

https://doi.org/10.26637/MJM0802/0030

Neighbourhood V₄-magic labeling of some middle graphs

K.P. Vineesh¹* and V. Anil Kumar²

Abstract

Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0.A graph G(V(G), E(G)) is said to be neighbourhood V_4 -magic if there exists a labeling $f: V(G) \to V_4 \setminus \{0\}$ such that the induced mapping $N_f^+: V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is $p(p \neq 0)$, we say that f is a p-neighbourhood V_4 -magic labeling of G and G a p-neighbourhood V_4 -magic graph. If this constant is zero, we say that f is a 0-neighphourhood V_4 -magic labeling of G and G a 0-neighbourhood V_4 -magic graph. In this paper we investigate middle graph of some special graphs that are a-neighbourhood V_4 -magic, 0-neighbourhood V_4 -magic and both *a*-neighbourhood and 0-neighbourhood V_4 -magic.

. 501

Keywords

Klein-4-group, a-neighbourhood V_4 -magic graphs, 0-neighbourhood V_4 -magic graphs.

AMS Subject Classification 05C78.05C25.

^{1,2} Department of Mathematics University of Calicut, Malappuram, Kerala-670007, Kerala, India.

Corresponding author: 1 kpvineeshmaths@gmail.com; 2 anil@uoc.ac.in

Article History: Received 08 December 2019; Accepted 17 April 2020

Contents

1	Introduction	499
2	Main Results	499

References

1. Introduction

Through out this paper we shall consider only connected, finite, simple and undirected graphs. All notations and definitions not given here can be found in [2, 3]. The Klein 4-group, denoted by V_4 is the abelian group of order 4. It has elements $V_4 = \{0, a, b, c\}$, with a + a = b + b = c + c = 0 and a+b=c, b+c=a, c+a=b. Obviously V₄ is not cyclic since every element is of order 2 (except possibly the identity). The V_4 -magic graphs were introduced by S. M. Lee et al. in 2002 [7]. We say that, a graph G = (V(G), E(G)), with vertex set V(G) and edge set E(G) is Neighbourhood V₄-magic if there exists a labeling $f: V(G) \to V_4 \setminus \{0\}$ such that the induced mapping $N_f^+: V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is p, where p is any non zero element in V_4 , then we say that f is a p-neighbourhood V_4 -magic labeling of G and G is said to be a p-neighbourhood V_4 -magic graph. If this constant is 0, then we say that f is a 0-neighbourhood V_4 -magic labeling of G and G is said to be a

0-neighbourhood V_4 -magic graph. In this paper, we study a class of graphs in the following categories:

©2020 MJM.

- (i) $\Omega_a :=$ the class of all *a*-neighbourhood V₄-magic graphs,
- (ii) $\Omega_0 :=$ the class of all 0-neighbourhood V₄-magic graphs,
- (iii) $\Omega_{a,0} := \Omega_a \cap \Omega_0$.

Definition 1.1. [1] The middle graph of a graph G, denoted by M(G), is the graph obtained from G by inserting a new vertex into every edge of G and by joining those pairs of these new vertices with edges which lie on adjacent edges of G.

Definition 1.2. [4] A complete bipartite graph of the form $K_{1,n}$ is called a star. A star $K_{1,n}$ is sometimes called an *n*-star.

Definition 1.3. [5] The friendship graph or the Dutch windmill graph, denoted by F_m (or $D_3^{(m)}$) is obtained by taking m copies of C_3 with one vertex in common.

Definition 1.4. [6] The Bistar $B_{m,n}$ is the graph obtained by joining the central vertex of $K_{1,m}$ and $K_{1,n}$ by an edge.

2. Main Results

Theorem 2.1. $M(C_n) \in \Omega_a$ if and only if $n \equiv 0 \pmod{2}$.

Proof. Consider $M(C_n)$ with vertex set $V = \{u_i, v_i : 1 \le i \le n\}$ labeled as in figure 1. Suppose that $M(C_n) \in \Omega_a$ with a labeling f. Then $N_f^+(u_2) = a$ implies that $f(v_1) + f(v_2) = a$, which implies that either $f(v_1) = b$ or $f(v_1) = c$. Without loss of generality we can assume that $f(v_1) = b$. Then $f(v_2) = c$, $f(v_3) = b$, $f(v_4) = c$, etc. and so on. Now $N_f^+(u_1) = a$ implies that $f(v_1) + f(v_n) = a$, which again implies that $f(v_n) = c$. Hence $n \equiv 0 \pmod{2}$. Conversely, assume that $n \equiv 0 \pmod{2}$. Then define $f : V \to V_4 \setminus \{0\}$ as:

$$f(u_i) = f(v_i) = \begin{cases} b & \text{if } i \equiv 0 \pmod{2} \\ c & \text{if } i \equiv 1 \pmod{2} \end{cases}$$

Obviously, f is an *a*-neighbourhood V_4 -magic labeling of $M(C_n)$. This completes the proof of the theorem.

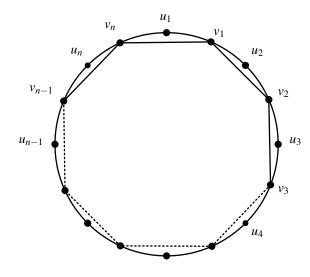


Figure 1. The middle graph $M(C_n)$

Theorem 2.2. $M(C_n) \in \Omega_0$ for all $n \ge 3$.

Proof. By labeling all the vertices by a, we get $M(C_n) \in \Omega_0$.

Corollary 2.3. $M(C_n) \in \Omega_{a,0}$ *if and only if* $n \equiv 0 \pmod{2}$.

Proof. Proof directly follows from Theorem 2.1 and Theorem 2.2. \Box

Theorem 2.4. $M(P_n) \notin \Omega_a$ for any n.

Proof. Consider $M(P_n)$ with vertex set $V = \{u_i, v_j : 1 \le i \le n, 1 \le j \le n-1\}$ and edge set $E = \{u_i v_i : 1 \le i \le n-1\} \cup \{v_i u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_{i+1} : 1 \le i \le n-2\}$. Assume that $M(P_n) \in \Omega_a$ for some n with a labeling f. Then $N_f^+(u_1) = a$ implies that $f(v_1) = a$. Now $N_f^+(u_2) = a$ implies that $f(v_1) + f(v_2) = a$. Hence $f(v_2) = 0$, a contradiction. Hence the theorem is proved.

Theorem 2.5. $M(P_n) \notin \Omega_0$ for any n.

Proof. Proof is obvious, since $M(P_n)$ has pendant vertex in it.

Corollary 2.6. $M(P_n) \notin \Omega_{a,0}$ for any n.

Proof. It directly follows from Theorem 2.4.

Theorem 2.7. $M(K_{1,n}) \in \Omega_a$ if and only if $n \equiv 1 \pmod{2}$.

Proof. Consider $M(K_{1,n})$ with vertex set $V = \{u, u_i, v_i : 1 \le i \le n\}$ and edge set $E = \{uv_i, u_iv_i : 1 \le i \le n\} \cup \{v_iv_j : 1 \le i, j \le n, i \ne j\}$. Assume that $M(K_{1,n}) \in \Omega_a$ with a labeling f. Then, $N_f^+(u_i) = a$ implies that $f(v_i) = a$ for all $1 \le i \le n$. Consequently, $N_f^+(u) = a$ gives na = a, which implies that $n \equiv 1 \pmod{2}$. Conversely, assume that $n \equiv 1 \pmod{2}$. Define $f: V \to V_4 \setminus \{0\}$ as:

$$f(u_i) = b$$
 if $i = 1, 2, 3, ..., n$
 $f(v_i) = a$ if $i = 1, 2, 3, ..., n$
 $f(u) = c$

Then *f* is an *a*-neighbourhood *V*₄-magic labeling of $M(K_{1,n})$.

Theorem 2.8. $M(K_{1,n}) \notin \Omega_0$ for any n.

Proof. Proof is obvious due to the presence of pendant vertex in $M(K_{1,n})$.

Corollary 2.9. $M(K_{1,n}) \notin \Omega_{a,0}$ for any *n*.

Proof. It directly follows from Theorem 2.8. \Box

Theorem 2.10. $M(F_m) \in \Omega_0$ for all n.

Proof. Note that degree of each vertex in $M(F_m)$ is even. By labeling all the vertices by a, we get $M(F_m) \in \Omega_0$ for all m.

Theorem 2.11. $M(F_m) \notin \Omega_a$ for any *n*.

Proof. Consider $M(F_m)$ with verex set $V = \{w, u_i, v_i, w'_i, u'_i, v'_i: 1 \le i \le m\}$ labeled as in figure 3. Suppose that $M(F_m) \in \Omega_a$ with a labeing f. Then for each $1 \le i \le m$, $N_f^+(u_i) = a = N_f^+(v_i)$ implies that $f(u'_i) = (v'_i)$. Hence $N_f^+(w) = \sum f(u'_i) + \sum f(v'_i) = 0$, which is a contradiction. Hence the theorem is proved.

Corollary 2.12. $M(F_m) \notin \Omega_{a,0}$ for any *n*.

Proof. It directly follows from Theorem 2.11. \Box

Theorem 2.13. $M(B_{m,n}) \notin \Omega_0$ for all *m* and *n*.

Proof. Proof is obvious, since $M(B_{m,n})$ has pendant vertex in it.

Theorem 2.14. $M(B_{m,n}) \in \Omega_a$ if and only if *m* and *n* are both even.

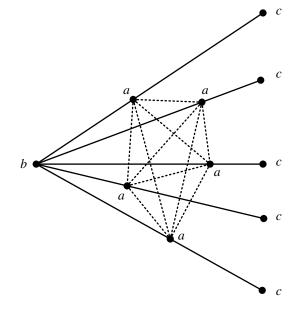


Figure 2. An *a*-neighbourhood V_4 -magic labeling of $M(K_{1,5})$.

Proof. Consider $M(B_{m,n})$ with vertex set $V = \{u, v, w, u_i, v_j, u'_i, v'_j : 1 \le i \le m, 1 \le j \le n\}$ and edge set $E = \{u_i u'_i : 1 \le i \le m\} \cup \{v_j v'_j : 1 \le j \le n\} \cup \{u'_i u'_j : 1 \le i, j \le m, i \ne j\} \cup \{v'_i v'_j : 1 \le i, j \le n, i \ne j\} \cup \{uu'_i : 1 \le i \le m\} \cup \{vv'_j : 1 \le j \le n\} \cup \{wu'_i : 1 \le i \le m\} \cup \{wv_y : 1 \le j \le n\} \cup \{wu_i : 1 \le i \le m\} \cup \{wv_j : 1 \le j \le n\} \cup \{wu_i wv\}$. Assume that *m* and *n* are both even. Define $f : V \rightarrow V_4 \setminus \{0\}$ as:

$$f(u_i) = c \quad \text{if} \quad i = 1, 2, 3, ..., m$$

$$f(u'_i) = a \quad \text{if} \quad i = 1, 2, 3, ..., m$$

$$f(v_j) = b \quad \text{if} \quad j = 1, 2, 3, ..., n$$

$$f(v'_j) = a \quad \text{if} \quad j = 1, 2, 3, ..., n$$

$$f(u) = b$$

$$f(v) = c$$

$$f(w) = a$$

Then, *f* is an *a*-neighbourhood *V*₄-magic labeling of $M(B_{m,n})$. Conversely, assume that *m* and *n* are not both even. Without loss of generality assume that *m* is odd. If $M(B_{m,n}) \in \Omega_a$, then we have $f(u'_i) = a$ for i = 1, 2, 3, ..., m. Now $N_f^+(u) =$ $\sum f(u_i) + f(w) = a$ implies that na + f(w) = a, which again implies that f(w) = 0, a contradiction. Therefore, $M(B_{m,n}) \notin \Omega_a$.

Corollary 2.15. $M(B_{m,n}) \notin \Omega_{a,0}$ for any n.

Proof. It directly follows from Theorem 2.13.

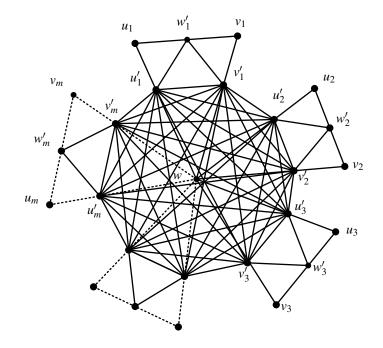


Figure 3. The middle graph $M(F_m)$.

References

- [1] Akiyama.J., Hamada.T., and Yoshimura.Y., Miscellaneous properties of middle graphs, *TRU Math.*, 10(1974), 41–53.
- [2] Chartrand G. and Zhang P., *Introduction to Graph Theory*, McGraw-Hill, Boston, 2005.
- ^[3] Frank Harary, *Graph theory*, Addison-Wesley Publishing Company, Reading, MA, 1972.
- ^[4] R. Balakrishnan and K. Ranganathan, *A Textbook of Graph Theory*, Springer, 2012.
- ^[5] Vandana P. T., Anil Kumar V., V₄-Magic Labelings of some graphs, *British Journal of Mathematics and Computer Science*, 11(5)(2015), 1–20.
- [6] Joseph A. Gallian, A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, Twenty-first edition, December 21, 2018.
- [7] Lee SM, Saba F, Salehi E, Sun H. On the V₄- magic graphs, *Congressus Numerantium*,2002, 1–10.

