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Abstract
In this study the definition of bounded linear transformation and continuous linear transformation in a Generalized
Fuzzy normed space is introduced. Also classical principals such as open mapping theorem and closed graph
theorem are established in Generalized Fuzzy settings. Finally we introduce contraction of a linear operator
on Generalized Fuzzy normed space and Banach fixed point theorem is proved in Generalized Fuzzy Banach
space.
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1. Introduction
In 1965 L.A. Zadeh introduced the notion of Fuzzy set [5].

A.George and P.Veeramani defined Fuzzy metric space [2]
in 1994. As a continuation of this Magie Jose defined Fuzzy
normed space and discuss some of its properties in 2000 [6].
Also she established open mapping theorem and closed graph
theorem in Fuzzy context. K A Khan [3] introduced the con-
cept of Generalized normed space in 2014 and Sukanya K
P and Sr Magie Jose introduced generalized E-fuzzy metric
space in 2017 [7]. Using these concept we developed Gener-
alized Fuzzy normed space. In this study, we discuss some
properties of bounded linear transformation and continuous
linear transformation on Generalized Fuzzy normed space.

2. Preliminaries
Some basic definition and results are mentioned here that

are used for further development of this paper.

Definition 2.1. [5]A fuzzy set A in a set X is a function map-
ping the elements of X to the unit interval [0,1].

Definition 2.2. [1]:An operation * :[0,1]× [0,1]→[0,1] which
is binary, is a continuous t-norm if it has the following prop-
erties:

• commutativity and associativity,

• continuity,

• for all a ∈ [0,1], a∗1 = a ,

• for all a, b,c,d ∈ [0,1] and a ≤ c and b ≤ d, a*b ≤ c*d
.

Definition 2.3. [6]: (X ,N,∗) is said to be a Fuzzy normed
space if X is an arbitrary set, * is a continuous t-norm and N
is a fuzzy set on X×(0,∞) with the following properties:

• N(x, t) is greater than 0,

• N(x, t) = 1, if and only if x = 0,

• N(kx, t) = N(x, t/|k|),

• N(x, t)∗N(y,s)≤ N(x+ y, t + s)

• N(x, .) : (0,∞)→ [0,1] is continuous, for all x,y,z ∈ X,
s, t > 0 and k any scalar.
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Definition 2.4. :For a real or complex linear space X,
(X ,GFN ,∗) is a Generalized Fuzzy normed space if * is a
continuous t-norm and GFN is a function from X3× (0,∞)→
[0,1] with the following properties:

• GFN(x,y,z, t) is greater than 0,

• GFN(x,y,z, t) = 1 if and only if x = y = z = 0,

• GFN(x,y,z, t) = GFN(p(x,y,z), t), (symmetry) where p
is a permutation function,

• GFN(kx,ky,kz, t) = GFN(x,y,z, t/|k|),

• GFN(x,y,z, t)∗GFN(x′,y′,z′,s)≤GFN(x+x′,y+y′,z+
z′, t + s),

• GFN(x,y,z, .) : (0,∞)→ [0,1] is continuous,

• GFN(x+ y,0,z, t)≥ GFN(x,y,z, t) for all s, t > 0,
x,y,z,x′,y′,z′ ∈ X and k any scalar.

Example 2.5. For a real or complex linear space X, (X , ||., ., ||)
is a G-normed space if we define ||., ., .|| : X3→R by ||x,y,z||=
||x||+ ||y||+ ||z||. Then (X ,GFN ,∗) is a Generalized Fuzzy
normed linear space, if we define a∗b = min(a,b) and
GFN(x,y,z, t) = t

t+||x,y,z|| .

Definition 2.6. In a Generalized Fuzzy normed space X, for
given x0 ∈ X , t > 0 and 0 < r < 1, the open ball B(x0,r, t)
is defined as B(x0,r, t) = {y ∈ X : GFN(x0− y,y− x0,0, t) >
1− r}.

Definition 2.7. A sequence (xn) in (X ,GFN ,∗) is a General-
ized Fuzzy cauchy sequence if for given r, 0 < r < 1, t > 0 3
an integer N such that GFN(xl−xm,xm−xn,xn−xl , t)> 1−r
for every l,m,n≥ N.

Remark 2.8. A sequence (xn) in (X ,GFN ,∗) is a Generalized
Fuzzy cauchy sequence if given 0< r < 1, t > 0 3 an integer N
such that GFN(xn− xm,xm− xn,0, t)> 1− r for every n,m≥
N.

Remark 2.9. A sequence (xn) in (X ,GFN ,∗) is a Generalized
Fuzzy cauchy sequence if for given r, 0 < r < 1, t > 0 3 an
integer N such that GFN(xn+p−xn,xn−xn+p,0, t)> 1− r for
every n≥ N and p > 0.

Definition 2.10. A Generalized Fuzzy normed space
(X ,GFN ,∗) is said to be complete if every Generalized Fuzzy
cauchy sequence in X converges in X.

Definition 2.11. A complete Generalized Fuzzy normed space
is called a Generalized Fuzzy Banach space.

3. Main Results
Generalized Fuzzy bounded linear transformation and

Generalized Fuzzy continuous linear transformation are de-
fined. Also we have established boundedness imply continu-
ity for a linear transformation in Generalized Fuzzy normed
space.

Definition 3.1. A linear transformation F : (X ,GFN ,∗)→
(Y,GFN′ ,∗) is said to be bounded if there exists k > 0 such
that GFN′(F(x),F(y),F(z), t)≥GFN(x,y,z, t/k) , ∀x,y,z ∈ X
and t > 0.

Definition 3.2. A linear transformation F : (X ,GFN ,∗)→
(Y,GFN′ ,∗) is said to be continuous at x if given r1, t1 > 0,
0 < r1 < 1 there exists r2, t2 > 0, 0 < r2 < 1 such that
GFN(x− y,y− x,0, t2)> 1− r2
=⇒ GFN′(F(x)−F(y),F(y)−F(x),0, t1)> 1− r1 ∀y ∈ X

A linear transformation F is continuous on X if it is con-
tinuous at every x ∈ X .

Theorem 3.3. A linear transformation F : (X ,GFN ,∗) →
(Y,GFN′ ,∗) is continuous at x0 ∈ X if and only if the sequence
(F(xn)) converges to F(x0) in Y for every convergent sequence
(xn) converges to x0 in X.

Proof. Suppose F is continuous at x0 and (xn) converges to
x0. Then given r1, t1 > 0,0 < r1 < 1 3 r2, t2 > 0,0 < r2 < 1
such that GFN(y− x0,x0− y,0, t1)> 1− r1
=⇒ GFN′(F(y)−F(x0),F(x0)−F(Y ),0, t2)> 1−r2, y∈Y .
Since xn → x0, for this r2 and t2, 3 n such that GFN(xn−
x0,x0−xn,0, t2)> 1− r2 ∀n≥ N. This implies GFN(F(xn)−
F(x0),F(x0)−F(x),0, t1) > 1− r1, ∀n ≥ N =⇒ F(xn)→
F(x0).
Conversely, let the sequence (xn)→ x0 =⇒ (F(xn)→ F(x)
and F is not continuous at x0. Then 3 r1, t1 > 0,0 < r1 < 1
such that for any r2, t2 > 0,0 < r2 < 1 there exists x ∈ X
such that GFN(x0−x,x−x0,0, t2)> 1−r2, but GFN′(F(x0)−
F(x),F(x)−F(x0),0, t1) ≤ 1− r1. Take r2 = 1/n and t2 =
1/n where n ∈ N. Then for each n there exists an xn ∈ X such
that GFN(x0−xn,xn−x0,0,1/n)> 1−1/n, but GFN′(F(x0)−
F(xn),F(xn)−F(x0),0, t1) ≤ 1− r1. Thus F(xn) does not
converges to F(x0) whereas xn converges to x0. This is a
contradiction. Hence the result.

Theorem 3.4. Let F be a linear transformation from
(X ,GFN ,∗) to (Y,GFN′ ,∗) . Then F is continuous on X if
and only if F is continuous at a point x0 in X.

Proof. Let F is continuous on X, then it is continuous at ev-
ery point in X. Conversely, let F is continuous at a point x0
∈ X . Let y ∈ X is arbitrary. Then from our assumption, given
r1, t1 > 0,0< r1 < 1 there exists r2, t2 > 0,0< r2 < 1 such that
GFN(x−x0,x0−x,0, t1)> r1 =⇒ GFN′(F(x)−F(x0),F(x0)−
F(x),0, t2)> r2 ∀x ∈ X . Replacing y by x+ x0− y, we get
GFN(x− y,y− x,0, t1) > r1 =⇒ GFN′(F(x)−F(y),F(y)−
F(x),0, t2)> r2 ∀x ∈ X . Implies F is continuous at y ∈ X . As
this y ∈ X is arbitrary, we have the result.

Theorem 3.5. Every bounded linear transformation from
(X ,GFN ,∗) to (Y,GFN′ ,∗) is continuous.

Proof. Let F : X → Y be a bounded linear transformation.
Then there exists k > 0 such that GFN′(F(x),F(y)F(z), t ≥
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GFN(x,y,z, t/k) ∀x,y,z ∈ X , 0 < t < 1.
Choose r1 < r and t1 = t/k. Then
GFN′(F(x)−F(y),F(y)−F(x),0, t)

= GFN′(F(x− y),F(y− x),0, t)
≥ GFN(x− y,y− x,0, t/k)
≥ GFN(x− y,y− x,0, t1)
> 1− r1,

whenever GFN(x− y,y− x,0, t1)> 1− r1,∀y ∈ X .
That is F is continuous at x. Therefore F is continuous on
X.

Theorem 3.6. Let M be a closed subspace of (X ,GFN ,∗)
and F be a natuaral mapping of X onto the quotient Space
X/M defined by F(x) = x+M. Then F is a bounded linear
transformation.

Proof. Since M is closed subspace of a Generalized Fuzzy
normed space (X ,GFN ,∗), X/M is a Generalized Fuzzy normed
space with Generalized Fuzzy norm
GFN′(x + M,y + M,z + M, t) = Sup{GFN(x + M,y + M,z +
M, t) : m ∈M}. Then clearly F is linear.
GFN′(F(x),F(y),F(z), t) = GFN′(x+M,y+M,z+M, t)

= sup{GFN(x+m,y+m,z+m, t) : m ∈M}
≥ GFN(x+M,y+M,z+M, t) ∀m ∈M.

Since M is a subspace, take m=0.
We get GFN′(F(x),F(y),F(z), t)≥ GFN(x,y,z, t) ∀x,y,z ∈ X .
Therefore F is a bounded linear transformation.

Definition 3.7. A continuous linear transformation F :
(X ,GFN ,∗)→ (Y,GFN′ ,∗) is said to be open if for every open
set A in X the set F(A) is open in Y.

Proof of open mapping theorem for generalized case will
follow readily from the Baire’s Theorem for Generalized case
and from the following two lemmas.

Theorem 3.8. (Baire’s Theorem for Generalized case)
If X is a Generalized Fuzzy Banach space, then the intersec-
tion of a countable number of dense open subsets of X is dense
in X.

Lemma 3.9. Let (X ,GFN ,∗) be a Generalized Fuzzy normed
space. Then

• B(x,r, t) = x+B(0,r, t)

• B(0,r,nt) = nB(0,r, t)

Lemma 3.10. Let F be a continuous linear transformation
from (X ,GFN1,∗) onto (Y,GFN2,∗). Then the image of any
open ball centered at x in X will contain an open ball centered
at F(x) in Y.

Proof. For given r, t > 0, 0 < r < 1 let B(0,r, t) be the open
ball in X centered at origin and for given s,k > 0, 0 < s < 1,
let B′(0,s,k) be the open ball in Y centered at origin. First we
prove that B′(0,s,k)⊂ FB(0,r, t).
Let x ∈ X be fixed, then there exists some t0 such tnat x ∈
B(0,r, t0). Choose n such that t0 < nt. Then x ∈ nB(o,r, t).

Hence X = ∪∞
n=1nB(0,r, t). Since F is onto and linear Y =

F(X) = ∪∞
n=1F(nB(0,r, t)). Since Y is complete by Baires

Theorem for Generalized case, there exists atleast one n0 such
that F(n0B(0,r, t))

0 6= /0. Let y ∈ F(n0B(0,r, t))
0
. That is

there exists an open ball containing y contained in F(n0B(0,r, t)).
Since F(n0B(0,r, t)) and F(B(0,r, t)) are homeomorphic to
each other, F(B(0,r, t)) contains an open ball say B′(y,s,k).
Since y ∈ B′(y,s,k) ⊂ F(B(0,r, t)), y = F(x) for some x ∈
B(0,r, t).
We have B′(y,s,k) = B′(0,s,k)+ y
B′(0,s,k) = B′(y,s,k)− y

⊂ F(B(0,r, t))− y
⊂ F(B(0,r, t))−F(x)
⊂ F(B(0,r, t)− x).

Let y0 ∈ B(0,r, t)−x =⇒ y0 = x0−x for some x0 ∈ B(0,r, t)
Now
GFN1(y0,−y0,0, t ′) =
GFN(x0− x,x− x0,0, t ′), where t ′ = 2t
≥ GFN(x0,−x0,0, t ′/2)∗GFN(−x,x,0, t ′/2)
> (1− r)∗ (1− r)
> 1− r′ for some r′,0 < r′ < 1.
=⇒ y0 ∈ B(0,r′, t ′).
Hence B(0,r, t)− x⊂ B(0,r′, t ′)
=⇒ B′(0,s,k)⊂ FB(0,r′, t ′).
That is for given r, t > 0,0 < r < 1 there exists s,k > 0,0 <
s < 1 such that B′(0,s,k)⊂ FB(0,r, t). Now let x ∈ X ,
B′(0,s,k)+F(x)⊂ F(B(0,r, t))+F(x)
That is B′(F(x),s,k) ⊂ F(B(x,r, t)) Take B0 = B(x,r, t) and
x1 = x. Then there exists r1, t1 > 0, 0 < r1 < 1 such that
B(x1,r1, t1)⊂ B0 .
Choose r′1 < r1 and t ′1 = min{t1,1} such that B[x1,r′1, t

′
1]⊂ B0.

Also B(x1,r′1, t
′
1)⊂ B[x1,r′1, t

′
1].

Then there exists s1,k1 > 0,0 < s1 < 1 such that
B′(F(x1),s1,k1)⊂ FB(x1,r′1, t

′
1).

Let y ∈ B′(F(x1),s1,k1) =⇒ y ∈ FB(x1,r′1, t
′
1) =⇒ there

exists x2 ∈ B(x1,r′1, t
′
1) such that y→ F(x2). That is F(x2) ∈

B′(y,s2,k2),0 < s2,k2 < 1/2 and B′(F(x2),s2,k2)
⊂FB(x2,r′2, t

′
2) where B[x2,r′2, t

′
2]⊂B(x1,r′1, t1,),r

′
2 < r2, 0<

r2 < 1/2 and t ′2 = min{t2,1/2}, t2 > 0 with B(x2,r2, t2) ⊂
B(x1,r′1, t

′
1). Continuing like this , there exists

xn ∈ B(xn−1,r′n−1, t
′
n−1) such that F(xn) ∈ B′(y,sn,kn),0 <

sn,kn < 1/n and B′(F(xn),sn,kn) ⊂ FB(xn,r′n, t ′n) where
B[xn,r′n, t

′
n] ⊂ B(xn−1,r′n−1, tn−1),r′n < rn, 0 < rn < 1/n and

t ′n =min{tn,1/n}, tn > 0 with B(xn,rn, tn)⊂B(xn−1,r′n−1, tn−1,).
Now, for given r, t > 0 ,0 < r < 1 choose an integer N such
that 1/N < min{t,r}.Then for n≥ N and l,m≥ n
GFN1(xl− xm,xm− xn,xn− xl , t)
≥ GFN1(xl− xm,xm− xn,xn− xl ,1/N)
≥ GFN1(xl− xn,0,xn− xl ,1/N)
> (1−1/n)
> 1− r .
Then {xn} is a cauchy sequence in Generalized Fuzzy normed
space X. Since X is complete xn converges to some x0 ∈
X . Also, since xk ∈ B[xn,r′n, t

′
n] ⊂ B(xn−1,r′n−1, tn−1) for ev-

ery k ≥ n and B[xn,r′n, t
′
n] is a closed set, x0 ∈ B[xn,r′n, t

′
n] ⊂
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B(xn−1,r′n−1, tn−1) for every n. That is x0 ∈ B0. Since F is a
continuous linear mapping and xn→ x0 =⇒ F(xn)→ F(x0).
Now for given r, t > 0, 0 < r < 1. Choose N such that 1/N <
min{t,r}. Then for n≥N , GFN2(F(xn)−y,y−F(xn),0, t)≥
GFN2(F(xn)− y,y−F(xn),0,1/N)
≥ GFN2(F(xn)− y,y−F(xn),0,1/n)
≥ GFN2(F(xn)− y,y−F(xn),0,kn)
> 1− sn
> 1−1/n
> 1−1/N
> 1− r,for every n≥ N.
That is F(xn)→ y. Therefor y = F(x0) ∈ F(B(x,r, t)) =⇒
B′(F(x),s1,k1) ⊂ F(B(x,r, t)). Thus image of an open ball
centered at x in X contains an open ball centered at F(x).

Theorem 3.11. Open Mapping Theorem
Let (X ,GFN ,∗) and (Y,GFN ,∗) be Generalized Fuzzy Banach
spaces. Let F be a continuous linear mapping from X to Y .
Then F is an open mapping.

Proof. Let A be any open set in X . To show that F(A) is
open in Y . Let F(x) ∈ F(A), where x ∈ X . Since A is open
in X , there exists r, t > 0,0 < r < 1 such that B(x,r, t) ⊂ A.
Hence by above lemma there exists s,k > 0,0 < s < 1 such
that B′(F(x),s,k)⊂F(B(x,r, t))⊂F(A). Hence F(A) is open.

Theorem 3.12. Closed graph theorem for Generalized Fuzzy
normed space
Let (X ,GFN1,∗) and (Y,GFN2,∗) be two Generalized Fuzzy
Banach spaces. If F is a closed linear transformation from X
into Y, then F is continuous.

Proof. Let X ′ denote the same space X with another General-
ized Fuzzy norm GFN′ defined by
GFN′(x,y,z, t) = GFN1(x,y,z, t) ∗GFN2(x,y,z, t). Then GFN′

is a Generalized Fuzzy norm and X ′ is a Generalized Fuzzy
normed space with this norm.
Consider
GFN2(F(x),F(y),F(z), t) = 1∗GFN2(F(x),F(y),F(z), t)

≥ GFN1(x,y,z, t)∗GFN2(F(x),F(y),F(z), t)
≥ GFN′(x,y,z, t).

That is F : X ′→ Y is bounded and so it is continuous. Now
consider I : X ′→ X defined by I(x) = x. Then I is one one
and onto.
Also GFN1(I(x), I(y), I(z), t) = 1∗GFN1(x,y,z, t)

≥ GFN′(x,y,z, t)∗GFN1(x,y,z, t)
≥ GFN′(x,y,z, t).

Therefore I is bounded and so I is continuous. Since I is
one one ,onto and continuous, X and X ′ are homeomorphic.
Hence F : X → Y is continuous.

Next we define contraction of a mapping on Generalized
Fuzzy normed space.

Definition 3.13. Let (X ,GFN ,∗) be a Generalized Fuzzy normed
space. A mapping F : X → X is called a contraction on X if

there exists k, 0 < k < 1 such that
GFN(Fx−Fy,Fy−Fz,Fz−Fx, t)≥GFN(x−y,y−z,z−x, t/k)
∀t > 0 and x,y,z ∈ X.

Theorem 3.14. Banach fixed point theorem
Let (X ,GFN ,∗) be a Generalized Fuzzy Banach space and
F : X → X be a contraction on X.Then F has a unique fixed
point.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} by
xn = Fn(x0). For t > 0 and p > 0
GFN(xn+p− xn,xn− xn+p,0, t) = GFN(Fn+p(x0)−Fn(x0),
Fn(x0)−Fn+p(x0),0, t)
≥GFN(Fn+p−1(x0)−Fn−1(x0),Fn−1(x0)−Fn+p−1(x0),0, t/k)
...
≥ GFN(F p(x0)− x0,x0−F p(x0),0, t/kn)
Sine 0 < k < 1, t/kn→ ∞ as n→ ∞

Therefore GFN(xn+p− xn,xn− xn+p,0, t)→ 1 as n→ ∞

=⇒ {xn} is a cauchy sequence in X . Since X is complete,
xn→ x in X .
That is limn→∞Fn(x0) = x
Now x = limn→∞Fn+1(x0) = limn→∞F(Fn(x0)) = F(x).
Hence x is a fixed point. To show uniqueness, let y ∈ X such
that y = F(y) and y 6= x.
As y 6= x ∃ t1 > 0 and such that
GFN(x− y,y− z,z− x,0, t1) = GFN(Fx−Fy,Fy−Fx,0, t1)

≥ GFN(x− y,y− z,z− x, t1/k).
Which is a contradiction as 0 < k < 1. Hence x = y.
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