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On solving linear Fredholm integro-differential
equations via finite difference-Simpson’s approach
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Abstract
In this paper, a combination of Finite difference-Simpson’s approach were applied to solve Linear Fredholm
integro-differential equations of second kind by discritising the unknown function, which leads in generating a
system of linear algebraic equations. The numerical results obtained from the proposed method were compared
with exact solutions of the tested problems which show that the method derived is effective and promising when
compared with some existing method in the literature and error estimation of the scheme was derived.
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1. Introduction
Mathematical modeling of real life problems often re-

sult in functional equations such as differential, integral and
integro-differential equations. Many mathematical formula-
tion of physical phenomena reduced to integro-differential
equations like Fluid dynamics, Biological models and chemi-
cal kinetics [7, 14, 15].

In general, the exact solution of integro-differential equa-
tions is difficult to obtain. Therefore, that is why there have
been a great attention by many researchers on how to obtain
an approximate solution of integro-differential equations of
different kind such as [2, 4, 7, 8, 13]. Nevertheless these meth-
ods require more effort and usually they are meant for special
types of integro-differential equation problems. We consider

a Linear integro-differential equation of the form:

u′(x) = f (x)+λ

∫ b

a
k(x, t)u(t)dt, u0 = α. (1.1)

where a,b and λ are constants, f (x) and k(x, t) are known
function with k(x, t) is the kernel and u is the unknown func-
tion to be determined.

Darania and Ebadian [2] studied first order linear Fred-
holm Integro-differential equations, a Differential transform
based on Taylor’s series expansion has been successfully em-
ployed to obtained the approximate solution and provide ap-
plicable relation between the one and two dimensional trans-
formation,numerical examples were given to show the effec-
tiveness of the method. According to Danfu. H and Xufeng.
[4] used a cos and sine (CAS) wavelet operational matrix of
integration method was used to reduce IDEs into a system of
linear equations. Numerical results showed that CAS wavelet
method is better than a Differential Transform method.

Vahidi et.al [8] applied Adomian’s decomposition method
(ADM) and comparison was made wtih two different Numeri-
cal methods; CAS wavelet and Differential Transform, which
showed that ADM gave a better approximation and is more
efficient.

Tamamagar M. [13] obtained numerical solution of lin-
ear Fredholm integro-differential equations via Parametric



On solving linear Fredholm integro-differential equations via finite difference-Simpson’s approach — 470/472

iteration method (PIM), some examples were considered and
convergence analysis was studied.

Moreover, In this paper we propose a Finite difference-
Simpson’s approach to solve equation (1.1) by transforming
the equation into a system of linear equations. Comparison
were made with exact solution and two different methods
presented in the literature. The remainder of the paper is
organized as follows: In Section 2, we presented the derivation
of the method. Error estimation of the scheme was proved in
section 3, and numerical results were provided in section 4.
Section 5 gives the conclusion.

2. Derivation of the Method
We defined N finite points of the domain [a,b] of (1.1) as

a = t0 < t1 < ... < tN−1 < tN = b using uniform step length

h =
b−a

N
, such that xi = a+ ih, i = 1,2, ...,N.

To obtain numerical solution, we use Finite difference on
the differential part and composite Simpson’s on the integral
part of (1.1). Now using Composite Simpson’s with N subin-
tervals and t ∈ [a,b], the integral part of (1.1) is approximated
by

∫ b

a
k(x, t)u(t)dt ≈ h

3
[k(x, t0)u(t0)+4k(x, t1)u(t1)+

...+4k(x, tN−1)u(tN−1)+ k(x, tN)u(tN)].

By discritizing along x and taking u′i = u′(xi), k(xi, ti) =
ki j, we have

u′i = fi +
h
3
[ki0u0 +4ki1u1 +2ki2u2...+2kiN2uN−2

+4kiN−1uN−1 + kiNuN ], (2.1)

using Central difference we can approximate the deriva-
tive part of (2.1) as

u′i =
ui+1−ui−1

2h
, i = 1,2, ...,N−1.

and at the end point N we use second Backward Finite
difference

u′i =
3uN−4uN−1 +uN−2

2h
, i = N,

and by replacing u′i in (2.1) we have

for i = 1,2, ...,N−1.

ui+1−ui−1

2h
= fi +

h
3
[ki0u0 +4ki1u1 +2ki2u2 +

...+4kiN−1uN−1 + kiNuN ], (2.2)

and for i = N

3uN−4uN−1 +uN−2

2h
= fN +

h
3
[kN0u0 +4kN1u1 +2kN2u2 +

...+4kNN−1uN−1 + kNNuN ], (2.3)

using the above equations (2.2) and (2.3), we can generate
a systems of equations for u1,u2, ...,uN which can be repre-
sent in a matrix form

MU=W

M =



A11 B12 +1 A13 ... A1N−1 C1N
A21 −1 B22 A23 +1 ... A1N−1 C2N
A31 −1 B32 −1 A33 ... A3N−1 C3N

. . . . . .

. . . . . .

. . . . . .
AN−21 BN−22 AN−23 ... AN−2N−1 +1 CN−2N
AN−11 BN−12 AN−13 ... AN−1N−1 CN−1N +1

AN1 BN2 AN3 ... ANN−1 −4 CNN +3


,

U =


u1
u2
.
.
.

uN

 ,

W =



2h f1 +( 2
3 h2k10)u0

2h f2 + 2
3 h2k20u0
.
.

2h fN−1 + 2
3 h2kN−10u0

2h fN + 2
3 h2kN0u0


,

and we define Ai j =− 8
3 h2ki j, Bi j =− 4

3 h2ki j, Ci j =− 2
3 h2ki j.

3. Error Estimation
Theorem 3.1. Suppose that µ1,µ2,µ3 ∈ (a,b) such that the
errors e1 of central difference, e2 of second backward differ-
ence approximation and e3 of Simpson’s rule respectively are
given by h2

6 u(3)(µ1), h2

4 u(4)(µ3) and (b−a)
180 h4u(4)(µ2). Then

the error estimation of approximate solution of linear Fred-
holhm integro-differential equation (1.1) obtained by the scheme
(2.2) and (2.3) is given by

e≤ 5(b−a)2

12N2 G (3.1)

where G = max{u3(µ1),u4(µ2),u4(µ3)} and N is the number
of subinterval.

Proof. From the problems of LFIDES (2.2) and (2.3), the
exact solution after discritising for i = 1,2, ...,N−1.

ui+1−ui−1

2h
+

h2

6
u(3)(µ1) = fi +

h
3
[ki0u0 + ...+ kiNuN ]

+
b−a
180

h4u(4)(µ2), (3.2)
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and for i = N

3uN−4uN−1 +uN−2

2h
+

h2

4
u(4)(µ3)

= fN +
h
3
[kN0u0 + ...+ kNNuN ] (3.3)

+
(b−a)

180
h4u(4)(µ2), (3.4)

where µ1,µ2,µ3 ∈ (a,b). Subtract (2.2), (2.3) from (3.2),
(3.3), we obtained the error term as follows:

e =
∣∣∣∣h2

6
u(3)(µ1)+

h2

4
u(4)(µ3)−2

(b−a)
180

h4u(4)(µ2)

∣∣∣∣ ,
=

∣∣∣∣h2

6
u(3)(µ1)+

h2

4
u(4)(µ3)−

(b−a)
90

h4u(4)(µ2)

∣∣∣∣ ,
≤
∣∣∣∣h2

6
u(3)(µ1)+

h2

4
u(4)(µ3)

∣∣∣∣ .
Let G1 = u(3)(µ1) and G2 = u(4)(µ3), we have

e≤
∣∣∣∣h2

6
G1 +

h2

4
G2

∣∣∣∣ ,
If we take G = max{G1,G2}, then we have

e≤
∣∣∣∣h2

6
G+

h2

4
G
∣∣∣∣ ,

≤
∣∣∣∣5h2

12
G
∣∣∣∣ , (3.5)

substituting h =
b−a

N
in (3.5) we get

e≤
∣∣∣∣5(b−a)2

12N2 G
∣∣∣∣ , (3.6)

which is the error estimation. Hence the proposed scheme is
of second order convergence.

4. Numerical Examples
In this section, we presented some problems of linear Fred-

holm integro-differential equations and applied the proposed
method of finite difference-Simpson’s approach to obtain the
numerical solution, N = 10 was used in all the examples. The
results obtained are compared in terms of absolute errors. A
comparison between our method and two different methods
of [2] and [13] are presented.

Example 4.1. Consider LFIDE equation:

u′(x) = xex + ex− x+
∫ 1

0
xu(t)dt, u(0) = 0, (4.1)

Table 1. The exact and approximate solution of Example 4.1
xi Exact solution FDSM Abs. error

0.1 0.1105170918 0.1088364750 1.6806E-3
0.2 0.2442805516 0.2430225346 1.2580E-3
0.3 0.4049576424 0.4017429978 3.2146E-3
0.4 0.5967298792 0.5936406224 3.0893E-3
0.5 0.8243606355 0.8189936476 5.3670E-3
0.6 1.093271280 1.087681668 5.5896E-3
0.7 1.409626895 1.401381265 8.2456E-3
0.8 1.780432742 1.771552116 8.8806E-3
0.9 2.213642800 2.201655459 1.1987E-2
1 2.718281828 2.705165692 1.3116E-2

Table 2. Comparison of the absolute errors of differential
transform (DTrans f ), parametric iteration method (PIM)
and finite difference simpson method (FDSM) of Example
4.1

xi DTrans f [2] PIM [13] Abs. error of FDSM
0.1 1.00118319E-2 1.10517092E-1 1.6806E-3
0.2 2.78651355E-2 2.44280552E-1 1.2580E-3
0.3 5.08730892E-2 4.04957642E-1 3.0893E-3
0.4 7.55356316E-2 5.96729879E-1 3.0893E-3
0.5 9.71888952E-2 8.24360635E-1 5.3670E-3
0.6 1.09551714E-1 1.09327129E-0 5.5896E-3
0.7 1.04133232E-1 1.40962689E-0 8.2456E-3
0.8 1.94512700E-2 1.78043274E-0 8.8806E-3
0.9 1.0034260E-2 2.21364280E-0 1.1987E-2
1.0 1.55147712E-1 - 1.3116E-2

with exact solution u(x) = xex. We obtain the numerical
result, exact solution and absolute error at different values of
x which is represented in Table 1.
Table 1 shows the exact solution of problem in Example 4.1
and the approximate solution obtained by our method. The
absolute error obtained indicated that our method can give
good approximation to Linear Fredholm Integro-Differential
Equations of second kind.
In Table 2 the absolute errors obtained from DTrans f and PIM are
compared with absolute error obtained from our FDSM method and
the numerical results show that our method is more accurate.

Example 4.2. consider LFIDE equation:

u′(x) = 1+
1− ex+1

x+1
+
∫ 1

0
extu(t)dt, u(0) = 1, (4.2)

with exact solution u(x) = ex. We used maple to compute
the numerical solution at different values of x as shown in
Table 3
Table3 shows the exact solution of problem in Example 4.2 and
the approximate solution obtained by our method and from the
absolute error obtained it indicated that our method can give
good approximation of Linear Fredholm Integro-Differential
Equations of second kind.

5. Conclusion
In this paper, a Finite difference-Simpson’s approach was

used to solve linear Fredholm integro differential equations
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Table 3. The exact and approximate solution of Example 4.2
xi Exact solution FDSM Abs. error of FDSM

0.1 1.105170918 1.081849538 2.33E-2
0.2 1.221402758 1.178615322 4.28E-2
0.3 1.349858808 1.297756098 5.21E-2
0.4 1.491824698 1.434534859 5.73E-2
0.5 1.648721271 1.596984604 5.17E-2
0.6 1.822118800 1.780935610 4.12E-2
0.7 2.013752707 1.995000966 1.87E-2
0.8 2.225540928 2.235618721 1.01E-2
0.9 2.459603111 2.512049535 5.24E-2
1 2.718281828 2.821429404 1.03E-1

(LFIDES). Error estimation of the scheme was derived, which
show that the scheme is of second order convergence. How-
ever, the numerical results were presented in terms of absolute
error and comparison was made with methods of DTrans f
in [2] and PIM in [13], the errors obtained showed that the
derived method is good tool for approximating Linear integro-
differential equation.
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