

https://doi.org/10.26637/MJM0802/0019

Regular string-token Petri nets

D. K. Shirley Gloria^{1*}, S. Devi² and K. Nirmala³

Abstract

String-Token Petri Net can generate Regular Language has been proved here. Also, it has been proved that Regular Language originated by String-Token Petri Net are closed with respect to union and concatenation.

Keywords

String-Token Petri Net (σ), Regular Language (μ), Regular Grammar (ρ), production rule (PR).

AMS Subject Classification 68Q45.

¹ Department of Mathematics, Dr. Ambedkar Government Arts College, Chennai -600039, India.

²Department of Mathematics, Government Arts And Science College, Chennai - 600131, India

³ Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur -603203, India.

*Corresponding author: 1 shirleygloria1976@gmail.com; 2 devi.snowdrop@gmail.com; 3 gk.nimi@gmail.com

Article History: Received 16 November 2019; Accepted 22 March 2020

©2020 MJM.

Contents

1. Introduction

Carl Adam Petri's dissertation which was submitted in the year 1962 had brought the notion of Petri Net's [7].

One of the modifications made on Petri net is colored Petri nets. Later on, in the year 2004, σ was introduced ([5] and [1]). Using σ , its properties were studied ([2] and [3]). One of its application was derived [4].

In this paper, we introduce a new class of σ , called regular σ . Its properties like union, concatenation are obtained.

2. Basic definitions, examples and a theorem of σ

Definition 2.1. ρ definition can be seen from [6].

Definition 2.2. For every μ , $\exists a \rho \ni L = L(G)$. Converse is also true [6].

Definition 2.3. *Definition of evolution regulations can be seen from* [3] *and* [2].

Definition 2.4. σ definition is given in [3].

Definition 2.5. Behaviour of transitions of σ can also be seen from [3].

Example 2.6. A σ originating μ ' $L(N_1)$ ' is exhibited in figure 1 where $L(N_1) = \{(ab)^n a : n \ge 0\}$ is a μ .

In figure 1, $N_1 = (P_1, T_1, V_1, F_1, R_1(t), M_1)$ where $P_1 = \{p_1, p_2\}$, $T_1 = \{t_1, t_2\}$, $V_1 = \{S_1, a, b\}$, $R_1(t) = \{t_1 : S_1 \rightarrow abS_1, t_2 : S_1 \rightarrow a\}$, $M_1 = (S_1, \in)$. After a sequence of firing of transitions of N_1 , we obtain a language $L(N_1) = \{(ab)^n a : n \ge 0\}$.

Example 2.7. A σ originating the μ ' $L(N_2)$ ' is exhibited in figure 2 where $L(N_2) = \{a(ab)^n : n \ge 1\}$ is a μ .

In figure 2, $N_2 = (P_2, T_2, V_2, F_2, R_2(t), M_2)$ where $P_2 = \{p_3, p_4, p_5\}$, with $T_2 = \{t_3, t_4, t_5\}$, $V_2 = \{S_2, S_3, a, b\}$, $R_2(t) = \{t_3 : S_2 \rightarrow S_3 ab, t_4 : S_3 \rightarrow S_3 ab, t_5 : S_3 \rightarrow a\}$, $M_2 = (S_2, \in, \in)$. After a sequence of firing of transitions of N_2 , we obtain a language $L_2 = \{a(ab)^n : n \ge 1\}$.

Theorem 2.8. If *L* is a μ , then $\exists a \sigma (N) \ni L = L(N)$.

Proof. Let *L* be a μ originated by a ρ , G = (V, T, S, P) with PR's of the form $A \rightarrow xB$, $A \rightarrow x, A \rightarrow yD$, $D \rightarrow zD$, $B \rightarrow x$, $D \rightarrow y$ where $x, y, z \in T^*$ and $A, B, D \in V$.

Erect a σ , $N = (P_1, T_1, V_1, F_1, R_1(t), M_1)$ as follows: Let $V_1 = V \cup T$ be a finite set of alphabets. Let T_1 be a finite set of transitions and each $t_i \in T_1$ be a tag of the PR's of *P*.

Categorize the PR's of P as

- 1. *T*-regulations (calling it as terminating regulations).
- 2. *NT*-regulations (calling it as non- terminating regulations).

Name the PR's of the form $A \rightarrow xB$, $A \rightarrow yD$, $D \rightarrow zD$ as *NT*-regulations and all other regulations as *T*-regulations. Among *NT*-regulations, regulations like $D \rightarrow zD$ will have a loop structure as it can be applied any number of times. Name these kind of *NT*-regulations as *LNT*-regulations. Name other regulations which will not give rise to loop structure as *WLNT*-regulations. Here, regulations like $A \rightarrow xB$, $A \rightarrow yD$ will not generate loops. All *T*-regulations will lead to terminate (*T*-regulations like $B \rightarrow x$, $D \rightarrow y$).

Since *S* is the beginning character of *G*, erect a place with *S* as a token in it and name this place as p_S (see fig 3). Now, group all *S* - PR's of *P* (Here, $A \rightarrow xB, A \rightarrow yD, A \rightarrow x$ are known as *A* - PR's of *P*). Among all these *S* -PR's, group all

NT-regulations. These *NT*-regulations of *S*- PR's are known as *SNT*-regulations and other regulations of *S*- PR's as *ST*regulations. Let t_{SLNT1} be the tag of the first *SLNT*-regulation. It's input and output place be p_S . t_{SLNT1} can fire any number of times (see figure 4).(If *S*- PR's of *P* have no *LNT*-regulations, then avoid this erection). If there is another *SLNT*-regulation, then keeping p_S as the input and output place, attach t_{SLNT2} (see figure 4) (if there is no second *SLNT*-regulation, then avoid this erection). Suppose there are more than two *SLNT*regulations, a similar way of erection can be done (that is, for all *SLNT*-regulations, keep p_S as the input and output place for the corresponding transitions). Presume for simpleness, there are only two *SLNT*-regulations.

Let t_{SWLNT1} be the tag of the first SWLNT-regulation. Then its input place be p_S and let p_{SW1} be the output place of t_{SWLNT1} (see fig 5). Similarly, let t_{SWLNT2} be the tag of the second SWLNT-regulation. Then its input place be p_S and let p_{SW2} be the output place of t_{SWLNT2} (see fig 6). Likewise, for the remaining SWLNT-regulation, erect places like p_{SW3} , p_{SW4} , ... with input transitions t_{SWLNT3} , t_{SWLNT4} ,If there are no second, third,... SWLNT-regulations, avoid this erection. Presume for simpleness, there are only two SWLNTregulations. Now, group all ST-regulations. Let t_{ST1} be the tag

of first *ST*-regulation. Its input place be p_S and denote its output place as p_{ST1} . If there is a second *ST*-regulation, let t_{ST2} be the tag of second *ST*-regulation. Its input place be p_S and name its output place as p_{ST2} (See fig.??). Similar erection can be done for any number of *ST*-regulations. For simpleness , We presume that there are only two *ST*-regulations. If there is no *ST*-regulations, then avoid this erection. Since S is a beginning non-terminal in G, there will be atleast one terminal regulation in G. Suppose there are two *ST*-regulations, then

Now, find the leftmost non-terminal that appears in the string on p_{SW1} . Let it be B. Now, group all B- PR's of P. Since G is a ρ , there will be atleast one B- PR. Among all these B-PR's, group all NT-regulations. If there are LNT-regulations in *B*- PR's, erect t_{BLNT1} , t_{BLNT2} ,... with p_{SW1} as its input and output place. For simpleness, presume that there is only one BLNT-regulation. (If there is no BLNT-regulation, avoid this erection) (see fig.7).

If there are WLNT-regulations in B-PR's, erect transitions $t_{BWLNT1}, t_{BWLNT2}, t_{BWLNT3},...$ with p_{SW1} as its input place and $p_{BW1}, p_{BW2}, p_{BW3}, \dots$ as their respective output places (Similar to SWLNT-regulations). For simpleness, presume that there is only one BWLNT-regulation (If there is no BWLNTregulation, avoid this erection) (see fig.8). Now, group all

BT-regulations. ie, T-regulations in B- PR's. Let t_{BT1}, t_{BT2}, \dots be the tags of the BT-regulations. Their input place would be p_{SW1} and denote its output places as p_{BT1}, p_{BT2}, \dots For simple-

ness, presume that there is only one BT-regulation (If there is

no BT-regulation, avoid this erection) (see fig 9). Similarly, find the leftmost non-terminal that appears in the string on p_{BW1}, p_{BW2}, \dots and then do the NT-regulation erection and Tregulation erection as we did above. Here, $p_{ST1}, p_{ST2}, p_{BT1}, \dots$ are final places as it would have terminal strings. Group the places we erected so far and denote it as P_1 . Also, group the transitions we erected so far and denote it as T_1 .

Hence, for any given μ , we can erect a corresponding σ . ie, If L is a μ then L = L(N).

$$\square$$

Example 2.9. Consider example 2.6. Let us see the erection of N_1 . RG for $L(N_1)$ is $G = (\{S_1\}, \{a, b\}, S_1, P)$ where P = $\{S_1 \rightarrow abS_1, S_1 \rightarrow a\}$. Among the PR's of P, $S_1 \rightarrow a$ is a *T*-regulation and $S_1 \rightarrow abS_1$ is a NT-regulation. Let $V_1 =$ $\{S_1\} \cup \{a,b\} = \{S_1,a,b\}$. Since S_1 is the beginning character, erect a place p_S with S_1 as the token (see figure 10).

Now, group NT-regulation of S_1 . We have only one NTregulation. $S_1 \rightarrow abS_1$ is the NT-regulation of S_1 . It is LNTregulation, since it originates a loop. So, name it as S₁LNTregulation. Let $t_{S_1LNT_1}$ be the tag of S_1LNT -regulation. Its input and output place is p_S (see figure 11). Now, group Tregulation of S_1 . There is only one *T*-regulation of S_1 , namely $S_1 \rightarrow a$. Name it as S_1T -regulation and let $t_{S_1T_1}$ be the tag of

this S_1T -regulation. Its input place is p_S and let p_{ST1} be its output place (see figure 12). No more PR of P is left. Now, group all the places erected so far and name it as P_1 . Also, group all the transition erected so far and name it as T_1 .

Thus, N_1 is erected.

3. Closure Properties

In this section, results on closure properties like union, concatenation are derived.

Theorem 3.1. The clan of regular σ language is closed under union.

Proof. Let $N_1 = (P_1, T_1, V_1, F_1, R_1(t), M_1)$ be a σ originates a μ 'L₁' and $N_2 = (P_2, T_2, V_2, F_2, R_2(t), M_2)$ be a σ originates a μ '*L*₂'. Now, a σ , $N = (P_1 \cup P_2 \cup \{p\}, T_1 \cup T_1 \cup \{t_{\alpha}, t_{\beta}\}, V_1 \cup \{t_{\alpha}, t_{\beta}\})$ $V_2 \cup \{S\}, F_1 \cup F_2 \cup \{ \text{ arcs from } p \text{ to } t_\alpha, p \text{ to } t_\beta, t_\alpha \text{ to initial} \}$ state of N_1 , t_β to initial state of N_2 , $R_1(t) \cup R_2(t) \cup \{t_\alpha : S \rightarrow A_1 \cup A_2 \cup A_2 \cup A_3 \cup A_3$ $S_1, t_\beta : S \to S_2\}, M_3$ can be erected to originate $L_1 \cup L_2$. In this erection, remove the initial tokens from L_1 and L_2 , put S on the place p and connect p and N_1 by t_{α} , also connect p and N_2 by t_β . It is exhibited in figure 13.

The same can be extended to any number of μ . That is, if $L_1, L_2, L_3, \dots, L_n$ are μ 's, then $L_1 \cup L_2 \cup \dots \cup L_n$ is also a μ (erection of σ for $L_1 \cup L_2 \cup ... \cup L_n$ is similar to that of *N* in figure 13).

Thus, it is yielded that the clan of regular σ Languages is closed under union.

Figure 13. σ originating $L_1 \cup L_2$

Example 3.2. A σ originating the μ ' L_1 ' is exhibited in fig*ure 1 where* $L_1 = \{(ab)^n a : n \ge 0\}$ *. A* σ *originating* μ ' L_2 ' is exhibited in figure 2 where $L_2 = \{a(ab)^n : n \ge 1\}$. From figure 14, it can be seen that a σ 'N₃' originates $L_1 \cup L_2$.

Hence, it is concluded that $L(N_3) = L(N_1) \cup L(N_2)$. Now, it has been verified that μ ' $L(N_3)$ ' which is originated by σ , N_1 and N_2 is closed under union. That is, σ ' N_3 ' originates $L_1 \cup L_2$.

Theorem 3.3. The clan of regular σ Languages is closed under concatenation.

Proof. Let $N_1 = (P_1, T_1, V_1, F_1, R_1(t), M_1)$ be a σ originates a μ ' L_1 ' and $N_2 = (P_2, T_2, V_2, F_2, R_2(t), M_2)$ be a σ originates a μ '*L*₂'. Now, a σ , $N = (P_1 \cup P_2, T_1 \cup T_2 \cup \{t_{\alpha}\}, V_1 \cup V_2 \cup \{\in\}, V_2 \cup \{\in\}, V_1 \cup V_2 \cup \{\in\}, V_2 \cup V_2 \cup$ $F_1 \cup F_2 \cup \{ a \text{ place with terminal string of } N_1 \text{ to } t_\alpha, t_\alpha \text{ to the} \}$ initial place of N_2 , $R_1(t) \cup R_2(t) \cup \{t_\alpha : \in \rightarrow S_2\}, M_4$) can be erected to generate $L_2.L_1$. It is exhibited in figure 15.

From figure 15, it can be seen that on the place with terminal string (say f_1), strings of L_1 will be deposited after all the sequence of firing of transitions of N_1 . So, L_1 can be obtained as a string that is deposited on f_1 . Connect f_1 and initial place of N_2 by a new transition $t_{\alpha} :\in \longrightarrow S_2$. Remove initial token from N_2 . When t_{α} fires, S_2L_1 will be deposited on the initial place of N_2 . After all the sequence of firing of transitions of N_2 , $L_2.L_1$ will be obtained as a string that is

deposited on f_2 (a place with terminal string on N_2). Similarly $L_1.L_2$ is obtained by taking N_2 first and then N_1 . Also it can be seen that $L_1.L_2 \neq L_2.L_1$.

The same can be extended to any number of μ . That is, if $L_1, L_2, L_3, ..., L_n$ are μ 's, then $L_1.L_2.L_3...L_n$ is also a μ (erection of σ for $L_1.L_2.L_3...L_n$ is similar to that of N in figure 15).

Thus, it is yielded that the clan of regular σ Languages is closed under concatenation.

Example 3.4. A σ originating the μ ' L_1 ' is exhibited in figure 1 where $L_1 = \{(ab)^n a : n \ge 0\}$. A σ originating μ ' L_2 ' is exhibited in figure 2 where $L_2 = \{a(ab)^n : n \ge 1\}$. Now,

it can be seen from figure 16 that μ which is originated by σ 's L_1 and L_2 is closed under concatenation. That is, σ ' N_4 ' originates $L_2.L_1$. In figure 16, S_2 will be removed from figure 2 and $t_{\alpha} :\in \longrightarrow S_2$ is taken as a transition between p_2 and p_3 .

4. Conclusion

It can be concluded that every μ can be originated by σ . Also regular σ is closed with respect to union and concatenation.

References

- [1] D.K. Shirley Gloria, K. Rangarajan, Algorithmic Approach to the Length of the Words of String Token Petri Nets, *CIIT International Journal of Data mining and Knowledge Engineering* 3(6)(2011), 387–390.
- [2] S. Devi and D.K. Shirley Gloria, Context-free languages of String Token Petri Nets, *International Journal of Pure* and Applied Mathematics, 113(11)2017, 96–104.
- [3] D.K. Shirley Gloria, Beulah Immanuel, K. Rangarajan, Parallel Context-Free String Token Petri Nets, *International Journal of Pure and Applied Mathematics* 59(3)(2010), 275–289.

- [4] D.K. Shirley Gloria, Parsing for Languages of String Token Petri Nets, *IEEE Fifth International Conference* on Bio-Inspired Computing: Theories arid Applications (BIC-TA 2010) at Liverpool Hope University, Liverpool, U.K., 2(2010), 1577–1584.
- ^[5] Beulah Immanuel and K. Rangarajan and K.G.Subramanian, String-token Petri nets, In: *Proceedings of the European Conference on Artificial Intelligence, One Day Workshop on Symbolic Networks at Valencia*, In:Spain, 2004.
- [6] Peter Linz, An Introduction to Formal Languages and Automata, Jones & Bartlett Learning, 2006
- [7] James Peterson, *Petrinet Theory and Modeling of Systems*, Prentice Hall, USA, 1997.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

