)2] , (3.15)

ω
2Y ′′+2nωX ′+(C2−n2)Y =−3C3XY

−3
2

C4(4X2−Y 2−Z2)Y − 5
2

C5XY (4X2

−3Y 2−3Z2), (3.16)

ω
2Z′′+λ

2Z =−3C3XZ− 3
2

C4(4X2−Y 2−Z2)Z

−5
2

C5XZ(4X2−3Y 2−3Z2)+∆Z. (3.17)

where, ∆ = λ 2−C2, which is quite small and used for the
frequency correction to get the halo orbit. We need to use the
perturbation technique of Lindstedt-Poincaré. Here approxi-
mate solution of the non-linear problem in a neighbourhood
of the equilibrium point is to be obtained. In this technique,
higher order terms of the equations of motion are considered
and we produce a formal series expansion of the solution of
the equations of motion which have higher accuracy and then
assuming the solutions for equations (3.15), (3.16), and (3.17)
in the form of perturbation,

X(τ) = εX1(τ)+ ε
2X2(τ)+ ε

3X3(τ)+ ε
4X4(τ)+ . . . ,(3.18)

Y (τ) = εY1(τ)+ ε
2Y2(τ)+ ε

3Y3(τ)+ ε
4Y4(τ)+ . . . ,(3.19)

Z(τ) = εZ1(τ)+ ε
2Z2(τ)+ ε

3Z3(τ)+ ε
4Z4(τ)+ . . . ,(3.20)

and

ω = 1+ εω1 + ε
2
ω2 + ε

3
ω3 + ε

4
ω4 + . . . . (3.21)

Using this substitution in equation (3.15), (3.16), and (3.17)
and equating the terms of O(ε), O(ε2), O(ε3), and O(ε4) to
obtain the first, second, third, and fourth order equations,
respectively as [6, 20] with some modifications. We solve
our model considering radiation pressure only whereas [6]
considered radiation pressure and oblateness both.

3.1 First order equations
Now, by introducing the frequency correction term ∆, and
collecting the O(ε1) from equations (3.15-3.17), the first order
equations of motions are

X ′′1 −2Y ′1− (1+2C2)X1 = 0, (3.22)
Y ′′1 +2X ′1 +(C2−1)Y1 = 0, (3.23)

Z′′1 +λ
2Z1 = 0. (3.24)

The periodic solutions of the above equations are:

X1(τ) = −AX cos(λτ +φ), (3.25)
Y1(τ) = κAX sin(λτ +φ), (3.26)
Z1(τ) = AZ sin(λτ +ψ). (3.27)

3.2 Second order equations
Similarly, collecting the O(ε2) and using the values of X1, Y1,
and Z1, we get

X ′′2 −2Y ′2− (1+2C2)X2 = 2ω1λAX (κ−λ )cosτ1

+α1 + γ1 cos2τ1

+γ2 cos2τ2, (3.28)
Y ′′2 +2X ′2 +(C2−1)Y2 = 2ω1λAX (κ λ −1)sinτ1

+β1 sin2τ1, (3.29)
Z′′2 +λ

2Z2 = 2ω1λ
2AZ sinτ2

+δ1 sin(τ1 + τ2)+δ1

sin(τ2− τ1), (3.30)

where coefficients are given in Appendix I

τ1 = λτ +φ , τ2 = λτ +ψ,

To find the bounded solution we required to eliminate the
secular terms sinτ1, cosτ1, and sinτ2 by setting ω1 = 0. As
the bounded homogeneous solution is incorporated from first
order solution of equations (3.25), (3.26), and (3.27), so we
have to find only particular solution of equations (3.28), (3.29),
and (3.30), which is found as

X2(τ) = ρ20 +ρ21 cos2τ1 +ρ22 cos2τ2, (3.31)
Y2(τ) = σ21 sin2τ1 +σ22 sin2τ2, (3.32)
Z2(τ) = κ21 sin(τ1 + τ2)+κ22 sin(τ2− τ1), (3.33)

where coefficients are given in the Appendix I.

3.3 Third order equations
Again, collecting the O(ε3) setting ω1 = 0, using the values
of X1, Y1, Z1, X2, Y2, and Z2, we have

X ′′3 −2Y ′3− (1+2C2)X3 = [ν1 +2ω2AX λ (κ−λ )]

cosτ1 + γ3 cosτ1 + γ4 cos(2τ2 + τ1)

+γ5 cos(2τ2− τ1), (3.34)
Y ′′3 +2X ′3 +(C2−1)Y3 = [ν2 +2ω2λAX (λκ−1)]

sinτ1 +β3 sin3τ1 +β4 sin(τ1 +2τ2)

+β5 sin(2τ2− τ1), (3.35)
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Z′′3 +λ
2Z3 =

[
ν3 +AZ

(
2ω2λ

2 +
∆

ε2

)]
sinτ2

+δ3 sin3τ2 +δ4 sin(2τ1 + τ2)

+δ5 sin(2τ1− τ2), (3.36)

where coefficients are given in the Appendix I.
In this case we cannot remove the secular term by setting

the value of ω2, to remove the secular term from equations we
adjust the phases of τ1 and τ2, so that sin(2τ1− τ2) ∼ sinτ2
which is done by setting the phase relation as

ψ = φ + p
π

2
; where p = 0,1,2,3, (3.37)

by doing so, we can remove the secular term from (3.36) for
the bounded solution if[

ν3 +AZ

(
2ω2λ

2 +
∆

ε2

)
+ζ δ5

]
= 0, (3.38)

where ζ = (−1)p. Equations (3.34) and (3.35) will be also
affected by the above phase condition. Then the secular terms
from both equations can be removed by finding a single con-
dition from their particular solution as

(ν1 +2ω2λAX (κ−λ )+ζ γ5)−κ(ν2 +2ω2λ

AX (κλ −1)+ζ β5) = 0, (3.39)

from the above relation, we get

ω2 =
ν1−κν2 +ζ (γ5−κβ5)

2λAX (λ (κ2 +1)−2κ)
, (3.40)

assuming these conditions the third order equations reduces
to,

X ′′3 −2Y ′3− (1+2C2)X3 = κβ6 cosτ1

+(γ3 +ζ γ4)cos3τ1, (3.41)
Y ′′3 +2X ′3 +(C2−1)Y3 = β6 sinτ1 +(β3 +ζ β4)

sin3τ1, (3.42)

Z′′3 +λ
2Z3 = (−1)

p−1
2 (δ3−δ4)cos3τ1, (3.43)

where β6 = ν2 + 2ω2λAX (κλ − n) + ζ β5. The solution is
given by

X3(τ) = ρ31 cos3τ1, (3.44)
Y3(τ) = σ31 sin3τ1 +σ32 sinτ1, (3.45)

Z3(τ) = (−1)
p−1

2 κ32 cos3τ1, (3.46)

where coefficients are given in the Appendix I.

3.4 Fourth order equations
In order to find the fourth order approximation, we first collect
the O(ε4) and incorporating all the above conditions which
has been used upto third order approximations, we get

X ′′4 −2Y ′4− (1+2C2)X4 = α2 +2AX λω3(κ−λ )

cosτ1 + γ6 cos2τ1 + γ7 cos4τ1,(3.47)
Y ′′4 +2X ′4 +(C2−1)Y4 = 2AX λω3(κλ −1)

sinτ1 +β7 sin2τ1 +β8 sin4τ1, (3.48)
Z′′4 +λ

2Z4 = α3 +2λ
2AZω3 cosτ1 +δ6 cos2τ1

+δ7 cos4τ1, (3.49)

In the above equations the coefficients are different for
different phase relation defined as ψ = p π

2 +φ . Here in our
case we have taken p = 1 for simplicity. These coefficients
are given in Appendix I. Here we remove the secular terms
sinτ1, and cosτ1 by setting ω3 = 0, and assuming this we get
solutions as

X4(τ) = ρ40 +ρ41 cos2τ1 +ρ42 cos4τ1, (3.50)
Y4(τ) = σ41 sin2τ1 +σ42 sin4τ1, (3.51)
Z4(τ) = κ40 +κ41 cos2τ1 +κ42 cos4τ1, (3.52)

where coefficients are given in the Appendix I.

3.5 The final approximation
Finally, we combine all the solutions considering the map-
ping as AX 7−→ AX

ε
and AZ 7−→ AZ

ε
to remove ε from all the

solutions of equations upto fourth order approximations. Com-
bining all solutions components wise in (3.18), (3.19), and
(3.20), we get

X(τ) = (ρ20 +ρ31 +ρ40)−AX cosτ1 +(ρ21 +ζ ρ22

+ρ41)cos2τ1 cos3τ1 +ρ42 cos4τ1, (3.53)

Y (τ) = (κAX +σ32)sinτ1 +(σ21 +σ41 +ζ σ22)sin2τ1

+σ31 sin3τ1 +σ42 sin4τ1, (3.54)

Z(τ) = (−1)
p−1

2 AZ cosτ1 +(−1)
p−1

2 (κ21 cosτ1 +κ22

+κ32 cos3τ1)+κ40 +κ41 cos2τ1

+κ42 cos4τ1. (3.55)

4. Time-frequency analysis based on
phase of continuous wavelet transform

In this method, we extract instantaneous frequency using
phase method. Details of this method can be seen in the work
of [11, 21]. The wavelet transform is defined in terms of a
function ψ , called the mother wavelet, in the following way

LΨ f (a,b) =
1√
a

∞∫
−∞

f (t)Ψ̄(
t−b

a
)dt (4.1)

We have chosen mother wavelet as Morlet Grossman wavelet
for this computation. It can be expressed as

Ψ(t) =
1

σ
√

2Π
ei2Πηte−

t2

2σ2 (4.2)
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The wavelet transform depends on two parameters: (a,b)
where a is called the scale and is the multiple of the inverse
of the frequency and b is the time parameter that slides the
wavelet as a time window. The transform depends on η which
is the center frequency of the wavelet:

η =
1

2π

∞∫
−∞

ω|ψ̂a,b(ω)|2dω (4.3)

where ψa,b(t) = b
−1
2 (ψ (t−a)

b and ψ̂ denotes the Fourier trans-
form of ψ . The time frequency representation is obtained by
the relation between the scale a and the frequency ξ = η

b . The
wavelet transform produces a common surface between a and
b known as normalized Scalogram is expressed as

Pw f (a,ξ =
η

b
) =

1
b
|W f (a,b)|2 (4.4)

Also we observe that Pw f (a,−ξ ) = Pw f (a,ξ ). Thus for the
computation of wavelet decomposition, we consider the posi-
tive frequency part of the time -frequency plane.
Note: The parameter η and σ can be tuned to improve the
resolution. In our case η = 0.8 and σ = 1 serves the pur-
pose. Here due to the part ( t−b

a ) the length of the window
in wavelet transform change according to frequency. Due to
this unique feature i.e. the capability of adaptation of time
window according to frequency range gives better localization
in frequency and time.
The wavelet transform of f provides the expansion in terms
of basis function. Let Ψab be the basis function constructed
from dilations and translations of the mother wavelet Ψ:

Ψab =
1√
a

∞∫
−∞

f (t)Ψ

(
t−b

a

)
dt b ∈ℜ,a > 0.

LΨ f (a,b) = 〈 f ,Ψa,b〉=
1√
a

∞∫
−∞

f (t)Ψ̄

(
t−b

a

)
dt.

Let f (t) = A f (t)exp [iΦΨ (t)] be an analytic signal. If the
wavelet Ψ is an analytic itself, then it can be expressed as

Ψ(t) = AΨ (t)exp[iΦΨ (t)]

Thus

LΨ f (a,b) =
1√
a

∞∫
−∞

Mab (t)exp[iΦab (t)]dt.

where

Mab = A f (t)AΨ

(
t−b

a

)
Φab (t) = Φ f −ΦΨ

(
t−b

a

)
(4.5)

Let t0 be a unique point such that Φ̇ab (t0) = 0 and Φ̈t0 6= 0.
t0 is called stationary point. By using stationary phase ap-
proximation method, the asymptotic expression for LΨ f (a,b)
as

LΨ f (a,b)≈ 1√
a

f (t0)Ψ̄

(
t0−b

a

)√
2Π

|Φ̈ab (t0) |
eiΦ̈ab(t0)

Π

4 (4.6)

Also t0 (a,b) = b gives a curve in the time scale plane. Here
we define the ridge of wavelet transform. The ridge of wavelet
transform is the collection of points for which t0 (a,b) = b.
From the equation Φ̇ab (t0) = 0, we have

Φ̇ab (t0) = Φ̇ f (t0)−
1
a

Φ̇Ψ

(
t0−b

a

)
= 0

Then points on ridge satisfy

a =: ar (b) =
Φ̇Ψ (0)
Φ̇ f (b)

Therefore instantaneous frequency Φ̇ f (b) of the function f
can be obtained from this equation once we have the ridge of
the wavelet transform. We use the ridge extraction programs
based on the phase of continuous wavelet transform given in
Wavelab Package [22].
Ridge-extraction based on the phase of continuous wavelet
transform can be studied in [23]. As we know, in case of
Circular Restricted Three-Body Problem motion along z-axis
is oscillatory, and it is totally governed by the motion along
the x−y-axis. So, the instantaneous frequency ω1(t) extracted
from the signal made from z-coordinate and the instantaneous
frequency ω2(t) extracted from the signal made from x,y
coordinates in synodic frame are exactly same.

Z1(t) = X1(t)+ ιY1(t) = exp(−ιt)(x1(t)+ ιy1(t)) (4.7)

Z2(t) = X2(t)+ ιY2(t) = z1(t)+ ιH(z1(t)) (4.8)

where H represents Hilbert transform of z(t) [10].

5. Results and Discussion

After making this signal we apply phase method to extract
ω1(t) from Z1(t) and ω2(t) from Z2(t). We can decide the
behaviour of signal once ridge plot is obtained. If frequency
remains constant throughout the time interval then the orbit is
periodic otherwise it is aperiodic.
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Figure 2. Ridge plot of the periodic trajectory at initial
condition (0.994315, 3.82657×10−24, 0.00101036, 0,
8.37179×10−12, 0 ).

The halo orbits for the classical case upto third order ap-
proximation in the Sun-Earth system are discussed by [20]
and [4]. However, here we find the halo orbits for the classical
case and considering the Sun-Mercury system with radiation
pressure upto fourth order approximation using Lindstedt-
Poincaré method. Using the above equations (3.53), (3.54),
and (3.55) and here we take the amplitudes, AX = 200000km
and AZ = 110000km. The 3D-halo orbits for classical case,
when q = 1 with black color (Fig.3), time period for the mo-
tion around L1 is 42.34days and in 5 the black color orbit
around L2 is 42.57days. The other orbits with blue to red col-
ors shows the 3D-halo orbits, when q = 0.99, 0.98, 0.97, 0.96
and 0.95 respectively. The red color orbit in both the Figs.3
and 5 shows when q= 0.95. The variation of some parameters
and time period with radiation factor q for the motion around
L1 and L2 are given Tables 1 and 2 respectively. The time pe-
riod of the halo orbits around L1 increases whereas decreases
in the case of L2 with the increase in the radiation factor. The
effect on the halo orbit due to radiation pressure of the Sun are
clearly visible in Fig.3-5, that the orbits are shifting towards
the Sun position. Fig.4 indicates that the eccentricity of orbit
increases around L1 with increase in radiation factor whereas
in case of orbits around L2 it decreases as shown in Fig.6.
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Figure 3. Halo orbit around L1
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Figure 4. Halo orbit around L1 showing the increase in
eccentricity due to radiation pressure
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Figure 5. Halo orbit around L2
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Figure 6. Halo orbit around L2 showing the decrease in
eccentricity due to radiation pressure

6. Conclusion
We have analytically computed halo orbits in Sun-Mercury-

satellite system. Here we have analyzed the effect of radiation
pressure on the orbits at different values on the line shown by
[6].

The result shows that the radiation pressure increases the
time period of the orbits around L1 and increases the eccen-
tricity of the orbits around L1. With the effect of radiation
pressure the halo orbits shifting towards the Sun.

Similarly, we have observed that the radiation pressure
decreases the time period of the orbits around L2 but de-
creases the eccentricity of the orbits. With the radiation effect,
the orbits shift towards the Sun. Sometimes it preferred to
have the numerical justification of the results obtained ana-
lytically. Therefore the time-frequency analysis method is
implemented to confirm the results obtained. In this case, We
have considered initial condition of an halo orbit obtained by
the Lindstedt-Poincaré method (0.994315, 3.82657×10−24,
0.00101036, 0, 8.37179×10−12, 0). At this initial condition,
we numerically integrate the equations of motions and finally
make a signal with the help of solutions as illustrated earlier.

In Fig. 2. We have presented the ridge-plot. In ridge-plot
it evident that instantaneous frequency is constant throughout
the time interval considered. Thus we conclude that the orbit
is periodic.

The behavior of ridge plot is in confirmation with the
result obtained analytically. We have two halo orbits, but we
have shown one plot to avoid redundancy.
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7. Appendix I

α1 =
3
4

C3[A2
X (2−κ

2)−A2
Z ]

γ1 =
3
4

C3A2
X (2+κ

2)

γ2 =
3
4

C3A2
Z

β1 =
3
2

C3κA2
X

δ1 =
3
2

C3AX AZ

ρ20 = − α1

(1+2C2)
,

ρ21 =
4λβ1− γ1(4λ 2 +1−C2)

(1−4λ 2)2 +(1+4λ 2−2C2)C2
,

ρ22 = − γ2(1+4λ 2−C2)

(1−4λ 2)2 +(1+4λ 2−2C2)C2
,

σ21 =
4λγ1−β1(1+4λ 2 +2C2)

(1−4λ 2)2 +(1+4λ 2−2C2)C2
,

σ22 =
4λγ2

(1−4λ 2)2 +(1+4λ 2−2C2)C2
,

κ21 = − δ1

3λ 2 , κ22 =
δ1

λ 2 .

ν1 = −3
2

C3[AX (4ρ20 +2ρ21 +κσ21)+AZ(κ21

+κ22)]+
3
2

C4AX [A2
X (κ

2−2)+2A2
Z ],

ν2 = −3
2

C3AX [2κρ20−κρ21−σ21]+
3
2

C4AX κ

[A2
X

(
3
4

κ
2−1

)
+

A2
Z

2
],

ν3 =
3
2

C3[AX (κ21 +κ22)+AZ(ρ22−2ρ20)]

+
3
4

C4AZ [A2
X

(
κ2

2
−2
)
+

3
4

A2
Z ],

γ3 = −3
2

C3AX (2ρ21−κσ21)−
1
2

C4A3
X (2+3κ

2),

γ4 =
3
2

C3(κAX σ22 +AZκ21−2AX ρ22)−
3
2

C4AX A2
Z ,

γ5 = −3
2

C3(2AX ρ22 +κAX σ22−AZκ22)−
3
2

C4AX A2
Z ,

β3 =
3
2

C3AX (σ21−κρ21)−
3
8

C4κA3
X (κ

2 +4),

β4 =
3
2

C3AX (σ22−κρ22)−
3
8

C4κAX A2
Z ,

β5 =
3
2

C3AX (σ22 +κρ22)+
3
8

C4κAX A2
Z ,

δ3 = −3
8
(A3

ZC4 +4AZC3ρ22),

δ4 = −3
2

C3(AZρ21−AX κ21)−
3
8

C4A2
X AZ(κ

2 +4),

δ5 =
3
2

C3(AZρ21−AX κ22)+
3
8

C4AZA2
X (κ

2 +4).

ρ31 =
6λ (β3 +ζ β4)− (1+9λ 2−C2)(γ3 +ζ γ4)

(1−9λ 2)2 +(1+9λ 2−2C2)C2
,

σ31 =
6λ (γ3 +ζ γ4)− (1+9λ 2 +2C2)(β3 +ζ β4)

(1−9λ 2)2 +(1+9λ 2−2C2)C2
,

σ32 = −κβ6

2λ
,

κ31 = − (δ3 +δ4)

8λ 2 ,

κ32 =
δ3−δ4

8λ 2 .

ρ40 = − α2

1+2C2
,

ρ41 =
4β7 +(−1−4λ 2 +C2)γ6

(1−4λ 2)2 +(1+4λ 2−2C2)C2
,

ρ42 =
8β8 +(−1−16λ 2 +C2)γ7

(1−16λ 2)2 +(1+16λ 2−2C2)C2
,

σ41 = −
(

β7 +4λρ41

1+4λ 2−C2

)
,

σ42 = −
(

β8 +8λρ42

1+16λ 2−C2

)
,

κ40 =
α3

λ 2 ,

κ41 =
−δ6

3λ 2 ,

κ42 =
−δ7

15λ 2 .

α2 =
3

64
(5C5((3κ

4−8κ
2 +8)A4

X +2(κ2−12)A2
X A2

Z

+3A4
Z)−32C4(−2AX AZ(κ21 +2κ22)+A2

Z(2ρ20

+ρ21−ρ22)+A2
X (2(κ

2−2)ρ20− (κ2 +2)ρ21

+2ρ22 +κ
2
ρ22−2κ(σ21−σ22)))−16C3(κ

2
21

+2κ
2
22−4ρ

2
20−2(ρ21−ρ22)

2

+(σ21−σ22)
2 +2κAX σ32))

γ6 = − 5
16

C5((3κ
4−8)A4

X +24A2
X A2

X −3A4
Z)+3C4

(A2
X ((κ

2 +2)ρ20− (κ2−2)(ρ21−ρ22))+2(κ21

+κ22)AX AZ− (ρ20 +ρ21−ρ22)A2
Z)−

3
2

C3(κσ31AX

−κσ32AX +2ρ31AX +κ32AZ +2κ21κ22−4ρ20ρ21

+4ρ20ρ22)+8λ
2
ω2(ρ21−ρ22)+4λω2(σ21−σ22)

α3 =
1

16ε2 (15C5(κ
2−4)ε2A3

X AZ +3ε
2AX AZ(15C5A2

Z

−4C4(κσ21−κσ22 +8ρ20 +4ρ21−4ρ22))

+6C4((κ
2 +4)κ21−2(κ2−4)κ22)ε

2A2
X

−2(9C4(κ21 +2κ22)ε
2A2

Z +4(2κ22(∆−3C3ρ20ε
2)

+3C3κ21(ρ22−ρ21)ε
2)))
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γ7 =
5
64

C5((3κ
4 +24κ

2 +8)A4
X

−6(κ2 +4)A2
X A2

Z +3A4
Z)

+
3
2

C4(A2
X ((κ

2 +2)ρ21− (κ2 +2)ρ22

+2κ(σ22−σ21))

+2κ21AX AZ +(ρ22−ρ21)A2
Z)−

3
4

C3(−2κσ31AX

+4ρ31AX +2κ32AZ +κ
2
21−2ρ

2
21−2ρ

2
22 +4ρ21ρ22

−σ
2
21−σ

2
22 +2σ21σ22)

β7 =
3
2

C3(AX (κρ31 +σ31 +σ32)+2ρ20(σ22−σ21))

+
3
4

C4(A2
X ((3κ

2−4)(σ21−σ22)+8κρ20)

+2κκ22AX AZ +(σ21−σ22)A2
Z)−

5
8

C5κA2
X

((3κ
2−4)A2

X +3A2
Z)+8λ

2
ω2(σ21−σ22)

+4λω2(ρ21−ρ22)

δ6 =
1

4ε2 (−3ε
2AX (−8C4(ρ20 +ρ21−ρ22)AZ

+5C5A3
Z−2C3κ32)+20C5ε

2A3
X AZ

+3C4((κ
2−4)κ21− (κ2 +4)κ22)ε

2A2
X

+κ21(9C4ε
2A2

Z +4(−3C3ρ20ε
2 +∆

+8λ
2
ω2ε

2))+3ε
2(3C4κ22A2

Z−2C3ρ31AZ

+4C3κ22(ρ22−ρ21)))

δ7 =
1

16
(−6C4((κ

2 +4)κ21A2
X +2AX AZ(κσ21

−κσ22−4ρ21 +4ρ22)−3κ21A2
Z)+5C5AX AZ

((3κ
2 +4)A2

X −3A2
Z)+24C3(κ32AX −ρ31AZ

+κ21(ρ22−ρ21)))

β8 =
1
16

(5C5κ(3κ
2 +4)A4

X −3A2
X (5C5κA2

Z +2C4

((3κ
2 +4)(σ21−σ22)−8κρ21 +8κρ22))

+12AX (C4κκ21AZ +2C3(σ31−κρ31))+6(σ21

−σ22)(C4A2
Z +4C3(ρ22−ρ21)))
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