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Abstract
A two-point boundary value problem of nonlinear fractional differential equations at resonance is considered in
this work. An existence result is obtained with the use of the generalized Miranda theorem.
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1. Introduction
The field of fractional calculus is concerned with the gener-
alization of the integer order differentiation and integration
to an arbitrary real or complex order. It has played a sig-
nificant role in various branches of science such as, physics,
chemistry, chemical physics, electrical networks, control of
dynamic systems, science, engineering, biological science, op-
tics and signal processing; see for example, [11, 15, 17]. The
present work concerns a fractional differential boundary value
problem, which can be transformed to the following equation
Lx = Nx, where L is a linear operator and N is a given oper-
ator from a Banach space X to another Banach space Y . If
the kernel of the linear part of the above equation contains
only zero, the corresponding boundary value problem is called
non-resonant, in this case L is invertible. Otherwise, if L is a
non-invertible, i.e. dimkerL≥ 1, then the problem is said to
be at resonance, an important class of resonant problems when
L is a Fredholm operator with zero-index, the problem can be
solved by using the coincidence degree theory. Recently, frac-
tional boundary value problems at resonance have attracted

many scholar’s attention, for instance see [1–4, 8–10, 12, 13]
and the references therein.

Besides, for the recent advances in other techniques for
solving nonlinear problems resonant and non resonant. The
generalized Miranda theorem (see [18, 19]) can be applied
to systems of ordinary differential equations, to both non-
resonant and resonant cases. In [18] some examples of using
this method for systems of differential equations of second
order. In [21], the authors by means this method proved the
existence of solutions for systems of differential equations
of higher-order under non-resonant and resonant boundary
conditions.

Using the generalized Miranda Theorem of the sublinear
case, we are concerned with the existence results for two-point
BVP of nonlinear fractional differential equation at resonance

{(
ϕ(t)CDα

0+u(t)
)′
= f
(
t,u(t),u′(N−1)(t),CDα

0+u(t)
)
, t ∈ [0,1]

u′(0) = u′′(N−1)(0) = CDα

0+u(0) = 0, CDα

0+u(1) = 0,

(1.1)

where N−1 < α ≤ N, N ≥ 2, CDα

0+ is the Caputo fractional
derivatives, ϕ(t)∈C1([0,1],R), mint∈[0,1] ϕ(t)> 0, f : [0,1]×
RN+1 −→ R, is a continuous function.

In this work, we suppose that the following conditions
hold:

(H1)
∣∣ f (t,u0,u1, . . . ,uN)

∣∣ ≤ ψ0(t)|u0|+ψ1(t)|u1|+ · · ·+
ψN(t)|uN |+ψN+1(t) where ψ0, ψ1, . . . , ψN+1 ∈C([0,1],R+).
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(H2) There exists η > 0 such that u0. f (t,u0,u1, . . . ,uN)≥
0 for all (t,u0,u1, . . . ,uN) ∈ [0,1]×RN+1 and |u0| ≥ η .

The remaining part of this article is organized as follows.
In Section 2, we introduce some notations, definitions, lemmas
and theorems which will be used later. In Section 3, we
present and prove our main results by characterizing the Rσ -
map and applying generalized Miranda Theorem.

2. Preliminaries
First of all, we present the necessary definitions and lemmas
from fractional calculus theory. These can be found in [11,
15, 17].

Definition 2.1. Let α > 0, for a function u : [0,∞) −→ R.
The Riemann-Liouville fractional integral of order α of u is
defined by

Iα

0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

provided that the right-hand side is pointwise defined on
(0,∞).

Remark 2.2. The notation Iα

0+u(t) |t=0 means that the limit
is taken at almost all points of the right-sided neighborhood
(0,ε)(ε > 0) of 0 as follows:

Iα

0+u(t) |t=0= lim
t→0+

Iα

0+u(t).

Generally, Iα

0+u(t) |t=0 is not necessarily to be zero. For in-
stance, let α ∈ (0,1), u(t) = t−α . Then

Iα

0+t−α |t=0 = lim
t→0+

1
Γ(α)

∫ t

0
(t− s)α−1s−α ds = Γ(1−α).

Definition 2.3. Let α > 0. The Caputo fractional derivative
of order α of a function u : (0,∞)−→ R is given by

CDα

0+u(t)= In−α

0+ u(n)(t)=
1

Γ(n−α)

∫ t

0
(t−s)n−α−1u(n)(s)ds,

where n = [α]+1, [α] denotes the integer part of real number
α , provided that the right-hand side is pointwise defined on
(0,∞).

Lemma 2.4. Let α > 0, n = [α]+1, then

Iα

0+
CDα

0+u(t) = u(t)−
n−1

∑
k=0

cktk, ck ∈ R.

Lemma 2.5. Let α > 0, and n= [α]+1. If CDα

0+u(t)∈C[0,1],
then u(t) ∈Cn−1([0,1]).

Proof. Let v(t)∈C[0,1], such that CDα

0+u(t)= v(t), then from
Lemma 2.4, we have

u(t) = Iα

0+v(t)+
n−1

∑
k=0

cktk, ck ∈ R.

It is easy to check that u(t) ∈Cn−1([0,1]).

Now, we shall set up notation and terminology.
Let X ,Y be non empty metric spaces. We say that a space

X is contractible, if there exist x0 ∈ X and a homotopy h :
X× [0,1]→ X such that h(x,0) = x and h(x,1) = x0 for every
x ∈ X .

A compact space X is an Rδ -set (we write X ∈ Rδ ) if there
is a decreasing sequence Xn of compact contractible spaces
such that X =

⋂
n≥1 Xn.

A multivalued map Φ : X → Y is called upper semicontin-
uous (USC) provided for every open U ⊂ Y the set Φ−1(U)
is open in X . We say Φ is an Rδ -map if it is USC for each
x ∈ X , Φ(x) ∈ Rδ .

The following theorem is very important concerning topo-
logical structure of the set of solutions for some nonlinear
functional equation.

Theorem 2.6 ([7]). Let X be a space, (G; ‖.‖) a Banach
space and g : X → G a proper map, i.e. g is continuous and
for every compact B⊂ G the set g−1(B) is compact. Assume
further that for each ε > 0 a proper map gε : X → G is given
and the following two conditions are satisfied:

1. ‖gε(x)−g(x)‖< ε , for every x ∈ X,

2. for any ε > 0 and u∈G such that ‖u‖≤ ε , the equation
gε(x) = u has exactly one solution.

Then the set S = g−1(0) is Rδ .

The key tool in our approach is the following generaliza-
tion of the Miranda theorem

Theorem 2.7 ([18, 19]). Let Ai > 0, i = 1, . . .n, and F be an
admissible map from ∏

n
i=1[−Ai,Ai] to Rn, i.e. there exist a

Banach space E, dimE ≥ n, a linear, bounded and surjective
map φ : E→ Rn, and an Rδ -map Φ from ∏

n
i=1[−Ai,Ai] to E

such that F = φ ◦Φ. If for any i = 1, . . . ,n, and very y ∈ F(a),
where |ai|= Ai, we have

ai.yi ≥ 0, (2.1)

or

ai.yi ≤ 0, (2.2)

then there exists a ∈∏
n
i=1[−Ai,Ai] such that 0 ∈ F(a).

3. Main Results
We use the Banach space G = C

(
[0,1],R

)
with the norm

‖v‖∞ = maxt∈[0,1] |v(t)|.
Now, we consider the following initial value problem{(
ϕ(t)CDα

0+u(t)
)′
= f
(
t,u(t),u′(N−1)(t),CDα

0+u(t)
)
, t ∈ [0,1],

u(0) = a, u′(0) = u′′(N−1)(0) = CDα

0+u(0) = 0,

(3.1)
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where a ∈ R is fixed. Let v(t) = ϕ(t)CDα

0+u(t), then from
lemma 2.4 the IVP (3.1) is equivalent to

v′(t) = f
(

t, a+ Iα

0+

(
v
ϕ

)
(t), Iα−1

0+

(
v
ϕ

)
(t), , . . . ,

Iα−(N−1)
0+

(
v
ϕ

)
(t),

(
v
ϕ

)
(t)
)
, t ∈ [0,1]

v(0) = 0.

(3.2)

We can write down IVP (3.2) in the following form

v(t) =
∫ t

0
f
(

s, a+ Iα

0+

( v
ϕ

)
(s), Iα−1

0+

( v
ϕ

)
(s), . . . ,

Iα−(N−1)
0+

( v
ϕ

)
(s),

( v
ϕ

)
(s)
)

ds. (3.3)

By (H1), we get∣∣v(t)∣∣≤∫ t

0

(
ψ0(s)

∣∣∣a+ Iα

0+

( v
ϕ

)
(s)
∣∣∣+ψ1(s)

∣∣∣Iα−1
0+

( v
ϕ

)
(s)
∣∣∣+

. . .+ψN−1(s)
∣∣∣Iα−(N−1)

0+

( v
ϕ

)
(s)
∣∣∣

+ψN(s)
∣∣∣( v

ϕ

)
(s)
∣∣∣+ψN+1(s)

)
ds

≤ max
r∈[0,1]

1
ϕ(r)

∫ t

0

(
ψ0(s)
Γ(α)

∫ s

0
(s− τ)α−1|v(τ)|dτ+

ψ1(s)
Γ(α−1)

∫ s

0
(s− τ)α−2|v(τ)|dτ + . . .

+
ψN−1(s)

Γ(α−N +1))

∫ s

0
(s− τ)α−N |v(τ)|dτ

+ψN(s)|v(s)|
)

ds+
∫ t

0

(
|a|ψ0(s)+ψN+1(s)

)
ds

≤ max
r∈[0,1]

1
ϕ(r)

∫ t

0

(
N−1

∑
i=0

ψi(s)sα−i

Γ(α− i+1)

+ψN(s)
)

max
τ∈[0,s]

|v(τ)|ds+
∫ 1

0

(
|a|ψ0(s)+ψN+1(s)

)
ds.

Set w(t) = maxs∈[0,t] |v(s)|. We obtain

w(t)≤ max
r∈[0,1]

1
ϕ(r)

∫ t

0

(
N−1

∑
i=0

ψi(s)sα−i

Γ(α− i+1)

+ψN(s)
)

w(s)ds+Ca

where

Ca =
∫ 1

0

(
|a|ψ0(s)+ψN+1(s)

)
ds

Now, due to Gronwall’s Lemma [16, p. 17], we obtain

w(t)≤Ca exp max
r∈[0,1]

1
ϕ(r)

∫ t

0

(
N−1

∑
i=0

ψi(s)sα−i

Γ(α− i+1)
+ψN(s)

)
ds

Thus

|v(t)| ≤Ca exp max
r∈[0,1]

1
ϕ(r)

∫ t

0

(
N−1

∑
i=0

ψi(s)sα−i

Γ(α− i+1)
+ψN(s)

)
ds

(3.4)

Hence, by the Theorem on a priori bounds [16, p. 146], for
each fixed a ∈ R there exists at least one global solution v to
the IVP (3.2), i.e. v ∈ G. Moreover, by assumption (H1) and
(3.4), we have

|v(t)| ≤Ca expC < ∞ (3.5)

where

C = max
r∈[0,1]

1
ϕ(r)

∫ 1

0

(
N−1

∑
i=0

ψi(s)sα−i

Γ(α− i+1)
+ψN(s)

)
ds.

Thus all global solutions are bounded for t ∈ [0,1].
Now, let us consider the nonlinear operator T : R×G→

G, (a,v) 7→ Ta(v) defined as

Ta(v)(t)=
∫ t

0
f
(

s, a+ Iα

0+

( v
ϕ

)
(s), Iα−1

0+

( v
ϕ

)
(s), . . . ,

Iα−(N−1)
0+

( v
ϕ

)
(s),

( v
ϕ

)
(s)
)

ds. (3.6)

It is easy to see that T is well defined and continuous.
Using the Arzelà-Ascoli theorem under assumption (H1), we
get the following results.

Lemma 3.1. Let assumption (H1) hold. Then the operator T
is completely continuous .

Notice that the solution of the IVP (3.2) are fixed points
of the operator T defined by (3.6).

Let FixTa(.) denote the set of fixed points of operator Ta,
where a ∈ R is given.

FixTa(.) =
{

v ∈ G : Ta(v) = v
}
,

Now, let us define a map Φ : R→ G by

Φ(a) = FixTa(.). (3.7)

and define a map φ : G→ R by

φ(v) = v(1). (3.8)

then φ is continuous, linear and surjective.
Now, let a multifunction F :R→R be such that F = φ ◦Φ.

F(a) =
{

v(1) | v ∈ FixTa(.)
}
. (3.9)

Lemma 3.2. Let assumption (H1) hold. Then the set-valued
map Φ is USC with compact values.

Proof. The set valued map Φ is upper semi-continuous with
compact values if given a sequence (an) in R,an → a0 and
(vn) ∈Φ(an), (vn) has converging sub-sequence to some v0 ∈
Φ(a0). Taking any sequence (an),an → a0 and vn ∈ Φ(an),
we get

vn = Tan(vn). (3.10)
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Since (an) is bounded, by (3.5), we get that the fixed points
of Ta(.) are equibounded for any a. Hence the sequences (vn)
is bounded in G. From the Lemma 3.1 the operator T is com-
pletely continuous. Then, by (3.10), (vn) is relatively compact
in G. Hence (vn), has a sub-sequence (vnk) convergent to
some v0 ∈ G. Moreover,

vnk = Tank
(vnk).

On the other hand, ank → a0. From the continuity of T we
find when k tends to infinity

v0 = Ta0(v0).

So, v0 ∈Φ(a0). This achieves the proof.

Lemma 3.3. Let assumption (H1) hold. The set of all solu-
tions of the IVP (3.2) is an Rδ -set.

Proof. Let Ba =
{

v ∈G | ‖v‖∞ ≤Ca expC
}

. Define an opera-
tor g : Ba→G as g(v) = v−Ta(v). By lemma 3.1, Ta : Ba→G
is compact, g is compact vector field associated with Ta(.).
We shall prove that all the assumptions of Theorem 2.6 are
satisfied.

We define the sequence gn : Ba→ G as follows:

gn(v) = v−T n
a (v). (3.11)

Where, (T n
a (.)) is a sequence of continuous and compact map-

pings defined as follows :

T n
a (v)(t) = Ta(v)

(
θn(t)

)
, v ∈ Ba, n ∈ N∗. (3.12)

and θn is auxiliary mappings defined by

θn(t) =

{
0, t ∈

[
0, 1

n

]
,

t− 1
n , t ∈

] 1
n ,1
]
.

It satisfies

|θn(t)− t| ≤ 1
n
, for all t ∈ [0,1],n ∈ N∗. (3.13)

We see that gn is continuous and proper mappings. We
find from the compactness of (T n

a (.)), (3.11) and (3.13) that
T n

a (v)→ Ta(v) uniformly in Ba.
Now, we shall prove that gn is one to one map. Assume

that for some v,w ∈ Ba, we have gn(v) = gn(w). This means
that

v−w = T n
a (v)−T n

a (w).

If t ∈ [0, 1
n ], then we find

v(t)−w(t) = Ta(v)
(
θn(t)

)
−Ta(w)(θn(t))

= Ta(v)(0)−Ta(w)(0) = 0.

So, we get

v(t) = w(t) for t ∈ [0,
1
n
].

If t ∈
[ j

n ,
j+1
n

]
, j = 1, . . . ,n−1, then

θn(t) ∈
[ j−1

n
,

j
n

]
, θn
(
θn(t)

)
∈ [

j−2
n

,
j−1

n
].

And so on we get

θn ◦θn · · · ◦θn(t)︸ ︷︷ ︸
j times

∈
[
0,

1
n

]
,

and that implies

θn ◦θn · · · ◦θn(t)︸ ︷︷ ︸
j+1 times

= 0.

So, by the property of operator Ta(.) mentioned above and
(3.13), we find

Ta(v)(t) = lim
n→∞

T n
a (v)(θn(t)) = lim

n→∞
T n

a (v)
(
θn(θn(t))

)
= . . .

= lim
n→∞

T n
a (v)

(
θn ◦θn · · · ◦θn(t)︸ ︷︷ ︸

j times

)
= lim

n→∞
Ta(v)

(
θn ◦θn · · · ◦θn(t)︸ ︷︷ ︸

j+1 times

)
= 0.

So, Ta(v)(t) = Ta(w)(t) = 0 for t ∈
[ j

n ,
j+1
n

]
, thus we have

v(t) = w(t) for t ∈
[ j

n ,
j+1
n

]
, j = 1, . . . ,n−1. So, v(t) = w(t)

for t ∈ [0,1]. Hence, gn is one to one map. This means that
the assumptions of Theorem 2.6 hold and g−1(0) = FixTa(.).
is an Rδ set. The proof is complete.

Lemma 3.4. Let assumption (H1) hold. Then Φ is an Rδ -
map.

Proof. By lemma 3.2 and 3.3 the set valued map Φ is USC and
for any a ∈ R, the set FixTa(.) is an Rδ -set ( i.e Φ(a) ∈ Rδ ).
This means that, Φ is a Rδ -map.

Corollary 3.5. Under assumption (H1), F defined in (3.9) is
an admissible map in the sense of Theorem 2.7 (of the case n=
1).

Theorem 3.6. Under assumptions (H1) and (H2), then the
BVP (1.1) has at least one solution.

Proof. Let v ∈ FixTa(.) be a bounded global solution of IVP
(3.2). Observe that u(t) = a+ Iα

0+

(
v
ϕ

)
(t) is a solution of the

BVP (1.1) if there exists a ∈ R such that 0 ∈ F(a). It remains
to show the condition (2.1) or (2.2) of Theorem 2.7 .

Let a = η + 1, where η is as in (H2). First, we will
show that v(t) ≥ 0, t ∈ [0,1]. Notice that v(0) = 0. Assume
that for some t ∈ [0,1] we have v(t) < 0. Then there exists
t0 = inf

{
t ∈ [0,1] : v(t)< 0

}
such that v(t0) = 0 and v(t)> 0

for t < t0. Consequently, since
( v

ϕ

)
(.) is continuous function,

there exists t1 > t0 such that∫ t

t0
(t− s)α−1

∣∣∣( v
ϕ

)
(s)
∣∣∣ds < Γ(α), t ∈ [t0, t1]
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so

a− 1
Γ(α)

∫ t

t0
(t− s)α−1

∣∣∣( v
ϕ

)
(s)
∣∣∣ds≥ η , t ∈ [t0, t1],

thus,

a+
1

Γ(α)

∫ t

t0
(t− s)α−1

( v
ϕ

)
(s)ds≥ η , t ∈ [t0, t1],

we get

u(t) = a+
1

Γ(α)

∫ t

0
(t−s)α−1

( v
ϕ

)
(s)ds≥ η , t ∈ [t0, t1].

Now, by assumption (H2), we find

u(t). f
(
t,u(t),u′(N−1)(t),CDα

0+u(t)
)
≥ 0, t ∈ [t0, t1].

Consequently

u(t).v′(t)≥ 0, t ∈ [t0, t1].

Thus, v′(t) ≥ 0 for t ∈ [t0, t1]. This implies that v(t) is non-
decreasing on [t0, t1]. Since v(0) = 0, we have v(t) ≥ 0 for
t ∈ [t0, t1], we get a contradiction. Hence v(t) ≥ 0, for all
t ∈ [0,1]. So, a.v(1)≥ 0.

Let a=−η−1, in the same previous way we find v(t)≤ 0,
for all t ∈ [0,1]. Thus, a.v(1)≥ 0.

Consequently, for each v(1) ∈ F(a) with |a|= η +1, one
has

a.v(1)≥ 0. (3.14)

Therefore, the condition (2.1) of Theorem 2.7 is satisfied for
A= η+1. Hence, there exists a∈ [−A,A] such that, 0∈F(a),
i.e. CDα

0+u(1) = 0. The proof is finished.
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