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Transit index of various graph classes
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Abstract
Transit of a vertex v is a graph invariant which was defined as the sum of the length of all shortest paths with v as
an internal vertex. In this paper, transit index for various classes of graph like complete graphs, cycles, wheel
graph, friendship graph, crown graph, total graph of a path, comet are computed.
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1. Introduction
Graph topological indices are widely studied. They find

application in many field of science. Chemical graph Theory
and Networking are a few to name. In[8], transit index of a
graph was introduced and its correlation with one of the phys-
ical property -MON of octane isomers was established. In this
paper we compute the transit index for various graph classes
and for certain graphs developed from complete graphs.

Throughout G denotes a simple, connected, undirected
graph with vertex set V and edge set E. For undefined terms
we refer [1].

Preliminaries
Definition 1.1. [8] Let v ∈V . Then the transit of v denoted
by T (v) is ”the sum of the lengths of all shortest path with v
as an internal vertex” and the transit index of G denoted by
T I(G) is

T I(G) = ∑
v∈V

T (v)

Lemma 1.2. [8] T (v) = 0 iff 〈N[v]〉 is a clique.

Theorem 1.3. [8] For a path Pn, Transit index is

T I(Pn) =
n(n+1)(n2−3n+2)

12
Definition 1.4. Two vertices v1 and v2 of a graph are called
transit identical if the shortest paths passing through them
are same in number and length.

2. Transit index for various graph classes

2.1 Star
Theorem 2.1. For a star graph Sn, T I(Sn) = (n−1)(n−2)

Proof. In a star graph on n vertices, n−1 vertices are pendant
vertices. Hence for them T (v) = 0. There are C(n− 1,2)
shortest path of length 2 passing through the center vertex.
Hence T I(Sn) = 2.C(n−1,2) = (n−1)(n−2)
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2.2 Complete Graphs
Theorem 2.2. For the complete graph Kn, transit index is
zero.

Proof. For every vertex v in a complete graph Kn, 〈N[v]〉=Kn,
a clique. Hence by lemma[1.2], T I(Kn) = 0

Theorem 2.3. For n≥ 3, deleting an edge from Kn, increases
the transit index by 2(n−2).

Proof. The deletion of the edge e = uv, makes u and v non-
adjacent. Hence every other vertex will be an internal vertex
of the shortest path between u and v of length 2. Hence
T I(Kn− e) = 2(n−2)

Theorem 2.4. Let G = Kp,q where V = V1 ∪V2 is the bi-
partition with |V1|= p, |V2|= q. Then T I(G) = pq[p+q−2]

Proof. When p = 1 or q = 1, the result is obvious.
Let p,q≥ 2.
Let v ∈V1. Then, T (v) = 2C(q,2).
If v ∈V2, then T (v) = 2C(p,2).
Hence

T I(G) = ∑
v∈V

T (v)

= ∑
v∈V1

T (v)+ ∑
v∈V2

T (v)

= 2[
pq(q−1)

2
]+2[

pq(p−1)
2

]

= pq[p+q−2]

Theorem[2.4] can be generalised to s-partite graphs as
follows.

Theorem 2.5. Let G be the complete s-partite graph [6].

Then T I(G) =
s

∑
i=1

2ni

[
∑
j 6=i

C(n j,2)

]

Proof. Let V1,V2, . . . ,Vs be the partition of the vertex set V .
Then no two vertices in Vi are adjacent to each other. But every
vertex in Vj, j 6= i is adjacent to all vertices of Vi.The shortest
paths passing through vi are those connecting vertices of the
same Vj to itself, of length 2. Hence T (vi) = 2 ∑

j 6=i
C(n j,2)

∴ T I(G) = ∑
vi∈V1

T (vi)+ ∑
vi∈V2

T (vi)+ · · ·+ ∑
vi∈Vs

T (vi)

=
s

∑
i=1

2ni

[
∑
j 6=i

C(n j,2)

]

Corollary 2.6. If G is the cocktail party graph [5] , T I(G) =
4n(n−1)

Proof. In the theorem [2.5], take ni = 2,∀i and s = n with
|G|= 2n.

2.3 Cycle
Theorem 2.7. Let Cn be a cycle with n even. Then

i) T I(Cn) =
n2(n2−4)

24

ii) T I(Cn+1) =
n(n2−4)(n+1)

24

Proof.

v

1 2 n/2-1

Figure 1. Cycle Cn

(i) Consider the vertex v in the figure[1]. The maximum
length of the shortest path passing through v is of length n

2 .
The sum length of the length of the shortest paths originating

from 1 is 2+3+ . . .+
n
2

from 2 is 3+4+ . . .+
n
2

...
from

n
2
−1 is

n
2

Hence

T (v) = (
n
2
−1)

n
2
+(

n
2
−2)(

n
2
−1)+ . . .+2.1+1.0

=

n
2

∑
k=1

(k−1)k

=
(n2−4)n

24

Due to symmetry, every vertex in the cycle are transit identi-
cal.

∴ T I(Cn) =
n2(n2−4)

24
,n is even

(ii) Consider Cn+1, with n even. The maximum length of the
shortest path passing through any vertex v remains to be n

2 .

Hence as in the case of even cycle T (v) = (n2−4)n
24 .

∴ T I(Cn+1) = (n+1)T (v) = (n+1) (n
2−4)n
24

2.4 Wheel Graph
The wheel graph [2], Wn+1 is the graph obtained from Cn, n≥
3 by adding a new vertex and by making it adjacent to all
vertices of Cn.
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Theorem 2.8. T I(Wn+1) = n(n−1),n > 3 and for
n = 3,T I(W3+1) = 0

Proof. Let n > 3. In Wn+1, the diameter is 2. Hence no
shortest path is of length more than 2. The vertices on the outer
circle Cn are transit identical. Let v be one such vertex. The

c

v

Wn+1

e

Figure 2. Wheel graph Wn+1

only shortest path passing through it is between its adjacent
vertices. ∴ T (v) = 2, for v ∈Cn
Consider the center vertex c. To find its transit we consider the
contribution of each edge to it. Every edge on Cn contributes
0 to T (c). Consider the edges of the type e, as shown in the
figure[2], which are the spokes of the wheel. e will be used
only by v to travel to every vertex other than its adjacent ones.
Hence the contribution is (n−3). ∴ T (c) = n(n−3)
i.e.T I(Wn+1) = 2n+n(n−3) = n(n−1)
For n = 3, we get W3+1 = K4. ∴ its transit is zero.

2.5 Friendship Graph
The Friendship graph [3], Fn is constructed by coalescence of
n copies of cycle C3 of length 3, with a common vertex.

Theorem 2.9. T I(Fn) = 4n(n−1), |V |= 2n+1.

Proof. In Fn, the diameter is 2. For every vertex v other than
the coalescence vertex, 〈N[v]〉 is a clique. Hence T (v) = 0, by
lemma[1.2]. Hence T I(Fn) = T (c)

The edges of the type e′, as in the figure[3] does not
contribute to T (c). Hence we count the number of times the
edges of the type e is used. The edge e will be used by the
vertex v to travel to all vertices other than its adjacent ones.
Hence contribution of e is 2n+1−3 = 2(n−1). There are
2n such edges.∴ T (c) = 4n(n−1).
i.e. T I(Fn) = 4n(n−1), |V |= 2n+1.

2.6 Crown Graph
A crown graph [4] is the unique n−1 regular graph with 2n
vertices, obtained from the complete bipartite graph Kn,n by
deleting a perfect matching. Or it is the graph with vertices as

v

c

e

e’

Figure 3. Friendship Graph Fn

two sets {ui} and {vi}, with an edge from ui to v j whenever
i 6= j

K4,4

Figure 4. Crown graph

Theorem 2.10. For the Crown graph G, T I(G) = 2n(n2−1).

Proof. Let the bipartition be V,U , with V = {v1,v2, . . . ,vn}
and U = {u1,u2, . . . ,un}. Consider a vertex of V , say vk. Note
that d(ui,vi) = 3 and d(ui,v j) = 2, i 6= j. The shortest path
through vk are those connecting vi to v j, i 6= j of length 2
and those connecting vi to ui of length 3. Hence T (vk) =
2C(n−1,2)+3(n−1) = n2−1. In this graph every vertex is
transit identical. ∴ T I(G) = 2n(n2−1).

2.7 Snake Graph
The triangular snake graph can be viewed as the graph formed
by replacing every edge of Pn by a triangle, thus adding n−1
vertices and 2(n−1) edges.

Theorem 2.11. If G is the triangular snake graph of a path
on 2n−1 vertices, T I(G) = T I(Pn)+

(n−2)(n−1)n(n+1)
4 .

Proof. Let v1,v2, . . . ,vn denote the vertices of the path Pn. The
newly added vertices are named as u1,u2, . . . ,un−1. For every
ui, 〈N[ui]〉 is a clique. Hence T (ui) = 0,∀i, by lemma[1.2].
Also 〈N[v1]〉,〈N[vn]〉 are cliques. ∴ T (v1) = T (vn) = 0.

Hence we need to compute only the transit of vi for
1 < i < n. The transit of these vertices are due to path con-
necting vi among themselves, path connecting ui among them-
selves and paths connecting vi to ui. i.e. T I(G) = T I(Pn)+ I,
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v1

u1

v2

u2 un−1

vn

Figure 5. Total graph of a path

where I denote the increase in transit of vi due to the addition
of ui.
Consider vk . The increase in its transit is due to
1. Paths connecting ui to u j, i < k, j > k
2. Paths connecting ui to v j, i < k, j > k
3. Paths connecting vi to u j, i < k, j > k
It can be seen that the increase in all the three cases are the
same and equal to
A = (2 + 3 + . . .+ n− k + 1) + (3 + 4 + . . .+ n− k + 2) +
. . .(k+(k+1)+ . . .+(n−1)
Hence increase in transit of vk is 3A.
If we take a = 2+ 3+ . . .+ n− k+ 1, A = a+(a+ n− k)+
(a+2(n− k))+ . . .

Hence increase in transit of vk is = 3[a(k−1)+ (n−k)(k−2)(k−1)
2 ]

= 3
2 (n− k)(k−1)(n+1).

= 3
2 (n+1)[(n+1)k− k2−n]

Hence I =
n

∑
k=1

3
2
(n+1)[(n+1)k− k2−n]

=
(n−2)(n−1)n(n+1)

4
.

Hence the proof.

2.8 Comet
A comet is formed by appending multiple pendant edges to
one end of a path.

v1

Pn

vn

Theorem 2.12. Let G be the graph got by appending m pen-
dant edges to one end of Pn. Then T I(G) = T I(Pn)+

mn(n2−1)
3

Proof. Let v1,v2, . . . ,vn be the vertices of the path Pn and
u1,u2, . . . ,um the newly appended vertices.
In the graph G, transit is zero for the newly added vertices.
Hence T I(G) = T I(Pn)+ I, where I is the increase in transit
of vertices of Pn due to the newly appended edges.

Let vk be any vertex of Pn. Then the increase in T (vk) is due to
the paths connecting the vertices on the left of it to the newly
added vertices. This can be computed as
= nm+(n−1)m+ . . .+(n− k+2)m
= m

2 [k(2n+3)− k2− (2n+2), on simplification.

∴ I =
n

∑
1

m
2
[k(2n+3)− k2− (2n+2)]

=
mn(n2−1)

3
Hence the theorem.

Remark 2.13. Applying the recursive formula for a path,
T I(Pn+1) = T I(Pn)+

n(n2−1)
3 , the transit of a comet G of The-

orem [2.12] can be expressed as, T I(G) = mT I(Pn−1)−(m−
1)T I(Pn).

3. Transit index for some graphs derived
from Complete graph

Theorem 3.1. Let G be the graph obtained by attaching a
pendant edge to one of the vertices of a complete graph.
i.e. |V (G)| = |V (Kn)|+ 1 and |E(G)| = |E(Kn)|+ 1. Then
T I(G) = 2(n−1)

Proof. Let the new vertex be v and the vertex to which it is
attached be u. Then for every vertex in G other than u, 〈N[vi]〉

u

Kn

v

is a clique. Hence transit is zero. There are n− 1 paths of
length 2 connecting v to vertices of Kn−{u}, passing through
v.
∴ T I(G) = 2(n−1)

Theorem 3.2. Let G be the graph formed by attaching a
pendant edge to every vertex of Kn. Then T I(G) = 5n(n−1)

Proof. Let {v1,v2, . . . ,vn} be the vertices of Kn and
u1,u2, . . . ,un , be the vertices attached to v1,v2, . . . ,vn respec-
tively. Since ui are pendant vertices T (ui)= 0,∀i. The shortest
path passing through vi are either uiv j paths or uiu j paths of
length 2 and 3 respectively. Hence T (vi)= 2(n−1)+3(n−1)
∴ T I(G) = 5n(n−1)

Theorem 3.3. Let G be the graph formed by merging a vertex
of Kn and Km. i.e. |V (G)|=m+n−1 and |E(G)|= |E(Kn)|+
|E(Km)|. Then T I(G) = 2(n−1)(m−1)

Proof. Let v be coalescence vertex. For every vertex u of G
other than v, T (u) = 0, as N[u] is a clique. The shortest paths
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passing through v are those connecting the n− 1 vertices
of Kn with m− 1 vertices of Km, each of length 2. Hence
T I(G) = T (v) = 2(n−1)(m−1)

Theorem 3.4. Let G be the graph formed by merging a vertex
of Kn with a vertex of Cm.
Then T I(G) = T I(Cm)+

(n−1)(m+4)(m+2)m
12 , if m is even and

T I(G) = T I(Cm)+
(n−1)(m−1)(m+1)(m+3)

12 , if m is odd.

Proof. Let us denote the coalescence vertex by v
Case 1 [m even]
Clearly, T I(G) = T I(Cm)+T I(Kn)+ I, where I denote the

vKn
vm/2+1

P1

vk

Figure 6. Kn and Cm merged at v, m even.

increment in transit due to merging of graphs. The transit for
vertices in Kn remains zero, except for v. The vertex at the
distance m

2 from v on Cm has no increment. Let vk denote the
kth vertex on P1, v1 being v. For 1 < k < m

2 , the increment
for vk is due to the shortest paths from vertices on its right to
vertices of Kn including v. This can be computed as
= [(k+1)+(k+2)+ . . .+(m

2 +1)](n−1)
=
[
(m

2 +1)(m
2 +2)− k− k2

] (n−1)
2

Now due to similar positions, T (vk),T (vm−k+2) are transit
identical.
Hence we have I =

=2

m
2

∑
1

[
(

m
2
+1)(

m
2
+2)− k− k2

] (n−1)
2

= (n−1)(m+4)(m+2)m
12 , on simplification.

∴ T I(G) = T I(Cm)+
(n−1)(m+4)(m+2)m

12

Case 2[m odd]
Let vk denote the kth vertex on P1, v1 = v. For 1 < k < m−1

2 ,

vKn

v(m+1)/2

Figure 7. Kn and Cm merged at v, m odd.

the increment for vk is due to the shortest paths from vertices
on its right to vertices of Kn including v. This can be computed

as
I = (k+1)+(k+2)+ . . .+ m+1

2

= (m+1)
2

(m+3)
4 − k

2 −
k2

2
In this case also T (vk) = T (vm−k+2)

Hence T I(G) = 2

m−1
2

∑
1

[
(m+1)

2
(m+3)

4
− k

2
− k2

2

]
= (n−1)(m−1)(m+1)(m+3)

12

∴ T I(G) = T I(Cm)+
(n−1)(m−1)(m+1)(m+3)

12 .

4. Conclusion
In this paper, transit index for various graph classes and

for graphs obtained from complete graphs are computed. In
future, authors are planning to extend the study to sub-division
graphs, graph products and various graphs of importance in
chemical graph theory and communication networks .
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