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1. Introduction

Consider the delay differential equation

Y (%) +q(x)y(x—1) =0, (1.

X > Xq

where g(x) € C([xp,),R") and 7 is a positive constant. G.Ladas

[1], R.G.Koplatadze and T.A.Chanturia [2], have proved that
every solution of equation of (1.1) oscillates. If

% 1
lim inf t)dt > — 1.2
timint [ a0yt > ; 12

R.G.Koplatadze and T.A.Chanturia [2], proved that differen-
tial inequation.

Y () +4q(x)y(x—1) >0,

has no eventually positive solution if (1.2) holds.

This observation has been extensively exploited in the
study of the oscillatory properties of solutions of various
functional differential equations. See for example [3-5].

X > X0 (1.3)

From [[6], Corollary 3.2.2], inequality (1.3) has no even-
tually positive solution if and only if Equation (1.1) has no
eventually positive solution. By obtaining sharper sufficient
conditions for oscillation of (1.1), we expect many of the
above mentioned results can be improved.

Li [7] obtained a sharper sufficient condition by improving
condition (1.2).

Theorem 1.1. Lez g(x) € C([xp,),R") and let T is a positive
constant. Suppose that there exists a X > xo + T such that

/;q(t)dt > é >x (1.4)

and

/);q(X) [ww(/;ﬂ(t)dt - %) - 1]dx =0 (1.5)

Then every solution of (1.1) oscillates.

Definition 1.2. A solution of equation (1.1) is said to oscillate
if it has arbitrarily large number of zeros.

In this paper, we obtain new sufficient conditions for os-
cillation of solution of (1.1) which improve conditions (1.4)
and (1.5).
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2. Main Results

Let g(x) € C([xg,>),R") and define the following se-
quences of functions:

X
q1(x) :/ q(t)ditx > xp+ 7
xX—T

"X

a0 = |

JX—T

q(t)qr(t)dtx > xo+ (k+ 1)t 2.1

X+T
a0 = [ g xo
X
X+T
qu(x):/ g(Oqu(D)dix > x0, k=1,2,3,...
X

Theorem 2.1. Let g(x) € C([xo,%°),R") and let T be a pos-
itive constant. Suppose that there exist a x; > xo+ T and a
positive integer n such that

1

en

2.2)

1
gn(x) > ;,,én(x) > —x>x

and
/}:Mq(x) [exp (e”_lq,, (t)dt — é) - 1] dx=c (2.3)

where q,(x) and §,(x) are defined by (2.1). Then every solu-
tion of (1.1) oscillates.

Proof. Assume, for the sake of contradiction, that equation

(1.1) has an eventually positive solution y(x). Then there
exists a x, > x; such that
yx—1)>y(x) >0, y(x) <0, x>x
o G k) (2.4)
y(*)
Then
vix)>1, x>x (2.5)

Dividing both sides of (1.1) by y(x),for x > x,, we obtain

¥ (x)
y(x)

+qx)v(x) =0 x>x (2.6)
Integrating both sides of (2.6) from x — 7 to x yields

Iny(x) —Iny(x— 1) —|—/ qtv(t)dt=0, x>x2+7
X—7T

or
X
v(x) = exp( q(t)v(t)dt) , X>x+7T 2.7)
xX—7T
It is easy to show that ¢ > ec for all ¢ > 0, and so
X
v(x) = e/ q(v(t)dt, x>x2+7 (2.3)
X—7T
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Set
X
vi(x) = / qyv(t)dt, x>x+71
xX—=T
X
va(x) = / qg(tyvi(t)dt, x>xp+21
xX—T
X
va(x) = / q@)vy—1(t)dt, x>xy+nt (2.9)
xX—T
and
ulx)=v(x)—1, x>x
up(x) = / q(Hu(t)dt, x>x+7
xX—=T
"X
up(x) = / q(Duy()dt, x>x+271
X—7T
' "X
up(x) = / q(up—1(t)dt, x>xp+nt (2.10)
X—7T
By (2.5),
u(x) >0, x>xp, ui(x) >0, x >xy+it, i=1,2.3,...
.11
From (2.7) and (2.8), we easily obtain
vx)> e, 1 (x), x>x4(n-1)T (2.12)

and

v(x) > exp (6”71 /x

X—T

q(t)anl(t)dl)’ X>xp+ntT
(2.13)

In view of (2.1), (2.10) and (2.11), (2.13) can be written as
X
v(x) > exp (e"_l/ q(t)un,l(t)dtJre"_lqn(x)),
-7
Xx 1
~ exp(e! / 4(t)n 1 (1) + - )
x—T e
n—1 1
exp(e gn(x) — ;), X>x;+ntT
and so
X
v(x) > exp (e”/ q(O)uy—1 (t)dr + l)
xX—T
1
exp (e”flqn(x) — 7), x>x+nt  (2.14)
e

By (2.2) and (2.11),

4@ [y — (& / ;q(t)un,l(z)dz +1)]

1

> q(x) [eXP(e”’lqn(X) - g) - 1}7 X2 x+nt
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4(x) |u(x) = ¢"un(x)
1

> q(x) {exp (e”‘lqn(X) - ;) - 1] ; X2Xp+ntT

By integrating both sides from x3 > x, +nt to X > x3 +nt
we obtain

/qu(x) [u(x) - e"un(x)} dx

3

X 1
n—1 e
/X3 q(x) {exp(e qn(x) e) 1} dx (2.15)
From this and (2.3), we have
X
lim [ q(x) [u(x) —e"uy (x)} dx =oo (2.16)
x—=e0 [y
Since

X X X
o /xz g undx =" | q)dx [ q@)un(t)dt

X3 xX—T

we have
X X—ntT
e" / q(x)u,(x)dx > e"/ q(x)u(x)Gu(x)dx
X3 X3
X—nt
> / q(x)u(x)dx 2.17)
X3
Thus, we have
X
/ q(x) [u(x) —e"uy (x)} dx
X3
X X—nt
< q(x)u(x)dx—/ g(x)u(x)dx
x3 x3
X
= x)u(x)dx
X—nt
In view of (2.16), we have
X
lim g(x)u(x)dx = oo (2.18)
X—e JX _nt
This shows that either
X
lim g(x)dx = oo (2.19)
X0 JX —nt
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or
lim supu(x) = e (2.20)
X—ro0
If (2.19) holds, then
X
lim sup q(t)dt =
X—roo X—nt

By a known result in [8], every solution of (1.1) oscillates.

If (2.20) holds, then
)}51; supv(x) = oo (2.21)

On the other hand, integrating both sides of (1.1) from x — T
to x we have

yo) = ye= 1)+ [ gyt

and so

y(x—1) > /):Tq(t)y(t —10)dt=0, x>x, (2.22)

T)dt =0, x>x

From this, by successively substituting (n —2) times and using
the decreasing nature of y(x), it follows that

yo=7)> [ g0aa(orte—v)dr
>3(t-7) [ aOaaloar,

and so

x>x+(n—-2)t
(2.23)

y(t—=1) >yt = T)gn-2(x),

By (2.2), for any x > x; + 7 there exists a £ € (x— 7,x) such
that
x 1

q(t)gn-1(t)dt > —

4+t
3 2en’ / q(t)gn—1(t)dt >

= 2en
(2.24)

By integrating both sides of (1.1) over [£,x] and [x, & + 7], we

have
£)+ /;q@)y(H)dt o0,

x>x+m-Dr1 (2.25)
and
+T
y(E+1)— +/ y(t—1)dt =0,
x>x+m-1) (2.26)

Substituting (2.23) into (2.25) and (2.26), omitting the first
term in (2.25) and (2.26) and using the decreasing nature of
y(x) and (2.24), we see that

(€ + gyx—1) <0,

3(0) + 5 (8) <0
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or

y(x) > 5ov(E) >

1
@y(x - 1),
or
v(x) < 4™

x>xn+m-r1 (2.27)

This contradicts (2.21) and completes the proof of the theorem.
O

Theorem 2.2. Let g(x) € C([xp,),R") and let T is a positive
constant. Suppose that there exists a x > xo+ T such that (1.4)
and (2.3) hold. Then every solution of (1.1) oscillates.

Because (1.4) implies (2.2), Theorem 2.1 implies Theo-
rem 2.2.

Remark 2.3. Theorems 2.1 and 2.2 improve Theorem 1.1.
Corollary 2.4. Let g(x) € C([xp,),R") and let T is a posi-

tive constant. Suppose that, for some positive integer n.

. 1 C o 1
}glgolnfq,,(x) > and }gl}olnfqn(x) > (2.28)

where gn(x),qn(x) are defined by (2.1). Then every solution
of (1.1) oscillates.
Remark 2.5. Condition (2.28) improves (1.2).

Corollary 2.6. Let g(x) € C([xp,>),R") and let T is a pos-
itive constant. If (1.4) holds, and for some positive integer
n,

[ (o= Parmor 229

where qn(x) is defined by (2.1). Then every solution of (1.1)
oscillates.

Corollary 2.7. Let g(x) € C([xo,%°),R") and let T is a posi-
tive constant. If (2.2) and (2.29) hold, then every solution of
(1.1) oscillates.

3. Example

Consider the delay differential equation

1
— (14 cosx)y(x—m) =0,

Y (x) + e x>0, 3.1

clearly, for, x > 7,

"X 1
= —(1 t)dt
q1(x) /xfﬂ 2e( + cost)

1
=5, (7 4 2sinx)

* o1 1 1
lim inf —( t)dt = —(m—-2) < -
Jiminf | e( + cost) 2e( )<e
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This shows that (1.2) and (1.4) do not hold. But

2= [ anaod
Lz/ (1+ cost)(m + 2sint )dt
4712 ( + 27sinx — 4cosx)
g3(x) = q(t)ga(t)dt

/ 1 + cost 71? + 27msint — 4cost> dt
X—

_ — 7
w

( - 2n+4 (2n? — 8)sinx — 477:cosx)

(o]
Q
w

astd) = [ aao)dr

] X
~ L (14 cow)
1664/;;77:( -+ cos

(7r3 — 21+ (27> — 8)sint — 47rcost> dt

-l

—2(n — 67)sinx — 4(m? —4)cosx}

P _ 4 2
)}g?olnfq4(x)—@[n —4r
22
-2 3 _ 244 2_42} i
V@ —6m2 4 a(a-ap] > =,
and

= i ﬂ:fl 1 ost)dt = 71 — 2sinx
g + cost )dt T —2si
CI1()C) /); e( COS ) e( St )

2= [ qoaa

1 X+
= @/ (14 cost)(m —2sint )dt
1
(717 —27;sinx — 4cosx)

4e

X+TT
%wz/ 4()(0)ds
X
1 X+

1 + cost (nz —2msint — 4cost> dt

— (27% — 8)sinx — 47rcosx)
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ww = [ a0a0

1 X+
= @/ (1 —|—c0st)
X

(7r3 —2m— (2% — 8)sint — 47rcost> dt

1[4 2
= gi 7' 47
—2(n — 67)sinx — 4(n* — 4)c0sx}
lim inf g4 (x) = 1 {n“ —4x?
X—oo 16e*
—-2\/(n3——6n)24—4(n2——4){|>>4%%7
16e*

Then, by corollary 2.4, every solution of (3.1) oscillates.
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