

https://doi.org/10.26637/MJM0802/0029

Transit index of various graph classes

K.M. Reshmi^{1*} and Raji Pilakkat²

Abstract

Transit of a vertex v is a graph invariant which was defined as the sum of the length of all shortest paths with v as an internal vertex. In this paper, transit index for various classes of graph like complete graphs, cycles, wheel graph, friendship graph, crown graph, total graph of a path, comet are computed.

Keywords

Transit of a vertex, Transit Index.

AMS Subject Classification 05C10, 05C12.

¹ Department of Mathematics, Government Engineering College, Kozhikode-673005, Kerala, India. ²Department of Mathematics, University of Calicut, Malappuram-673365, Kerala, India. *Corresponding author: 1 reshmikm@gmail.com; 2 rajipilakkat@gmail.com Article History: Received 17 December 2019; Accepted 22 April 2020

©2020 M.IM

Contents

1	Introduction
2	Transit index for various graph classes
2.1	Star
2.2	Complete Graphs
2.3	Cycle
2.4	Wheel Graph
2.5	Friendship Graph
2.6	Crown Graph
2.7	Snake Graph
2.8	Comet
3	Transit index for some graphs derived from Complete graph
4	Conclusion
	References

1. Introduction

Graph topological indices are widely studied. They find application in many field of science. Chemical graph Theory and Networking are a few to name. In[8], transit index of a graph was introduced and its correlation with one of the physical property -MON of octane isomers was established. In this paper we compute the transit index for various graph classes and for certain graphs developed from complete graphs.

Throughout G denotes a simple, connected, undirected graph with vertex set V and edge set E. For undefined terms we refer [1].

Preliminaries

Definition 1.1. [8] Let $v \in V$. Then the transit of v denoted by T(v) is "the sum of the lengths of all shortest path with v as an internal vertex" and the transit index of G denoted by TI(G) is

$$TI(G) = \sum_{v \in V} T(v)$$

Lemma 1.2. [8] T(v) = 0 iff $\langle N[v] \rangle$ is a clique.

Theorem 1.3. [8] For a path P_n , Transit index is

$$TI(P_n) = \frac{n(n+1)(n^2 - 3n + 2)}{12}$$

Definition 1.4. Two vertices v_1 and v_2 of a graph are called transit identical if the shortest paths passing through them are same in number and length.

2. Transit index for various graph classes

2.1 Star

Theorem 2.1. *For a star graph* S_n *,* $TI(S_n) = (n-1)(n-2)$

Proof. In a star graph on *n* vertices, n-1 vertices are pendant vertices. Hence for them T(v) = 0. There are C(n-1,2)shortest path of length 2 passing through the center vertex. Hence $TI(S_n) = 2.C(n-1,2) = (n-1)(n-2)$

2.2 Complete Graphs

Theorem 2.2. For the complete graph K_n , transit index is zero.

Proof. For every vertex *v* in a complete graph K_n , $\langle N[v] \rangle = K_n$, a clique. Hence by lemma[1.2], $TI(K_n) = 0$

Theorem 2.3. For $n \ge 3$, deleting an edge from K_n , increases the transit index by 2(n-2).

Proof. The deletion of the edge e = uv, makes u and v non-adjacent. Hence every other vertex will be an internal vertex of the shortest path between u and v of length 2. Hence $TI(K_n - e) = 2(n-2)$

Theorem 2.4. *Let* $G = K_{p,q}$ *where* $V = V_1 \cup V_2$ *is the bipartition with* $|V_1| = p, |V_2| = q$. *Then* TI(G) = pq[p+q-2]

Proof. When p = 1 or q = 1, the result is obvious. Let $p, q \ge 2$. Let $v \in V_1$. Then, T(v) = 2C(q, 2). If $v \in V_2$, then T(v) = 2C(p, 2). Hence

$$TI(G) = \sum_{v \in V} T(v)$$

= $\sum_{v \in V_1} T(v) + \sum_{v \in V_2} T(v)$
= $2[\frac{pq(q-1)}{2}] + 2[\frac{pq(p-1)}{2}]$
= $pq[p+q-2]$

Theorem[2.4] can be generalised to s-partite graphs as follows.

Theorem 2.5. Let G be the complete s-partite graph [6]. Then $TI(G) = \sum_{i=1}^{s} 2n_i \left[\sum_{i \neq i} C(n_j, 2) \right]$

Proof. Let $V_1, V_2, ..., V_s$ be the partition of the vertex set V. Then no two vertices in V_i are adjacent to each other. But every vertex in V_j , $j \neq i$ is adjacent to all vertices of V_i . The shortest paths passing through v_i are those connecting vertices of the same V_j to itself, of length 2. Hence $T(v_i) = 2\sum C(n_j, 2)$

$$\therefore TI(G) = \sum_{v_i \in V_1} T(v_i) + \sum_{v_i \in V_2} T(v_i) + \dots + \sum_{v_i \in V_s} T(v_i)$$
$$= \sum_{i=1}^s 2n_i \left[\sum_{j \neq i} C(n_j, 2) \right]$$

Corollary 2.6. If G is the cocktail party graph [5], TI(G) = 4n(n-1)

Proof. In the theorem [2.5], take $n_i = 2, \forall i \text{ and } s = n$ with |G| = 2n.

2.3 Cycle

1

Theorem 2.7. Let C_n be a cycle with n even. Then

i)
$$TI(C_n) = \frac{n^2(n^2 - 4)}{24}$$

ii) $TI(C_{n+1}) = \frac{n(n^2 - 4)(n+1)}{24}$

Proof.

Figure 1. Cycle C_n

(i) Consider the vertex v in the figure[1]. The maximum length of the shortest path passing through v is of length $\frac{n}{2}$. The sum length of the length of the shortest paths originating

from 1 is
$$2+3+\ldots+\frac{n}{2}$$

from 2 is $3+4+\ldots+\frac{n}{2}$
:
from $\frac{n}{2}-1$ is $\frac{n}{2}$

Hence

$$T(v) = \left(\frac{n}{2} - 1\right)\frac{n}{2} + \left(\frac{n}{2} - 2\right)\left(\frac{n}{2} - 1\right) + \dots + 2.1 + 1.0$$
$$= \sum_{k=1}^{n} (k-1)k$$
$$= \frac{(n^2 - 4)n}{24}$$

Due to symmetry, every vertex in the cycle are transit identical.

$$\therefore TI(C_n) = \frac{n^2(n^2 - 4)}{24}, \text{n is even}$$

(ii) Consider C_{n+1} , with *n* even. The maximum length of the shortest path passing through any vertex *v* remains to be $\frac{n}{2}$. Hence as in the case of even cycle $T(v) = \frac{(n^2-4)n}{24}$. $\therefore TI(C_{n+1}) = (n+1)T(v) = (n+1)\frac{(n^2-4)n}{24}$

2.4 Wheel Graph

The wheel graph [2], W_{n+1} is the graph obtained from C_n , $n \ge 3$ by adding a new vertex and by making it adjacent to all vertices of C_n .

Theorem 2.8. $TI(W_{n+1}) = n(n-1), n > 3$ and for $n = 3, TI(W_{3+1}) = 0$

Proof. Let n > 3. In W_{n+1} , the diameter is 2. Hence no shortest path is of length more than 2. The vertices on the outer circle C_n are transit identical. Let v be one such vertex. The

Figure 2. Wheel graph W_{n+1}

only shortest path passing through it is between its adjacent vertices. $\therefore T(v) = 2$, for $v \in C_n$

Consider the center vertex *c*. To find its transit we consider the contribution of each edge to it. Every edge on C_n contributes 0 to T(c). Consider the edges of the type *e*, as shown in the figure[2], which are the spokes of the wheel. *e* will be used only by *v* to travel to every vertex other than its adjacent ones. Hence the contribution is (n-3). $\therefore T(c) = n(n-3)$ i.e. $TI(W_{n+1}) = 2n + n(n-3) = n(n-1)$ For n = 3, we get $W_{3+1} = K_4$. \therefore its transit is zero.

For
$$n = 5$$
, we get $w_{3+1} = K_4$... Its transit is zero.

2.5 Friendship Graph

The Friendship graph [3], F_n is constructed by coalescence of n copies of cycle C_3 of length 3, with a common vertex.

Theorem 2.9. $TI(F_n) = 4n(n-1), |V| = 2n+1.$

Proof. In F_n , the diameter is 2. For every vertex v other than the coalescence vertex, $\langle N[v] \rangle$ is a clique. Hence T(v) = 0, by lemma[1.2]. Hence $TI(F_n) = T(c)$

The edges of the type e', as in the figure[3] does not contribute to T(c). Hence we count the number of times the edges of the type e is used. The edge e will be used by the vertex v to travel to all vertices other than its adjacent ones. Hence contribution of e is 2n + 1 - 3 = 2(n - 1). There are 2n such edges. T(c) = 4n(n - 1). i.e. $TI(F_n) = 4n(n - 1), |V| = 2n + 1$.

2.6 Crown Graph

A crown graph [4] is the unique n - 1 regular graph with 2n vertices, obtained from the complete bipartite graph $K_{n,n}$ by deleting a perfect matching. Or it is the graph with vertices as

Figure 3. Friendship Graph *F_n*

two sets $\{u_i\}$ and $\{v_i\}$, with an edge from u_i to v_j whenever $i \neq j$

Figure 4. Crown graph

Theorem 2.10. *For the Crown graph G*, $TI(G) = 2n(n^2 - 1)$.

Proof. Let the bipartition be *V*, *U*, with $V = \{v_1, v_2, ..., v_n\}$ and $U = \{u_1, u_2, ..., u_n\}$. Consider a vertex of *V*, say v_k . Note that $d(u_i, v_i) = 3$ and $d(u_i, v_j) = 2, i \neq j$. The shortest path through v_k are those connecting v_i to $v_j, i \neq j$ of length 2 and those connecting v_i to u_i of length 3. Hence $T(v_k) = 2C(n-1,2) + 3(n-1) = n^2 - 1$. In this graph every vertex is transit identical. $\therefore TI(G) = 2n(n^2 - 1)$.

2.7 Snake Graph

The triangular snake graph can be viewed as the graph formed by replacing every edge of P_n by a triangle, thus adding n-1vertices and 2(n-1) edges.

Theorem 2.11. If G is the triangular snake graph of a path on 2n - 1 vertices, $TI(G) = TI(P_n) + \frac{(n-2)(n-1)n(n+1)}{4}$.

Proof. Let $v_1, v_2, ..., v_n$ denote the vertices of the path P_n . The newly added vertices are named as $u_1, u_2, ..., u_{n-1}$. For every u_i , $\langle N[u_i] \rangle$ is a clique. Hence $T(u_i) = 0, \forall i$, by lemma[1.2]. Also $\langle N[v_1] \rangle, \langle N[v_n] \rangle$ are cliques. $\therefore T(v_1) = T(v_n) = 0$.

Hence we need to compute only the transit of v_i for 1 < i < n. The transit of these vertices are due to path connecting v_i among themselves, path connecting u_i among themselves and paths connecting v_i to u_i . i.e. $TI(G) = TI(P_n) + I$,

Figure 5. Total graph of a path

where I denote the increase in transit of v_i due to the addition of u_i .

Consider v_k . The increase in its transit is due to

- 1. Paths connecting u_i to u_j , i < k, j > k
- 2. Paths connecting u_i to v_i , i < k, j > k
- 3. Paths connecting v_i to u_j , i < k, j > k

It can be seen that the increase in all the three cases are the same and equal to

 $A = (2 + 3 + \ldots + n - k + 1) + (3 + 4 + \ldots + n - k + 2) + (3 + 4 + 1) + (3 + 4$ $\dots (k + (k + 1) + \dots + (n - 1))$ Hence increase in transit of v_k is 3A. If we take a = 2 + 3 + ... + n - k + 1, A = a + (a + n - k) + + (a + n - k)(a+2(n-k))+...Hence increase in transit of v_k is = $3[a(k-1) + \frac{(n-k)(k-2)(k-1)}{2}]$ $=\frac{3}{2}(n-k)(k-1)(n+1).$ $=\frac{5}{2}(n+1)[(n+1)k-k^2-n]$ Hence $I = \sum_{k=1}^{n} \frac{3}{2}(n+1)[(n+1)k - k^2 - n]$ = $\frac{(n-2)(n-1)n(n+1)}{4}$. Hence the proof.

2.8 Comet

A comet is formed by appending multiple pendant edges to one end of a path.

Theorem 2.12. Let G be the graph got by appending m pendant edges to one end of P_n . Then $TI(G) = TI(P_n) + \frac{mn(n^2-1)}{3}$

Proof. Let v_1, v_2, \ldots, v_n be the vertices of the path P_n and u_1, u_2, \ldots, u_m the newly appended vertices.

In the graph G, transit is zero for the newly added vertices. Hence $TI(G) = TI(P_n) + I$, where I is the increase in transit of vertices of P_n due to the newly appended edges.

Let v_k be any vertex of P_n . Then the increase in $T(v_k)$ is due to the paths connecting the vertices on the left of it to the newly added vertices. This can be computed as

$$= nm + (n-1)m + ... + (n-k+2)m$$

= $\frac{m}{2}[k(2n+3) - k^2 - (2n+2)], \text{ on simplification.}$
 $\therefore I = \sum_{1}^{n} \frac{m}{2}[k(2n+3) - k^2 - (2n+2)]$
= $\frac{mn(n^2 - 1)}{3}$
Hence the theorem.

Hence the theorem.

Remark 2.13. Applying the recursive formula for a path, $TI(P_{n+1}) = TI(P_n) + \frac{n(n^2-1)}{3}$, the transit of a comet G of Theorem [2.12] can be expressed as, $TI(G) = mTI(P_{n-1}) - (m - 1)$ $1)TI(P_n).$

3. Transit index for some graphs derived from Complete graph

Theorem 3.1. Let G be the graph obtained by attaching a pendant edge to one of the vertices of a complete graph. *i.e.* $|V(G)| = |V(K_n)| + 1$ and $|E(G)| = |E(K_n)| + 1$. Then TI(G) = 2(n-1)

Proof. Let the new vertex be *v* and the vertex to which it is attached be u. Then for every vertex in G other than $u, \langle N[v_i] \rangle$

is a clique. Hence transit is zero. There are n-1 paths of length 2 connecting v to vertices of $K_n - \{u\}$, passing through v.

$$\therefore TI(G) = 2(n-1) \qquad \Box$$

Theorem 3.2. Let G be the graph formed by attaching a pendant edge to every vertex of K_n . Then TI(G) = 5n(n-1)

Proof. Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of K_n and u_1, u_2, \ldots, u_n , be the vertices attached to v_1, v_2, \ldots, v_n respectively. Since u_i are pendant vertices $T(u_i) = 0, \forall i$. The shortest path passing through v_i are either $u_i v_j$ paths or $u_i u_j$ paths of length 2 and 3 respectively. Hence $T(v_i) = 2(n-1) + 3(n-1)$ $\therefore TI(G) = 5n(n-1)$ \square

Theorem 3.3. Let G be the graph formed by merging a vertex of K_n and K_m . i.e. |V(G)| = m + n - 1 and $|E(G)| = |E(K_n)| + 1$ $|E(K_m)|$. Then TI(G) = 2(n-1)(m-1)

Proof. Let v be coalescence vertex. For every vertex u of Gother than v, T(u) = 0, as N[u] is a clique. The shortest paths

passing through *v* are those connecting the n-1 vertices of K_n with m-1 vertices of K_m , each of length 2. Hence TI(G) = T(v) = 2(n-1)(m-1)

Theorem 3.4. Let G be the graph formed by merging a vertex of K_n with a vertex of C_m .

 $Then \ TI(G) = TI(C_m) + \frac{(n-1)(m+4)(m+2)m}{12}, \text{ if } m \text{ is even and} \\ TI(G) = TI(C_m) + \frac{(n-1)(m-1)(m+1)(m+3)}{12}, \text{ if } m \text{ is odd.}$

Proof. Let us denote the coalescence vertex by *v* **Case 1 [m even]**

Clearly, $TI(G) = TI(C_m) + TI(K_n) + I$, where I denote the

Figure 6. K_n and C_m merged at v, m even.

increment in transit due to merging of graphs. The transit for vertices in K_n remains zero, except for v. The vertex at the distance $\frac{m}{2}$ from v on C_m has no increment. Let v_k denote the kth vertex on P_1 , v_1 being v. For $1 < k < \frac{m}{2}$, the increment for v_k is due to the shortest paths from vertices on its right to vertices of K_n including v. This can be computed as

 $= [(k+1) + (k+2) + \ldots + (\frac{m}{2}+1)](n-1)$ = $[(\frac{m}{2}+1)(\frac{m}{2}+2) - k - k^2]\frac{(n-1)}{2}$

Now due to similar positions, $T(v_k), T(v_{m-k+2})$ are transitidentical.

Hence we have I =

$$=2\sum_{1}^{\frac{2}{2}} \left[\left(\frac{m}{2}+1\right) \left(\frac{m}{2}+2\right) - k - k^{2} \right] \frac{(n-1)}{2}$$

= $\frac{(n-1)(m+4)(m+2)m}{12}$, on simplification.
 $\therefore TI(G) = TI(C_{m}) + \frac{(n-1)(m+4)(m+2)m}{12}$

Case 2[m odd]

Let v_k denote the kth vertex on P_1 , $v_1 = v$. For $1 < k < \frac{m-1}{2}$,

Figure 7. K_n and C_m merged at v, m odd.

the increment for v_k is due to the shortest paths from vertices on its right to vertices of K_n including v. This can be computed as $I = (k+1) + (k+2) + \dots + \frac{m+1}{2}$ $= \frac{(m+1)}{2} \frac{(m+3)}{4} - \frac{k}{2} - \frac{k^2}{2}$ In this case also $T(v_k) = T(v_{m-k+2})$ Hence $TI(G) = 2\sum_{1}^{\frac{m-1}{2}} \left[\frac{(m+1)}{2} \frac{(m+3)}{4} - \frac{k}{2} - \frac{k^2}{2} \right]$ $= \frac{(n-1)(m-1)(m+1)(m+3)}{12}$ $\therefore TI(G) = TI(C_m) + \frac{(n-1)(m-1)(m+1)(m+3)}{12}.$

4. Conclusion

In this paper, transit index for various graph classes and for graphs obtained from complete graphs are computed. In future, authors are planning to extend the study to sub-division graphs, graph products and various graphs of importance in chemical graph theory and communication networks.

References

- ^[1] Harary. F; *Graph Theory*, Addison Wesley, 1969.
- Harary 1994, p. 46; Pemmaraju and Skiena 2003, p. 248; Tutte 2005, p. 78
- [3] Gallian, J. Dynamic Survey of Graph Labeling, *Elec. J. Combin.*, DS6. Dec. 21, 2018.
- [4] Brouwer, A. E.; Cohen, A. M. and Neumaier, A; *Distance-Regular Graphs*, New York, Springer-Verlag, 1989.
- [5] Biggs, N. L. Algebraic Graph Theory, 2nd Ed. Cambridge, England, Cambridge University Press, pp. 17 and 68, 1993.
- [6] Harary, F. *Graph Theory*, Reading, MA: Addison-Wesley, p. 23, 1994.
- Stephan Wagner; Hua Wang, (Mathematics Professor), Introduction to chemical graph theory, *Boca Raton, FL*: CRC Press, Taylor & Francis Group, [2019] ©2019
- [8] K.M. Reshmi and Raji Pilakkat, Transit Index of a Graph and its correlation with MON of octane isomers, Communicated to a Journal, 2019.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******