

https://doi.org/10.26637/MJM0802/0030

Neighbourhood *V*4−**magic labeling of some middle graphs**

K.P. Vineesh^{1*} and V. Anil Kumar²

Abstract

Let $V_4 = \{0, a, b, c\}$ be the Klein-4-group with identity element 0.A graph $G(V(G), E(G))$ is said to be neighbourhood *V*₄-magic if there exists a labeling $f: V(G) \to V_4 \setminus \{0\}$ such that the induced mapping $N_f^+ : V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is $p(p \neq 0),$ we say that f is a *p*-neighbourhood *V*4-magic labeling of *G* and *G* a *p*-neighbourhood *V*4-magic graph. If this constant is zero, we say that *f* is a 0-neighghbourhood *V*4-magic labeling of *G* and *G* a 0-neighbourhood *V*4-magic graph. In this paper we investigate middle graph of some special graphs that are *a*-neighbourhood *V*4-magic, 0-neighbourhood *V*4-magic and both *a*-neighbourhood and 0-neighbourhood *V*4-magic.

Keywords

Klein-4-group, a-neighbourhood *V*4-magic graphs, 0-neighbourhood *V*4-magic graphs.

AMS Subject Classification

05C78, 05C25.

1,2*Department of Mathematics University of Calicut, Malappuram, Kerala-670007, Kerala, India.* ***Corresponding author**: ¹ kpvineeshmaths@gmail.com; ²anil@uoc.ac.in **Article History**: Received **08** December **2019**; Accepted **17** April **2020** ©2020 MJM.

Contents

1. Introduction

Through out this paper we shall consider only connected, finite, simple and undirected graphs. All notations and definitions not given here can be found in [\[2,](#page-2-1) [3\]](#page-2-2). The Klein 4-group, denoted by V_4 is the abelian group of order 4. It has elements $V_4 = \{0, a, b, c\}$, with $a + a = b + b = c + c = 0$ and $a+b=c, b+c=a, c+a=b$. Obviously V_4 is not cyclic since every element is of order 2 (except possibly the identity). The *V*4-magic graphs were introduced by S. M. Lee et al. in 2002 [\[7\]](#page-2-3). We say that, a graph $G = (V(G), E(G))$, with vertex set $V(G)$ and edge set $E(G)$ is Neighbourhood V_4 -magic if there exists a labeling $f : V(G) \to V_4 \setminus \{0\}$ such that the induced mapping $N_f^+ : V(G) \to V_4$ defined by $N_f^+(v) = \sum_{u \in N(v)} f(u)$ is a constant map. If this constant is *p*,where *p* is any non zero element in V_4 , then we say that f is a p -neighbourhood *V*4-magic labeling of *G* and *G* is said to be a *p*-neighbourhood *V*4-magic graph. If this constant is 0,then we say that *f* is a 0-neighbourhood *V*4-magic labeling of *G* and *G* is said to be a

0-neighbourhood *V*4-magic graph. In this paper, we study a class of graphs in the following categories:

- (i) Ω_a := the class of all *a*-neighbourhood V_4 -magic graphs,
- (ii) $\Omega_0 :=$ the class of all 0-neighbourhood V_4 -magic graphs,
- (iii) $\Omega_{a,0} := \Omega_a \cap \Omega_0$.

Definition 1.1. [\[1\]](#page-2-4) The middle graph of a graph *G*, denoted by *M*(*G*), is the graph obtained from *G* by inserting a new vertex into every edge of *G* and by joining those pairs of these new vertices with edges which lie on adjacent edges of *G*.

Definition 1.2. [\[4\]](#page-2-5) A complete bipartite graph of the form $K_{1,n}$ is called a star. A star $K_{1,n}$ is sometimes called an *n*−star.

Definition 1.3. [\[5\]](#page-2-6) The friendship graph or the Dutch windmill graph, denoted by F_m (or $D_3^{(m)}$ 3) is obtained by taking *m* copies of C_3 with one vertex in common.

Definition 1.4. [\[6\]](#page-2-7) The Bistar $B_{m,n}$ is the graph obtained by joining the central vertex of $K_{1,m}$ and $K_{1,n}$ by an edge.

2. Main Results

Theorem 2.1. *M*(C_n) $\in \Omega_a$ *if and only if* $n \equiv 0 \pmod{2}$.

Proof. Consider $M(C_n)$ with vertex set $V = \{u_i, v_i : 1 \le i \le n\}$ *n*} labeled as in figure [1.](#page-1-0) Suppose that $M(C_n) \in \Omega_a$ with a labeling *f*. Then $N_f^+(u_2) = a$ implies that $f(v_1) + f(v_2) = a$, which implies that either $f(v_1) = b$ or $f(v_1) = c$. Without loss of generality we can assume that $f(v_1) = b$. Then $f(v_2) =$ $c, f(v_3) = b, f(v_4) = c$, etc. and so on. Now $N_f^+(u_1) =$ *a* implies that $f(v_1) + f(v_n) = a$, which again implies that $f(v_n) = c$. Hence $n \equiv 0 \pmod{2}$. Conversely, assume that $n \equiv 0 \pmod{2}$. Then define $f : V \to V_4 \setminus \{0\}$ as:

$$
f(u_i) = f(v_i) = \begin{cases} b & \text{if } i \equiv 0 \pmod{2} \\ c & \text{if } i \equiv 1 \pmod{2} \end{cases}
$$

Obviously, *f* is an *a*-neighbourhood *V*4-magic labeling of $M(C_n)$. This completes the proof of the theorem. \Box

Figure 1. The middle graph $M(C_n)$

Theorem 2.2. *M*(C_n) $\in \Omega_0$ *for all n* ≥ 3 .

Proof. By labeling all the vertices by *a*, we get $M(C_n) \in$ Ω_0 . \Box

Corollary 2.3. *M*(C_n) $\in \Omega_{a,0}$ *if and only if* $n \equiv 0 \pmod{2}$.

Proof. Proof directly follows from Theorem [2.1](#page-0-2) and Theorem [2.2.](#page-1-1) \Box

Theorem 2.4. $M(P_n) \notin \Omega_a$ for any n.

Proof. Consider $M(P_n)$ with vertex set $V = \{u_i, v_j : 1 \le i \le n\}$ *n*, $1 \le j \le n - 1$ } and edge set $E = \{u_i v_i : 1 \le i \le n - 1\}$ ∪ $\{v_i u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_{i+1} : 1 \le i \le n-2\}$. Assume that $M(P_n) \in \Omega_a$ for some *n* with a labeling *f*. Then $N_f^+(u_1) = a$ implies that $f(v_1) = a$. Now $N_f^+(u_2) = a$ implies that $f(v_1) + b$ $f(v_2) = a$. Hence $f(v_2) = 0$, a contradiction. Hence the theorem is proved. \Box

Theorem 2.5. $M(P_n) \notin \Omega_0$ for any n.

Proof. Proof is obvious, since $M(P_n)$ has pendant vertex in it. П

 \Box

Corollary 2.6. $M(P_n) \notin \Omega_{a,0}$ for any *n*.

Proof. It directly follows from Theorem [2.4.](#page-1-2)

Theorem 2.7. *M*($K_{1,n}$) $\in \Omega_a$ *if and only if* $n \equiv 1 \pmod{2}$.

Proof. Consider $M(K_{1,n})$ with vertex set $V = \{u, u_i, v_i : 1 \leq$ *i* ≤ *n*} and edge set *E* = {*uv*_{*i*}, *u*_{*i*}*v*_{*i*} : 1 ≤ *i* ≤ *n*} ∪ {*v*_{*i*}*v*_{*j*} : 1 ≤ $i, j \leq n, i \neq j$. Assume that $M(K_{1,n}) \in \Omega_a$ with a labeling *f*. Then, $N_f^+(u_i) = a$ implies that $f(v_i) = a$ for all $1 \le i \le n$. Consequently, $N_f^+(u) = a$ gives $na = a$, which implies that $n \equiv 1 \pmod{2}$. Conversely, assume that $n \equiv 1 \pmod{2}$. Define $f: V \to V_4 \setminus \{0\}$ as:

$$
f(u_i) = b
$$
 if $i = 1, 2, 3, ..., n$
\n $f(v_i) = a$ if $i = 1, 2, 3, ..., n$
\n $f(u) = c$

Then *f* is an *a*-neighbourhood V_4 -magic labeling of $M(K_{1,n})$. П

Theorem 2.8. $M(K_{1,n}) \notin \Omega_0$ *for any n*.

Proof. Proof is obvious due to the presence of pendant vertex in $M(K_{1,n})$. \Box

Corollary 2.9. *M*($K_{1,n}$) $\notin \Omega_{a,0}$ *for any n.*

Proof. It directly follows from Theorem [2.8.](#page-1-3) \Box

Theorem 2.10. $M(F_m) \in \Omega_0$ for all n.

Proof. Note that degree of each vertex in $M(F_m)$ is even. By labeling all the vertices by *a*, we get $M(F_m) \in \Omega_0$ for all *m*. \Box

Theorem 2.11. $M(F_m) \notin \Omega_a$ for any n.

Proof. Consider $M(F_m)$ with verex set $V = \{w, u_i, v_i, w'_i, u'_i, v'_i\}$: $1 \leq i \leq m$ labeled as in figure [3.](#page-2-9) Suppose that $M(F_m) \in \Omega_a$ with a labeing *f*. Then for each $1 \le i \le m$, $N_f^+(u_i) = a$ $N_f^+(v_i)$ implies that $f(u'_i) = (v'_i)$. Hence $N_f^+(w) = \sum f(u'_i) + \sum f(u'_i)$ $\sum f(v_i') = 0$, which is a contradiction. Hence the theorem is proved. \Box

Corollary 2.12. $M(F_m) \notin \Omega_{a,0}$ for any n.

 \Box *Proof.* It directly follows from Theorem [2.11.](#page-1-4)

Theorem 2.13. $M(B_{m,n}) \notin \Omega_0$ *for all m and n.*

Proof. Proof is obvious, since $M(B_{m,n})$ has pendant vertex in it. \Box

Theorem 2.14. $M(B_{m,n}) \in \Omega_a$ *if and only if m and n are both even.*

Figure 2. An *a*-neighbourhood *V*4-magic labeling of $M(K_{1.5})$.

Proof. Consider *M*(*Bm*,*n*) with vertex set $V = \{u, v, w, u_i, v_j, u'_i, v'_j : 1 \le i \le m, 1 \le j \le n\}$ and edge set $E = \{u_i u'_i : 1 \le i \le m\} \cup \{v_j v'_j : 1 \le j \le n\} \cup \{u'_i u'_j : 1 \le j$ *i*, *j* ≤ *m*, *i* ≠ *j*} ∪ { $v'_i v'_j$: 1 ≤ *i*, *j* ≤ *n*, *i* ≠ *j*} ∪ {*uu*'_{*i*} : 1 ≤ *i* ≤ *m*} ∪ {*vv'_j* : 1 ≤ *j* ≤ *n*} ∪ {*wu'_i* : 1 ≤ *i* ≤ *m*} ∪ {*wv'_j* : 1 ≤ *j* ≤ *n*} ∪ {*wu*,*wv*}. Assume that *m* and *n* are both even. Define $f: V \to V_4 \backslash \{0\}$ as:

$$
f(u_i) = c \text{ if } i = 1, 2, 3, ..., m
$$

\n
$$
f(u'_i) = a \text{ if } i = 1, 2, 3, ..., m
$$

\n
$$
f(v_j) = b \text{ if } j = 1, 2, 3, ..., n
$$

\n
$$
f(v'_j) = a \text{ if } j = 1, 2, 3, ..., n
$$

\n
$$
f(u) = b
$$

\n
$$
f(v) = c
$$

\n
$$
f(w) = a
$$

Then, *f* is an *a*-neighbourhood V_4 -magic labeling of $M(B_{m,n})$. Conversely, assume that *m* and *n* are not both even. Without loss of generality assume that *m* is odd. If $M(B_{m,n}) \in \Omega_a$, then we have $f(u'_i) = a$ for $i = 1, 2, 3, ..., m$. Now $N_f^+(u) =$ $\sum f(u_i) + f(w) = a$ implies that $na + f(w) = a$, which again implies that $f(w) = 0$, a contradiction. Therefore, $M(B_{m,n}) \notin$ Ω_a . \Box

Corollary 2.15. *M*($B_{m,n}$) $\notin \Omega_{a,0}$ *for any n*.

Proof. It directly follows from Theorem [2.13.](#page-1-5)

Figure 3. The middle graph $M(F_m)$.

References

- [1] Akiyama.J., Hamada.T., and Yoshimura.Y., Miscellaneous properties of middle graphs, *TRU Math.,* 10(1974), 41–53.
- [2] Chartrand G. and Zhang P., *Introduction to Graph Theory,* McGraw-Hill, Boston, 2005.
- [3] Frank Harary, *Graph theory*, Addison-Wesley Publishing Company, Reading, MA, 1972.
- [4] R. Balakrishnan and K. Ranganathan, *A Textbook of Graph Theory*, Springer, 2012.
- [5] Vandana P. T., Anil Kumar V., *V*4-Magic Labelings of some graphs, *British Journal of Mathematics and Computer Science*, 11(5)(2015), 1–20.
- [6] Joseph A. Gallian, A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, Twenty-first edition, December 21, 2018.
- [7] Lee SM, Saba F, Salehi E, Sun H. On the *V*4− magic graphs, *Congressus Numerantium*,2002, 1–10.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

 \Box