

https://doi.org/10.26637/MJM0802/0025

Induced V₄-magic labeling of cycle related graphs

K.B. Libeeshkumar^{1*} and V. Anil Kumar²

Abstract

Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0 and G = (V, E) be a graph. Let $f: V \to V_4$ be a vertex labeling and $f^*: E \to V_4$ be the induced edge labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a vertex labeling say $f^{**}: V \to V_4$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph G = (V, E) is said to be an Induced V_4 -Magic Graph (IMG) if there exists a non zero labeling $f: V \to V_4$ such that $f \equiv f^{**}$. The function f, so obtained is called an Induced V_4 -Magic labeling (IML) of G and a graph which has no such induced magic labeling is called a non-induced magic graph. In this paper, we discuss Induced V_4 - magic labeling of some cycle related graphs.

Keywords

Klein-4-group, Induced V₄-magic graphs

AMS Subject Classification

05C78, 05C25.

^{1,2} Department of Mathematics University of Calicut, Malappuram, Kerala-670007, India.
 *Corresponding author: ¹ libeesh123@gmail.com; ²anil@uoc.ac.in
 Article History: Received 12 December 2019; Accepted 11 March 2020

Contents

1	Introduction
2	Main Results
3	Cycle related graphs
	References

1. Introduction

This paper deals with only finite, un directed simple and connected graphs. We refer [1] for the phrasing and standard notations related to graph theory. The Klein 4-group is denoted by $V_4 = \{0, a, b, c\}$, which is a non cyclic abelian group of order 4 with every non identity element has order 2. Let G = (V, E), be the graph with vertex set V and edge set E. Let $f: V \to V_4$ be a vertex labeling and $f^*: E \to V_4$ be the induced edge labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a vertex labeling say $f^{**}: V \to V_4$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph G = (V, E) is said to be an induced V_4 -Magic graph denoted by IMV₄G or simply IMG if there exists a non zero labeling $f: V \to V_4$ such that $f \equiv f^{**}$. The function f, so obtained is called a induced V_4 -Magic labeling of G or simply induced

Magic labeling of *G* and it is denoted by IMV_4L or simply IML. In this paper we discuss some cycle related Induced V_4

magic graphs that belongs to the following categories:

- (i) $\Gamma(V_4) :=$ class of all induced V_4 -magic graphs.
- (ii) Γ_{k,0}(V₄) := class of all induced V₄-magic graphs with induced magic labeling *f* satisfies f(V(G)) = {k,0} for some k ∈ V₄.

©2020 MJM.

2. Main Results

Theorem 2.1. (*See*[4]) If f is an induced magic labeling of a graph G and u be a pendant vertex adjacent to a vertex v in G, then f(v) = 0.

Corollary 2.2. (See[4]) If f is an induced magic labeling of a graph G and wuvz is a path in G with w and z are pendant vertices in G, then $f^*(uv) = 0$.

Theorem 2.3. (See[4]) Let f be any vertex labeling of a graph G and u, be a vertex in G with deg(u) = m. Then f is an induced magic labeling of G if and only if $(m-1)f(u) + \Sigma f(v) = 0$ where the summation is taken over all the vertices v which are adjacent to u.

Corollary 2.4. [Degree sum equation of a vertex]

Let f be any vertex labeling of a graph G and u, be a vertex in G with deg(u) = m. Then f is an induced V₄magic labeling if and only if $f(u) + \Sigma f(v) = 0$ or $\Sigma f(v) = 0$ according as deg(u) = m is even or odd, where the summation is taken over all the vertices v which are adjacent to u.

Proof. From the above theorem we have f is an induced V_4 magic labeling of G if and only if $(m-1)f(u) + \Sigma f(v) = 0$, where v is adjacent to u, then the result follows directly from the fact that $f(u) \in V_4$.

3. Cycle related graphs

Theorem 3.1. (*See*[4]) $C_n \in \Gamma(V_4)$ if and only if $n \equiv 0 \pmod{3}$.

Corollary 3.2. (See[4]) $C_n \in \Gamma_{a,0}(V_4)$ if and only if $n \equiv 0 \pmod{3}$.

Definition 3.3. (See [3]) The sum of the graphs C_n and K_1 is called a Wheel graph and it is denoted by W_n , that is $W_n = C_n + K_1$.

Theorem 3.4. *The Wheel graph* $W_n \in \Gamma(V_4)$ *if and only if n is even.*

Proof. Let $V(W_n) = \{w, v_1, v_2, v_3, \dots, v_n\}$, where *w* is the central vertex. Suppose *n* is even, then n = 4k or 4k + 2 for some positive integer *k*.

Case 1: n = 4k

In this case, define $f: V(W_n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = v_1, v_3, v_5, \cdots v_{4k-1} \\ b & \text{if } v = v_2, v_4, v_6, \cdots v_{4k} \end{cases}$$

Case 2: n = 4k + 2

In this case, define $f: V(W_n) \rightarrow V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = v_i \end{cases}$$

then, in both case we can verify that f is an induced V_4 magic labeling of W_n . Conversely suppose n is an odd number, if f is an induced V_4 magic labeling of W_n then by the degree sum equation of vertices in W_n , f must satisfy the following system of equations.

$$f(v_2) + f(v_n) + f(w) = 0$$

$$f(v_1) + f(v_3) + f(w) = 0$$

$$f(v_2) + f(v_4) + f(w) = 0$$

$$f(v_3) + f(v_5) + f(w) = 0$$

$$\vdots$$

$$f(v_1) + f(v_{n-1}) + f(w) = 0$$

$$f(v_1) + f(v_3) + \dots + f(v_n) = 0$$

From the system of equations we have, $f(v_1) = f(v_2) = f(v_3) = \cdots = f(v_n)$, thus from the last equation we have $nf(v_i) = 0$, for $i = 1, 2, 3, \cdots, n$. Since *n* is odd this happens

only when $f(v_i) = 0$ for $i = 1, 2, 3, \dots, n$. Using this in the first equation of the above system of equations we have f(w) = 0 also. Thus in this case $f \equiv 0$, hence f is not an Induced V_4 magic labeling.

Corollary 3.5. $W_n \in \Gamma_{a,0}(V_4)$ if and only if *n* is even.

Proof. Let $V(W_n) = \{w, v_1, v_2, v_3, \dots, v_n\}$, where *w* is the central vertex. Suppose *n* is even number. Define $f : V(W_n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = v \end{cases}$$

Then we can verify that f is an induced V_4 magic labeling of W_n . Converse part follows from the above theorem.

Definition 3.6. (See [3]) The helm H_n is a graph obtained from a wheel W_n by attaching a pendent edge at each vertex of the n-cycle.

Theorem 3.7. *The Helm graph* $H_n \in \Gamma(V_4)$ *if and only if n is odd.*

Proof. Let $V(H_n) = \{w, v_1, v_2, v_3, \dots, v_n, w_1, w_2, w_3, \dots, w_n\}$, where *w* be the central vertex and $w_1, w_2, w_3, \dots, w_n$ be the pendent vertices adjacent to $v_1, v_2, v_3, \dots, v_n$. Suppose *n* is odd,then define $f : V(W_n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = v_1, v_2, v_3, \cdots , v_n \\ a & \text{if } v = w, w_1, w_2, w_3, \cdots , w_n \end{cases}$$

Then clearly f is an induced V_4 magic labeling of H_n . Conversely suppose n is an even number, if f is an induced V_4 magic labeling of H_n then by the degree sum equation of vertices in H_n , f must satisfy the following system of equations.

$$f(v_i) = 0 \text{ for } i = 1, 2, 3, \cdots, n$$

$$f(w) + f(w_i) = 0 \text{ for } i = 1, 2, 3, \cdots, n$$

$$f(w) = 0$$

Thus $f(v_i) = f(w_i) = f(w) = 0$, that is $f \equiv 0$. Hence f is not an Induced V_4 magic labeling.

From the proof of above theorem we have the following corollary

Corollary 3.8. *If n an odd number then* $H_n \in \Gamma_{a,0}(V_4)$ *.*

Definition 3.9. (See [3]) The Web graph W(2,n) is a graph obtained by joining the pendent points of a helm to form a cycle and then adding a single pendent edge to each vertex of this outer cycle.

Theorem 3.10. *The Web graph* $W(2,n) \in \Gamma(V_4)$ *if and only if* $n \equiv 0 \pmod{3}$.

Proof. Let $\{w, u_i, v_i, w_i/i = 1, 2, 3, \dots, n\}$, be the vertex set of W(2, n), where *w* is the central vertex, $u_1, u_2, u_3, \dots, u_n$ are the vertices of inner cycle, $v_1, v_2, v_3, \dots, v_n$ are the vertices of outer cycle and $w_1, w_2, w_3, \dots, w_n$ are the pendent vertices

adjacent to $v_1, v_2, v_3, \dots, v_n$ of W(2, n). Suppose $n \equiv 0 \pmod{3}$, then define $f : V(W(2, n)) \rightarrow V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w, v_1, v_2, v_3, \cdots, v_n \\ a & \text{if } v = u_i, w_i, \text{ for } i \equiv (1 \mod 3) \\ b & \text{if } v = u_i, w_i, \text{ for } i \equiv (2 \mod 3) \\ c & \text{if } v = u_i, w_i, \text{ for } i \equiv (0 \mod 3) \end{cases}$$

Then clearly *f* is an induced V_4 magic labeling of W(2,n). Conversely suppose that $n \neq 0 \pmod{3}$, then n = 3k + 1 or 3k + 2 for some positive integer *k*. If possible suppose *f* is an induced V_4 magic labeling of W(2,n) then by the degree sum equation of vertices in W(2,n), *f* must satisfy the following system of equations.

$$f(v_i) = 0 \text{ for } i = 1, 2, 3, \cdots, n$$

$$f(u_1) + f(u_2) + f(u_n) + f(w) = 0$$

$$f(u_1) + f(u_2) + f(u_3) + f(w) = 0$$

$$\vdots$$

$$f(u_2) + f(u_3) + f(u_4) + f(w) = 0$$

$$\vdots$$

$$f(u_1) + f(u_{n-1}) + f(u_n) + f(w) = 0$$

$$f(u_i) + f(w_i) = 0 \text{ for } i = 1, 2, 3, \cdots, n$$

$$(n-1)f(w) + \sum_{i=1}^n f(u_i) = 0.$$

Since n = 3k+1 or 3k+2, from the above system of equations we have, $f(v_i) = 0$, $f(u_i) = f(w_i)$, $f(u_1) = f(u_2) = f(u_3) = \cdots = f(u_n)$ and $(n-1)f(w) + nf(u_i) = 0$ for $i = 1, 2, 3, \cdots, n$.

Case 1: n = 3k + 1

Subcase 1: k is even

Note that k is even implies n = 3k + 1 is odd. Therefore the equation $(n-1)f(w) + nf(u_i) = 0$ for $i = 1, 2, 3, \dots, n$ reduces to $f(u_i) = 0$ for $i = 1, 2, 3, \dots, n$. Hence in this case $f(u_i) = f(v_i) = f(w_i) = f(w_i) = 0$.

Subcase 2: k is odd

Note that k is odd implies n = 3k + 1 is even. Thus the equation $(n-1)f(w) + nf(u_i) = 0$ for $i = 1, 2, 3, \dots, n$ reduces to f(w) = 0. Thus from the system of equations we have, $f(u_i) = 0$. Hence in this case also, $f(u_i) = f(v_i) = f(w_i) = f(w) = 0$.

Case 2:
$$n = 3k + 2$$

Subcase 1: k is even

Note that k is even implies n = 3k + 2 is even. Thus the equation $(n-1)f(w) + nf(u_i) = 0$ for $i = 1, 2, 3, \dots, n$ reduces to f(w) = 0. Thus from the system of equations we have, $f(u_i) = 0$. Hence in this case $f(u_i) = f(v_i) = f(w_i) = f(w) = 0$.

Subcase 2: k is odd

Note that *k* is odd implies n = 3k + 2 is odd.

Therefore the equation $(n-1)f(w) + nf(u_i) = 0$ for $i = 1, 2, 3, \dots, n$ reduces to $f(u_i) = 0$ for $i = 1, 2, 3, \dots, n$. Hence in this case also $f(u_i) = f(v_i) = f(w_i) = f(w) = 0$.

Hence in both case we have $f \equiv 0$, that is f is not an Induced V_4 magic labeling.

Definition 3.11. (See [3]) A closed helm CH_n is a graph obtained from a helm by joining each pendent vertex to form a cycle.

Theorem 3.12. *The closed helm* $CH_n \in \Gamma(V_4)$ *for n is odd.*

Proof. Let $V(CH_n) = \{w, v_1, v_2, v_3, \dots, v_n, w_1, w_2, w_3, \dots, w_n\}$, where *w* be the central vertex and $w_1, w_2, w_3, \dots, w_n$ be the pendant vertices adjacent to $v_1, v_2, v_3, \dots, v_n$ in corresponding H_n . Suppose *n* is odd, then define $f : V(CH_n) \rightarrow V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = v_1, v_2, v_3, \cdots v_n \\ a & \text{if } v = w, w_1, w_2, w_3, \cdots, w_n \end{cases}$$

Then f is an IML of CH_n . Hence the proof.

Corollary 3.13. $CH_n \in \Gamma_{a,0}(V_4)$ for *n* is odd.

Proof. Follows directly from the proof of above theorem. \Box

Definition 3.14. (See [3]) A Flower graph Fl^n is a graph obtained from a helm by joining each pendent vertex to the central vertex of the helm.

Theorem 3.15. *The Flower graph* $Fl^n \in \Gamma(V_4)$ *for all* n*.*

Proof. Let $V(Fl^n) = \{w, u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n, \}$, where *w* is the central vertex, $u_1, u_2, u_3, \dots, u_n$ are the vertices of corresponding cycle and $v_1, v_2, v_3, \dots, v_n$ are the vertices adjacent to the central vertex *w*.

Case 1: n is odd

In this case, define $f: V(Fl^n) \to V_4$ as :

$$f(v) = \begin{cases} a & \text{if } v = w \\ b & \text{if } v = u_i \\ c & \text{if } v = v_i \end{cases}$$

Case 2: n is even

In this case, define $f: V(Fl^n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = u_i, v_i \text{ for } i \text{ is odd} \\ b & \text{if } v = u_i, v_i \text{ for } i \text{ is even} \end{cases}$$

Then, in both case we can verify that f is an induced V_4 magic labeling of Fl^n .

Corollary 3.16. $Fl^n \in \Gamma_{a,0}(V_4)$ for all n.

Proof. Let $V(Fl^n) = \{w, u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n, \}$, where *w* is the central vertex, $u_1, u_2, u_3, \dots, u_n$ are the vertices of corresponding cycle and $v_1, v_2, v_3, \dots, v_n$ are the vertices adjacent to the central vertex *w*. Define $f : V(Fl^n) \rightarrow V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = u_i, v_i \end{cases}$$

Then one can easily verify that f is an IML of Fl^n . Hence the proof.

Definition 3.17. (See [3]) A Gear graph is a graph G_n obtained from the wheel W_n by adding a vertex between every pair of adjacent vertices of the n-cycle.

Theorem 3.18. *The Gear graph* $G_n \in \Gamma(V_4)$ *if and only if n is even.*

Proof. Let $V(G_n) = \{w, u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n, \}$, where *w* is the central vertex, $u_1, u_2, u_3, \dots, u_n$ are the vertices of the corresponding Wheel graph W_n and $v_1, v_2, v_3, \dots, v_n$ are the remaining vertices with $u_i v_i, v_i u_{i+1} \in E(G_n)$ where *i* is taken modulo *n*.

Suppose *n* is even, then define $f: V(G_n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = u_i \text{ for } i \text{ is odd} \\ b & \text{if } v = u_i \text{ for } i \text{ is even} \\ c & \text{if } v = v_i \end{cases}$$

Then we can easily verify that this f is an induced V_4 magic labeling of G_n . Conversely suppose that n is an odd number. Then by the degree sum equation of vertices in G_n we have: if f is an induced V_4 magic labeling of G_n then f must satisfy the following system of equations.

$$f(v_1) + f(v_2) + f(w) = 0$$

$$f(v_2) + f(v_3) + f(w) = 0$$

$$\vdots$$

$$f(v_{n-1}) + f(v_n) + f(w) = 0$$

$$f(v_n) + f(v_1) + f(w) = 0$$

$$f(u_1) + f(u_2) + f(u_3) + \dots + f(u_n) = 0$$

$$f(v_1) + f(u_1) + f(u_2) = 0$$

$$f(v_2) + f(u_2) + f(u_3) = 0$$

$$f(v_3) + f(u_3) + f(u_4) = 0$$

$$\vdots$$

$$f(v_n) + f(u_n) + f(u_1) = 0$$

Since *n* is odd the equations corresponding to the vertices $u_1, u_2, u_3, \cdot, u_n$ (that is the first *n* equations)implies that $f(v_1) = f(v_2) = f(v_3) = \cdots = f(v_n)$, substituting these in the above system of equations we get f(w) = 0. Now using the fact

n is odd and $f(v_1) = f(v_2) = f(v_3) = \cdots = f(v_n)$, the last *n* equations in the above system of equations implies that $f(u_1) = f(u_2) = f(u_3) = \cdots = f(u_n)$. Substituting these in the equation $f(u_1) + f(u_2) + f(u_3) + \cdots + f(u_n) = 0$ we get $f(u_i) = 0$, for $i = 1, 2, 3, \cdots, n$ which implies $f(v_i) = 0$, $i = 1, 2, 3, \cdots, n$. Hence $f \equiv 0$, that is *f* is not an induced V_4 magic labeling.

Definition 3.19. (See [3]) A Fan graph is denoted by F_n and is defined as $P_n + K_1$, where P_n is the path graph with n vertices.

Theorem 3.20. *The Fan graph* $F_n \in \Gamma(V_4)$ *for n is even.*

Proof. Suppose *n* is an even number. we have $F_n = P_n + K_1$. Let $V(F_n) = \{w, v_1, v_2, v_3, \dots, v_n, \}$, where *w* is the vertex of K_1 and $v_1, v_2, v_3, \dots, v_n$, be the vertices of P_n . Then define $f : V(F_n) \to V_4$ as follows :

$$f(v) = \begin{cases} 0 & \text{if } v = w \\ a & \text{if } v = v_i, \text{ for } i = 1, 2, 3, \cdots, n. \end{cases}$$

Then we can easily verify that this f is an induced V_4 magic labeling of F_n . Hence the proof follows.

Definition 3.21. (See [3]) A Flag graph is denoted by Fl_n and is obtained by joining one vertex of C_n to an extra vertex called the root.

Theorem 3.22. The Flag graph $Fl_n \in \Gamma(V_4)$ if and only if $n \equiv 0 \pmod{3}$.

Proof. Let $V(Fl_n) = \{w, v_1, v_2, v_3, \dots, v_n, \}$, where v_i for $i = 1, 2, 3, \dots, n$, is the vertex of corresponding cycle graph C_n and w is the root vertex adjacent to the vertex v_1 .

Suppose $n \equiv 0 \pmod{3}$, then define $f : V(Fl_n) \to V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = v_i, i \equiv 1 \pmod{3} \\ a & \text{if } v = v_i, i \equiv 0, 2 \pmod{3} \\ 0 & \text{if } v = w \end{cases}$$

Then we can easily verify that this f is an induced V_4 magic labeling of Fl_n .

Conversely suppose that $n \neq 0 \pmod{3}$. If possible suppose f is an induced V_4 magic labeling of Fl_n , then by the degree sum equation of vertices w and v_i in Fl_n , f must satisfy the following system of equations.

$$f(v_1) = 0$$

$$f(v_2) + f(v_n) + f(w) = 0$$

$$f(v_2) + f(v_3) = 0$$

$$f(v_2) + f(v_3) + f(v_4) = 0$$

$$f(v_3) + f(v_4) + f(v_5) = 0$$

$$\vdots$$

$$f(v_{n-2}) + f(v_{n-1}) + f(v_n) = 0$$

$$f(v_{n-1}) + f(v_n) = 0$$

Note that $n \not\equiv 0 \pmod{3}$ implies that n = 3k + 1 or n = 3k + 2for some integer k, also from the above system of equations we have $f(v_1) = f(v_{n-2}) = 0$ and $f(v_2) = f(v_3)$. Using these facts we can prove that $f(v_1) = f(v_2) = f(v_3) = \cdots =$ $f(v_n) = 0$ and f(w) = 0. Hence f is not an induced V₄ magic labeling.

Hence the proof follows.

Definition 3.23. (See [3]) A Sunflower graph is denoted by SF_n and is obtained by taking a wheel with the central vertex v_0 and the n-cycle $v_1, v_2, v_3, \dots, v_n$ and additional vertices $w_1, w_2, w_3, \cdots, w_n$ where w_i is joined by edges to v_i, v_{i+1} where i + 1 is taken modulo n.

Theorem 3.24. *The Sun flower graph* $SF_n \in \Gamma(V_4)$ *, for n is* even.

Proof. Suppose the given Sun flower graph is obtained by taking a wheel graph with the central vertex v_0 , the *n*-cycle $v_1, v_2, v_3, \cdots, v_n$ and additional vertices $w_1, w_2, w_3, \cdots, w_n$ where w_i is joined by edges to v_i, v_{i+1} , where i+1 is taken modulo n.

Suppose *n* is even, then define $f: V(SF_n) \rightarrow V_4$ as :

$$f(v) = \begin{cases} 0 & \text{if } v = v_0, w_i & \text{for } i = 1, 2, 3, \cdots, n \\ a & \text{if } v = v_i & \text{for } i = 1, 2, 3, \cdots, n \end{cases}$$

Then we can easily prove that f is an induced V_4 magic labeling of SF_n .

From the proof of above theorem we have the following corollary.

Corollary 3.25. If n is even then the Sun flower graph $SF_n \in$ $\Gamma_{a,0}(V_4).$

Definition 3.26. (See [3]) Jelly fish graph J(m,n) is obtained from a 4-cycle $v_1v_2v_3v_4v_1$ by joining v_1 and v_3 with an edge and appending the central vertex of $K_{1,m}$ to v_2 and appending the central vertex of $K_{1,n}$ to v_4 .

Theorem 3.27. The Jelly fish $J(m,n) \in \Gamma(V_4)$ for all m and n.

Proof. Consider the Jelly fish graph with $V(J(m, n)) = \{v_k | k =$ $1,2,3,4\} \cup \{u_i/i=1,2,3,\cdots,m\} \cup \{w_j/j=1,2,3,\cdots,n\}$ where v_i 's are the vertices of C_4 and u_i, w_j are the vertices of corresponding $K_{1,m}$ and $K_{1,n}$ respectively. Now consider the following cases:

Case 1 : both *m* and *n* are odd.

Define $f: V(J(m,n)) \rightarrow V_4$ as:

$$f(v) = \begin{cases} 0 & \text{if } u_1, w_1, v = v_k, \text{ for } k = 1, 2, 3, 4 \\ a & \text{if } v = u_i, \text{ for } i = 2, 3, 4, \cdots, m \\ a & \text{if } v = w_j, \text{ for } j = 2, 3, 4, \cdots, n \end{cases}$$

Case 2 : *m* and *n* are even.

Define
$$f: V(J(m,n)) \rightarrow V_4$$
 as:

$$f(v) = \begin{cases} 0 & \text{if } v = v_k, \text{ for } k = 1, 2, 3, 4\\ a & \text{if } v = u_i, \text{ for } i = 1, 2, 3, \cdots, m\\ a & \text{if } v = w_j, \text{ for } j = 1, 2, 3, \cdots, n \end{cases}$$

Case 3 : *m* odd and *n* even.

Define $f: V(J(m,n)) \rightarrow V_4$ as:

$$f(v) = \begin{cases} 0 & \text{if } v = u_1, v_k, \text{ for } k = 1, 2, 3, 4 \\ a & \text{if } v = u_i, \text{ for } i = 2, 3, 4, \cdots, m \\ a & \text{if } v = w_j, \text{ for } j = 1, 2, 3, \cdots, n \end{cases}$$

Case 4 : *m* even and *n* odd.

Define $f: V(J(m,n)) \rightarrow V_4$ as:

$$f(v) = \begin{cases} 0 & \text{if } v = w_1, v_k, \text{ for } k = 1, 2, 3, 4\\ a & \text{if } v = u_i, \text{ for } i = 1, 2, 3, \cdots, m\\ a & \text{if } v = w_j, \text{ for } j = 2, 3, 4, \cdots, n \end{cases}$$

In all the above cases, we can prove that f is an induced magic labeling of J(m,n). Hence the proof.

Corollary 3.28. The Jelly fish $J(m,n) \in \Gamma_{a,0}(V_4)$ for all m and n.

Definition 3.29. (See [3]) The Sun graph on m = 2n vertices, denoted by Sun_n , is the graph obtained by attaching a pendant vertex to each vertex of a n-cycle.

Theorem 3.30. *The Sun graph* $Sun_n \notin \Gamma(V_4)$ *for all n.*

Proof. Consider a Sun graph Sun_n with $\{v_1, v_2, v_3, \dots, v_n\}$ as vertex set of the corresponding C_n and $w_i, 1 \le i \le n$, be the pendant vertices attached to each v_i , $1 \le i \le n$. If possible suppose $f: V(Sun_n) \rightarrow V_4$ is an IML of Sun_n . Then the degree sum equation of w_i , we have $f(v_i) = 0$. using this in the degree sum equation of v_i we get $f(w_i) = 0$. Thus $f \equiv 0$, which is a contradiction.

Hence the proof.

References

- ^[1] Chartrand G, Zhang P, Introduction to Graph Theory, McGraw-Hill, Boston; 2005.
- ^[2] Frank Harary *Graph Theory*, Narosa Publishing House.
- ^[3] J.A.Gallian, A dynamic survey of labeling, *The Electron*ics Journal of Combinatorics, 17(2014), 12-20.
- ^[4] K.B. Libeeshkumar and V. Anil Kumar, Induced Magic Labeling of Some Graphs, Malaya Journal of Matematik, 8(1)(2020), 59-61.
- ^[5] Lee SM, Saba F, Salehi E and Sun H, On the V₄-Magic Graphs, Congressus Numerantium, 156(2002), 59-67.
- ^[6] R Balakrishnan and K Ranganathan, A Text Book of Graph Theory, Springer-Verlag, New York, 2012.

******* ISSN(P):2319-3786 Malaya Journal of Matematik ISSN(O):2321-5666 ******

