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Abstract
In this paper we study c-representability of permutation groups. We prove that the Dihedral group Dn is a
c-representable permutation group. We discuss the c-representability of some cyclic subgroups of the symmetric
group S(X). Some properties of c- representable permutation groups are also discussed.
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1. Introduction

The concept of Čech closure spaces was introduced by
Edward Čech as a generalisation of topological spaces. Var-
ious concepts in Čech closure spaces were studied in [6, 12,
13, 15, 17, 19]. Adjacency in the lattice of closure operators
were discussed in [14]. Boonpok C. investigated generalized
closed sets in Čech closure spaces and determined some of
their characterizations[3].

Ramachandran P. T. discussed the problem of represent-
ing permutation groups as the group of homeomorphisms of
topological spaces[15, 18]. He proved that if X = {a1, a2,
. . . , an}, n ≥ 3, then the permutation group on X generated
by the cycle (a1, a2, . . . , an) cannot be represented as the
group of homeomorphisms of (X ,T ) for any topology T on X
[15]. The t-representability of normal subgroups of the sym-
metric group S(X) was studied in [15, 18]. Then Sini P. and
Ramachandran P. T. defined t-representability of permutation
groups and studied t-representability of some subgroups of
the symmetric group S(X)[21–23]. A permutation group K on
a set X is said to be t-representable if there exists a topology
T on X such that the group H(X ,T ) of homeomorphisms of

(X ,T ) is K [22]. In [22], it was proved that direct sum of
t-representable finite permutation groups is t-representable on
X . The t- representabity of transitive permutation groups, max-
imal subgroups of the symmetric group, dihedral groups and
cyclic permutation groups etc. were studied in [20–24]. An
analogous concept is introduced in Closure spaces in [13]. c-
representability permutation groups is defined and it is proved
that normal subgroups of S(X) is c-representable if and only
if |X | 6= 3[13].

In this paper we investigate some problems related to
group of closure isomorphisms of Čech closure spaces. Here
we continue the study of c-representablity of permutation
groups.

2. Preliminaries
In this section, we discuss some basic concepts used in

this paper. Set theoretical notions are adopted from [9]. Let
P(X) denotes the power set of X . A closure operator is defined
as follows.

Definition 2.1. [6] A Čech closure operator on a set X is a
function V : P(X)→ P(X) satisfying V ( /0) = /0, A ⊆ V (A),
and V (A∪B) =V (A)∪V (B) for every A, B ∈ P(X). Simply
we call V a closure operator on X and the pair (X ,V ) a
closure space.

A subset A of a closure space (X ,V ) is said to be closed if
V (A) = A, and is said to be open if its complement is closed.
A subset A of X is said to be dense if V (A)=X . The collection
of all open sets in a closure space (X ,V ) is a topology on X ,
called the topology associated with V . A closure operator V
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is said to be topological if and only if V (V (A)) = V (A) for
every A⊆ X .

Let I : P(X)→ P(X) be given by

I(A) =
{

/0 ; if A = /0
X ; otherwise.

Then I is a closure operator on X . This closure operator is
the topological closure operator associated with the indiscrete
topology on X and is called the indiscrete closure operator.
The closure operator D on X given by D(A) = A for all A ∈
P(X), is the topological closure operator associated with the
discrete topology on X , called the discrete closure operator. A
closure space (X ,V ) is said to be T1 if V ({a}) = {a} for each
a ∈ X .

Definition 2.2. [7] A permutation of a set X is a function
φ : X → X that is both one-one and onto.

The function composition ◦ is a binary operation on the
collection of all permutations of a set A. This operation is
called permutation multiplication. The set of all permuta-
tions of a set X forms a group under permutation multipli-
cation, denoted by the symmetric group S(X)[7]. We write
Sn to denote the group S(X) when n is a positive integer and
X = {1,2, . . . ,n}[7]. A permutation group is a subgroup of
the symmetric group S(X). A cycle of length 2 is a trans-
position. Any cycle is a product of transpositions and any
permutation of a finite set of at least two elements is a product
of transpositions.

Definition 2.3. [15] Let (X , V ) and (Y, V ′) be two closure
spaces. A closure isomorphism from (X , V ) to (Y, V ′) is a
bijection f : X −→ Y such that f (V (A)) = V ′( f (A)) for all
A ∈ P(X).

If (X , V ) is a closure space, then the set of all closure iso-
morphisms from (X , V ) onto itself is a group under function
composition and is called the group of closure isomorphisms
of (X , V ), denoted by CI(X ,V ). Note that CI(X ,V ) is a sub-
group of the symmetric group S(X).

Definition 2.4. [13] A subgroup H of S(X) is said to be c-
representable on X if there exists a closure operator V on X
such that CI(X , V ) = H.

3. Main Results
We determined c-representability of normal subgroups of

S(X) in[13]. In this section we study the c-representability of
dihedral group and permutation groups generated by product
of cycles. We use the following results in [13].

Theorem 3.1. [13] If a permutation group H is t-representable
on a set X, then it is c-representable on X.

Theorem 3.2. [13] Let X be a finite set {a1,a2, . . . ,an} and
H be the group of permutations of X generated by the cycle
f = (a1,a2, . . . ,an). Then H is c-representable on X.

Note that any permutation generated by an infinite cycle
on an infinite set is t-representable hence it is
c-representable[16]. The following Theorem says that in order
to determine the c-representability of a permutation group H
on a set X , we have to consider only the c-representability of
H on the set of all points which are moved by the permutations
of H.

We need the following definition.

Definition 3.3. [5] Let G1 and G2 be two permutation groups
on X1 and X2 respectively. The direct product G1×G2 acts
on the disjoint union X1∪X2 by the rule

(g1,g2)(x) =
{

g1(x) if x ∈ X1
g2(x) if x ∈ X2.

Theorem 3.4. Let X be any set and Y ⊆ X. If H is a c-
representable permutation group on Y , then the permutation
group {IX\Y}×H is c-representable on X, where IX\Y denotes
the identity permutation on X \Y .

Proof. Since H is c-representable on Y , there exists a closure
operator V1 on Y such that CI(X ,V1) = H. Let Z = X \Y . If
Z = /0, there is nothing to prove. Suppose Z 6= /0. By the well
ordering theorem, well order the set Z by the order relation <.
We can use the ordinals to index the members of Z. Let x0 be
the first element of Z and x1 be the first element of Z \{x0}.
In general xα denotes the first element of Z \{x ∈ Z : x < xα}
provided {x ∈ Z : x < xα} is non-empty. Now we define a
closure operator V2 on Z as follows.
V2(A) = ∪

xα∈A
V2(xα) for A ⊆ Z where V2(xα) = Z \ {x ∈ Z :

x < xα}. Then V2 is a closure operator on Z. Consider X as
X = Y ∪Z. Let A⊆ X . Then A = A1∪A2 where A1 = A∩Y
and A2 = A∩Z. Define V : P(X)→ P(X) as follows:

V (A) =

 /0 ; if A = /0
V1(A1) ; if A2 = /0
Y ∪V2(A2) ; if A2 6= /0.

We have to prove that V is a closure operator on X .
Let A⊆ X . If A = /0, then there is nothing to prove. Now

suppose that A 6= /0. We have A = A1 ∪A2. If A2 = /0, then
V (A) = V1(A) and hence A ⊆ V (A). If A2 6= /0, V (A) = Y ∪
V2(A2). Then clearly A⊆V (A).

Let A,B⊆ X . A = A1∪A2, B = B1∪B2, where A1,B1 ⊆Y
and A2,B2 ⊆ Z.
Case (i): A2 = /0, B2 = /0
In this case A, B⊆ Y and hence V (A) =V1(A1) and V (B) =
V1(B1). Then

V (A∪B) = V1(A1∪B1)

= V1(A1)∪V1(B1)

= V (A)∪V (B).

Case (ii): A2 6= /0, B2 = /0 Then V (A) = Y ∪V2(A2), V (B) =
V1(B1).
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Now

V (A)∪V (B) = Y ∪V2(A2)∪V1(B1)

= Y ∪V2(A2), since V1(B1)⊆ Y.

and

V (A∪B) = V [(A1∪B1)∪ (A2∪B2)]

= Y ∪V2(A2∪B2)

= Y ∪V2(A2)

Hence V (A∪B) =V (A)∪V (B).
Case (iii): A2 = /0, B2 6= /0.
Similar to Case (ii).
Case (iv): A2 6= /0, B2 6= /0
Here V (A) = Y ∪V2(A2) and V (B) = Y ∪V2(B2). Then

V (A∪B) = Y ∪V2(A2∪B2)

= Y ∪V2(A2)∪V2(B2)

= [Y ∪V2(A2)]∪ [Y ∪V2(B2)]

= V (A)∪V (B).

Thus V is a closure operator on X .
Next we claim that CI(X ,V ) = {IZ}×Y .

Let f = (IZ , h) ∈ {IZ}×H and A⊆ X . Then we have to show
that V ( f (A)) = f (V (A)).
Now

V ( f (A)) = V ( f (A1∪A2))

= V ((IZ ,h)(A1∪h(A2)))

= V (A1∪h(A2)).

Since A = A1∪A2, we consider the following cases.
Case (i): A2 = /0
Then

V ( f (A)) = V (h(A1))

= V1(h(A1)).

Now

f (V (A)) = f (V1(A1))

= h(V1(A1))

= V1(h(A1)).

Hence V ( f (A)) = f (V (A)).
Case (ii): A2 6= /0
Then V ( f (A)) =V (h(A1)∪A2) = Y ∪V2(A2).

Now f (V (A)) = f (V (A1∪A2))

= f (Y ∪V2(A2))

= h(Y )∪V2(A2)

= Y ∪V2(A2).

Thus f (V (A)) =V ( f (A)), for every A⊆ X . It follows that f
is a closure isomorphism on (X ,V ). Hence

{IX\Y}×H ⊆CI(X ,V ). (3.1)

Now let f ∈CI(X ,V ). We have V (X \{x0}) = X \{x0}.
Hence {x0} is open in X . Then f ({x0}) is open in X . Since
the only one point set open in X is {x0}, f (x0) = x0. Also
V (X \ {x0,x1}) = X \ {x0,x1}. That is {x0,x1} is open in X .
Therefore f ({x0,x1}) is open in X . Since the only two point
set which is open in X is {x0,x1}, we have f ({x1})) = x1. Let
xα be any element of Z such that f (x) = x for every x < xα .
If xα has no immediate successor, then xα is the last element
of Z. Since V (Y ) = V1(Y ) = Y , we have Z is open in X and
hence f (Z) is open in X . Thus f (Z) = (Z \{xα})∪{ f (xα)}
which implies that f (xα) = xα .

If xα has an immediate successor xβ , then
V (X \{x ∈ Z : x < xβ}) = X \{x ∈ Z : x < xβ}. This implies
that U = {x ∈ X \Y : x < xβ} is an open set. Then f (U) =
{x ∈ Z : x < xβ}∪{ f (xα)}. By the definition of V , f (U) =U
and hence f (xα) = xα . Thus we get f |Z = IZ .

Since f is a closure isomorphism, f (V (A)) = V ( f (A))
for every A ⊆ X . If A ⊆ Y , then f (V (A)) = f (V1(A)) =
f |Y (V1(A)). Since f is a bijection on X and f |Z = IZ , we
have f (A)⊆Y and hence V ( f (A)) =V1( f (A)) =V1( f |Y (A)).
Therefore f |Y (V1(A)) =V1( f |Y (A)). Thus we have f |Y ∈ H.
That is f = (IZ , h), where h = f |Y ∈ H. Since Z = X \Y it
follows that

CI(X ,V )⊆ {IX\Y}×H. (3.2)

From 3.1 and 3.2, CI(X ,V ) = {IX\Y}×H

Remark 3.5. By Theorem 3.4, in order to determine the c-
representability of a non- trivial permutation group H on a
set X, we have to consider only the c-representability of H on
the set of all points which are moved by the permutations of
H.

Theorem 3.6. Let X be a set and f be a cycle on X. Then the
permutation group generated by f is c-representable on X.

Proof. Theorem is clear from Theorem 3.2 and Theorem 3.4.

In [22] it is proved that the Dihedral group Dn is
not t-representable for n ≥ 5. Here we investigate the c-
representability of the Dihedral group Dn.

Definition 3.7. [8] For n ≥ 3, the Dihedral group Dn is de-
fined as the rigid motions of the plane preserving a regular
n-gon with the operations being composition. The order of
the Dihedral group Dn is 2n.

Theorem 3.8. The Dihedral group Dn is c-representable.

Proof. Let X = {a1,a2, . . . ,an}. Define the closure operator
V : P(X)→ P(X) as V (ak) = {ak,ak⊕1,ak⊕(n−1)}, V (A) =
∪

ak∈A
V ({ak}) for each A⊆ X . Recall that the generators of the

Dihedral group Dn on X = {a1,a2, . . . ,an} are the cycle
f = (a1,a2, . . . ,an) and
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g =

(
a1 a2 a3 . . .ak . . . an−1 an
a1 an an−1 . . .an+2−k . . . a3 a2

)
. We have

f (V (a1)) = p({an,a1,a2})
= {a1,a2,a3}.

Also

V ( f ({a1})) =V ({a2}) = {a1,a2,a3}.

That is f (V (a1)) =V ( f ({a1})).
Similarly

f (V{ak}) = f ({ak,ak⊕1,ak⊕(n−1)})
= {ak⊕1,ak⊕2,ak⊕n}

and

V ( f ({ak})) = V ({ak⊕1})
= {ak⊕1,ak⊕2,ak⊕n}.

Thus
f (V{ak}) = V ( f ({ak})) for k = 1,2, . . . ,n. Thus f is a clo-
sure isomorphism of (X ,V ). Next we prove that g is a closure
isomorphism. We have

g(V ({a1})) = g({a1,a2,an})
= {a1,an,a2}

and

V (g({a1})) = V ({a1})
= {a1,a2,an}.

That is
g(V ({a1})) =V (g({a1})).
Now

g(V ({ak})) = g({ak,ak⊕1,ak⊕(n−1)})
= {an+2−k,an+2−(k⊕1),an+2−(k⊕(n−1))}

and

V (g({ak})) = V ({an+2−k)

= {an+2−k,an+2−(k⊕1),an+2−(k⊕(n−1))})

.
Hence g ∈CI(X ,V ). Then every element of Dn is a closure
isomorphism. That is

Dn ⊆CI(X ,V ) (3.3)

Now suppose that h∈CI(X ,V ). Then h(V ({a1})=V (h({a1})).
Suppose h(a1) = ak. Then

h(V ({a1}) = h({a1,a2,an})
= {ak,h(a2),h(ak)}.

And

V (h({a1})) = V ({ak})
= {ak,ak⊕1,ak⊕(n−1)}.

Then h(a2) is either ak⊕1 or ak⊕(n−1), and h(an) is either ak⊕1
or ak⊕(n−1)
Case (i): h(a2) = ak⊕1 and h(an) = ak⊕(n−1).
Since h is a closure isomorphism, V (h(a2)) = h(V ({a2})).
But
V ({ak⊕1})= {ak⊕1,ak,ak⊕2} and h(V ({a2}))= h({a1,a2,a3}).
This implies that h(a3) = ak⊕2 and h(an−1) = ak⊕n−2. That is

h =

(
a1 a2 a3 . . . an−1 an
ak ak⊕1 ak⊕2 . . . ak⊕(n−2) ak⊕(n−1)

)
= f k−1.

Hence h ∈ Dn.

Case (ii): h(a2) = ak⊕(n−1) and h(an) = ak⊕1.
In this case h(a3) = ak⊕(n−2) and h(an−1) = ak⊕2.
Hence h = (a1,ak)(a2,ak⊕(n−1)) · · ·(an,ak⊕1)(an−1,ak⊕2).
Then h = f n−kg ∈ Dn. Hence

CI(X ,V )⊆ Dn (3.4)

From equations (3.3) and (3.4), Dn = CI(X ,V ). This com-
pletes the proof.

Example 3.9. Let X = {1,2,3,4}. Consider the dihedral
group D4 = {I,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,2)(3,4),
(1,4)(2,3),(1,3),(2,4)}. Define V : P(X)→ P(X) as in
Theorem 3.8. That is V ({1}) = {1,2,4}, V ({2}) = {1,2,3},
V ({3})= {2,3,4}, V ({4})= {3,4,1} and V (A)= ∪

a∈A
V ({a}).

Then the group of closure isomorphisms of (X ,V ) is equal
to D4. Also note that the above mentioned closure opera-
tor is not a topological closure operator, since V (V ({1})) =
V ({1,2,4}) = {1,2,3,4} 6=V ({1}).

Now we can have a topological closure operator whose
group of closure isomorphisms is D4. Consider V

′
({1}) =

{1,3}=V
′
({3}) and V

′
({2})= {2,4}=V

′
({4}) and V

′
(A)=

∪
a∈A

V
′
({a}). Then the group of closure isomorphisms of (X ,V

′
)

is equal to D4.
Thus in the case of D4, we can define a topological closure

operator V such that CI(X ,V ) = D4. But for n > 4, there
exists no topological closure operator V such that CI(X ,V ) =
D4.

Now we investigate the c-representability of some cyclic
subgroups of S(X). Sini P. studied the t-representability of
cyclic permutation groups[20, 23].

Theorem 3.10. [23] If f is a permutation on X which is an ar-
bitrary product of more than two disjoint cycles having equal
length n, then the group generated by f is t−representable on
X.

By Theorem 3.10 and 3.1 we have the group generated
by f where f is a permutation on X which is an arbitrary
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product of more than two disjoint cycles having equal length
n is c-representable on X .

Let f be a permutation on X which is a product of two
disjoint cycles having equal length n where n ≥ 3. Then
the cyclic group generated by f is not t-representable on
X[23]. Here we show that the cyclic group generated by f is
c-representable on X .

Theorem 3.11. Let X be a set and f be a permutation which
is a product of two disjoint finite cycles having equal lengths.
Then the cyclic group generated by f is c-representable on X.

Proof. Let f = (a1,a2, . . . ,an)(b1,b2, . . . ,bn) be a permuta-
tion on X and H be the cyclic group generated by f . If n < 3,
then the cyclic group generated by f is t-representable and
hence c-representable on X . Assume that n ≥ 3. Suppose
that Y = {a1,a2, . . . ,an,b1,b2, . . . ,bn}. By Theorem 3.4, it is
enough to prove that H is c-representable on Y .
Let X1 = {a1,a2, . . . ,an} and X2 = {b1,b2, . . . ,bn}. Define
V : P(Y )→ P(Y ) as V ( /0) = /0, V ({a j}= {a j,a j⊕1,b j}) and
V ({b j}) = {b j,b j⊕1}, j = 1,2, . . . ,n and V (A) = ∪

a∈A
V ({a}),

A⊆ Y . Then

f (V (ai)) = f ({ai,ai⊕1,bi})
= {ai⊕1,ai⊕2,bi⊕1}.

Now

V ( f{ai}) = V ({ai⊕1})
= {ai⊕1,ai⊕2,bi⊕1}
= f (V ({ai})

for i = 1,2, . . . ,n. Also

f (V ({bi}) = f ({bi,bi⊕1})
= {bi⊕1,bi⊕2}

and

V ( f ({bi})) = V ({bi⊕1})
= {bi⊕1,bi⊕2}.

That is f (V ({bi}))=V ( f ({bi})) for each i= 1,2, . . . ,n. Thus
f is a closure isomorphism on Y .

Now let h be a closure isomorphism of (Y,V ). Then
h(V (A)) = V (h(A)) for every A ⊆ Y . If h(ai) = bk, then we
have

h(V ({ai})) =V (h({ai}))⇒ h({ai,ai⊕1,bi}) =V (bk)

⇒{h(ai),h(ai⊕1),h(bi)}= {bk,bk⊕1}

This is not possible. Thus h(ai) ∈ X1. Now suppose that
h(ai) = ak. This implies that

V (h(ai)) = V (ak)

= {ak,ak⊕1,bk}
= {h(ai),h(ai⊕1),h(bi)}.

Then h(bi) = bk. Thus h(X2) = X2. Now let h(a1) = ak and
h(b1) = bk. Then

V (h(b1)) = V (bk)

= {bk,bk⊕1}

and

V (h(a1)) = V (ak)

= {ak,ak⊕1,bk}.

We have h(V ({b1})) = {h(b1),h(b2)} and
h(V ({a1})) = {h(a1),h(a2),h(b1)}. Since h is a closure iso-
morphism, h(V ({a1})) =V (h(a1)) and
h(V ({b1})) =V (h(b1)). This implies that
{ak,ak⊕1,bk}= {h(a1),h(a2),h(b1)} and
{bk,bk⊕1}= {h(b1),h(b2)}. Hence h(a2) = ak⊕1 and
h(b2) = bk⊕1. Now suppose that h(bm) = b j and h(am) = a j
where 1 < m, j < n. Then

V (h(bm)) = V (b j)

= {b j,b j⊕1}

and

V (h(am)) = V (a j)

= {a j,a j⊕1,b j}.

Also we have
h(V ({bm})) = h({bm,bm⊕1}) and
h(V ({am})) = h({am,am⊕1,bm}). Thus h(bm⊕1) = b j⊕1 and
h(am⊕1) = a j⊕1. Thus h = f j−1. Hence h ∈ H.
Thus CI(Y,V ) = H.

Example 3.12. As an illustrative example of Theorem 3.11,
we consider the following: Let X = {1,2,3,4,5,6} and p =
(1,2,3)(4,5,6), which is a product of two cycles of equal
length. Then the group generated by p is
{(1,2,3)(4,5,6),(1,3,2)(4,6,5), I}. Now consider a closure
operator V : P(X)→ P(X) such that V ({1}) = {1,2,4},
V ({2}) = {2,3,5}, V ({3}) = {3,1,6}, V ({4}) = {4,5},
V ({5}) = {5,6}, V ({6}) = {6,4} and
V (A) = ∪a∈AV ({a}). Then the group generated by p is same
as the group of closure isomorphisms of (X ,V ).

Now we consider the group c-representability of cyclic
group generated by an arbitrary product of disjoint cycles
having equal length.

Theorem 3.13. Let X be any set and f be the permuta-
tion which is an arbitrary product of disjoint cycles having
equal length. Then the cyclic group generated by f is c-
representable on X.

Proof. Proof follows from Theorem 3.2, 3.6, 3.10 and 3.11.

Corollary 3.14. Every permutation group of prime order is
c-representable.
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Proof. Let X be any set and H be a permutation group on
X having order n, where n is a prime number. Then H is a
cyclic group generated by a permutation f which is of order n.
This implies that f is a product of disjoint cycles having equal
length. So by Theorem 3.13, H is c-representable on X .

We proved that direct sum of c-representable finite permu-
tation groups are c-representable on X[13]. From this result
we can deduce that the permutation group generated by two
disjoint cycles having lengths m and n where gcd(m,n) = 1
is c-representable on X .

Theorem 3.15. [13] Let {(Xi,Vi)}i∈I be an arbitrary family
of disjoint closure spaces where each Xi is finite and Hi be
c-representable subgroup of S(Xi) for i ∈ I. Then ×

i∈I
Hi is

c-representable on X =
⋃
i∈I

Xi.

Theorem 3.16. A group generated by a permutation on a
finite set X which is a product of two disjoint cycles hav-
ing lengths n and m respectively where gcd(n,m) = 1 is c-
representable.

Proof. Let X = {a1,a2, . . . ,an,b1,b2, . . . ,bm}. Let f = f1 f2
where f1 = (a1,a2, . . . ,an) and f2 = (b1,b2, . . . ,bm). Let H
be the group generated by f . Treat X as X1∪X2 where
X1 = {a1,a2, . . . ,an} and X2 = {b1,b2, . . . ,bm}. By Theorem
3.2, H1 is c-representable on X1 and H2 is c-representable on
X2. Since m and n are relatively prime, H = H1×H2. Hence
H is c-representable on X by Theorem 3.15.

4. Conclusion
We were in search of c-representable permutation groups.

We observed that in order to prove a permutation group H is c-
representable, it is enough to prove that H is c-representabile
on the set of all points which are moved by the permutations
of H. We proved that the dihedral group is c-representable.
The c-representability of some cyclic permutation groups are
also studied.
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Čech Closure Operators, Indian Journal of Pure & Ap-
plied Mathematics, Vol. 18, No. 2, (1987), 152–158.

[18] Ramachandran P. T., Groups of Homeomorphisms and
Normal Subgroups of the Group of Permutations, Interna-
tional Journal of Mathematics & Mathematical Sciences,
Vol. 14, No. 3, (1991), 475–480.

[19] Ramachandran P.T., Fixed Points of the Lattice of Čech
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