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1. Introduction

The famous fuzzy set theory was studied by Zedah[10],
which proved a very useful tool to describe situation in which
the data are imprecise or vague. Similar to fuzzy set theory,
interval valued fuzzy set theory gradually developed on dif-
ferent algebraic structures. Rough set theory was proposed
by Z.Pawlak [7] in 1982. Dubois and Prade [2]combined the
rough sets and fuzzy sets together. This combination gains
the great interest of researchers and becomes a useful tool
in exploring the feature selection, the clustering, the control

problem etc. In [8] they introduced the concept of interval-
valued rough fuzzy sets in semigroups. Bi-interior-ideal,fuzzy
bi-interior-ideal and fuzzy bi-quasi-ideal of semigroups are
studied by M.Muralikrishna rao[4-6].

2. Preliminaries

For basic concepts used in this work see
[11,[2].[31.[4],[5].[6].[8] and [9].
The notations used in this work:
RBI,I: Rough bi-interior-ideal
R B; QI: Rough bi-quasi-ideal
IyRFBI, I: Interval valued rough fuzzy bi-interior-ideal.
IyRF B;QI: Interval valued rough fuzzy bi-quasi-ideal.

3. 1, ¥78I,1 of a semigroup

This section deals with Interval valued fuzzy bi-interior-
ideal (I, ¥BI,I) which is an extension of an fuzzy bi-quasi-
ideal
(FBI,I).

Definition 3.1. An I, FBI,1 is defined as STSN%ST C % for
an Iy F subset T of S.

Theorem 3.2. A non-empty sub-set B of S is a Bl,I <= the
characteristic function (cf) of Bis 1y FBI, I of S.
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Proof : If B is a BI,I of S. Therefore cfp is an Iy F
subsemigroup of §. By hypothesis we’ve SBS NBSB C B.
Then, ~
(cf)ssp
(cf)g

(C})BS (CNf)B = (CNf)sBs

(‘f )spsnpse S

S(cf)pSn

Hence (cf) is a FBI, Iof S.

Conversely, let us assume that (cf) is an Ipy FBI,1 of S. Then

B is a subsemigroup of S. We have

(Cf)35m (Cf)35( f) B

(Cf)535 (Cf)BjB (cf)g
(~Cf2335m553 = (Cf)
SBSNBSBC B

Thence B is a BI, I of S.

(C})B

Theorem 3.3. If (£ 0) be 1y F sub-set of S. Then T is an
Iy FBLI of S <= the {[p1,p2])-cut of T is a BI,I of S for
every [p1,p2] € Z[0,1].

Proof: Take 7 is an 1) FBI, 1 of S.

Letx € $(%,[p1,p2])S N (T, [p1,p2])S(, [p1, p2]). Then

x = abc = def, a,c,e € S and b,d, f € (%,[p1,p2]) implies
T(b) = [p1,p2], T(d )_[PI,Pg] and T(f) > [p1, 2]
Now, 5T (x1)= sup {min{S(a1),%(b1)}} =7(b1) > [p1,p2]

xlzalbl }}
S(er)

Consider, (5%5) (x1) = sup {min{3%(aiby),

xp=aibyc;

= sup {min{[p1,p2],1}}

xp=abicy

Z~ [pl »P2]

Similarly, we prove (Z5%) (x|)

(x) = [p1, po].Implies x € (7,
a BI,I of S.

For the converse part we take (7,

> [p1, p2). Therefore
[p1,p2]). Hence (7, [p1, p2]) is

[p1,p2]) is a BI, I of S for

all [p1, p2], [, 1] € 2[0,1]. Letx,y € S, T(x) = [p1,p2] and
T(y) = [, t2] where [p1, po] > [ty o] implies
x,y € (T, [, p2]). We've

3(2,l61,2))3 N (%, [a1, @)3(2, [Glagﬂ) C (7, [u1,12]) for all
[gl,gz] € 2[0,1]. Supposejgl,gz} {.@[0 1]}. Then,
5(1: [l],lz]).&'ﬁ( s w))S(3, [11,12]) (%,[u1,12]). Hence

STSNTSTC 1.

Theorem 3.4. Let T(# 0) be Iy F sub-set of S. Then T is an
Iy FBI, I of S <> the ((p1,p2))-cut(#£ 0) of T is a BI, I of S
for every [p1,p2] € 2[0,1] .

Proof: Similar to 3.3
Theorem 3.5. Every 1y FlI of S is an Ly FBI, I of S.

Proof: Assume that 7; be an I,y FI11 of S.
Take iy, r1,t; € S.
St (i1) = sup {min{S(r1),%(t1)}}
i=rif
sup {min{1,%(t1)}}
i1=rit

sup {%(1)}

i1=rit

< sup {%(rit1)} = %(i1)

i =rif

), (S%)(mvi)}}
), Ti(nivi)}}

sup  {min{%(m

ij=mjnjv

Consider, £.5%(i1) =

< sup {min{%(m
ij=mnjvy

= %l(ilz y 5

=min{S%5(i1), 55T (i)}

<min{3%5(iy), (i)}

<%(i)

Hence 7; is an I,yBI, I of S.

Now, T8N %57%

Theorem 3.6. Every Iy FrlI of S is an Iy FBI, I of S.

Proof: Take %, be an Iy FrI of S and i1,a;,b; € S.

Consider, 7.5 (i1) = sup {min{%.(a1),5(b1)}}
ilitllbl
= sup {%(a1)}
i1=a1b1
< sup {fr(a]bl)}Zfr(il)
i1:a|b1
Also,
7,.8%.(i1) = sup {min{i’,f(ulvl),fr(rl)}}
i1=u1v1r1
< sup {min{%(uv1),%(r1)}}
i1=ujviry
=1:(i1)
Now,

38N %ST =min{3%.3(i1),%5%(i1) }
<min{5%.3(i1),%(i1) }
§ %r(il)

Hence the theorem.

Corollary 3.7. Every Iy¥I of S is an 1y FBI, I of S.

Proof: By applying Theorem 3.5 and Theorem 3.6 proof
is straight forward.

Theorem 3.8. Intersection of 1yFr and 1y FlIs of S is an
Ly FBI, I of S.

4. 1,7 B;QI of a semigroup

We characterize interval valued fuzzy left bi-quasi-ideal
(Iy F1B;QI), interval valued fuzzy right bi-quasi-ideal
(Iy FrB;QJI) of semigroup and interval valued fuzzy bi-quasi-
ideal (I F B;QI) of a semigroup. Discuss some properties of
Iy F B; QI of semigroup.

Definition 4.1. A non-empty sub-semigroup 4 of S is said to
be IB;QI(rB;QI) of S if SAN ASA(AS N ASA).

Definition 4.2. 7 is said to be B;QI if it is both a IB;QI and
rﬂii QI OfS

Definition 4.3. A fuzzy sub-set { of semigroup is called a

FIB;Q( FrEQ) of Sif SCNESEC L(ESNESECE). Cis
said to be FB; QI of S if it is both F1B;QI and FrB;Ql

Definition 4.4. An 1, F subset ¢ of Sis called a 1y F1B;Q]
(IyFra;QL) of S if SENESE C E(Z3nESE &), Cis said
to be 1y FB;QI of S if it is both 1) F1B;QI and 1 FrB;Ql.

“M,,

‘,'

‘u
40

518



Rough fuzzy bi-interiorideal(biquasi-ideal) of semigroup — 519/521

Theorem 4.5. If 9 is a non-empty sub-set of S. Then 9 is
B;QI of S <= characteristic function (cf) of D is Iy F B;QI
of S.

Proof : Let us take & as B;QJ of S implies (cf) 5 is an
Iy F sub-semigroup of S. By hypothesis we’ve
S(chaN(ef)a3(cf) o= cf)saN(cf)ass S (cf) - Hence
(cf)gisa Iy FIB;QJ of S. Similarly, we prove for I, 7 rB; QI
of S. Conversely, let us assume that (c}")@ is an Iy F B;QI of
5. Then & is a subsemigroup of 5. We have
5(chg N (eh)gS(ch)y S )y
(cf)so N K52 € (cf)g
(Cf)serSJ (Cf)
SINDSD C D
Thence, Z is a [B;QI of S. Consequently, we verify that
V@i QI.

Theorem 4.6. A non-empty Iy F sub-set Z_Nf of San Iy F B;QI
of § < the ([p1,p2])-cut of { is a B;QI of SV
[p1,p2] € 2[0,1].

Proof: Conclude that 5 isan Iy FB;QJ of S.

Lety € 3(Z,[p1,p2]) N (L, [o1,p2))S(E, [p1, p2))-
Then x = gh = klm, g,1 € § and h,k,m € (Z,[p1,p2)) implies

§(h) > [pr,p2], (k) > [p1,p2] and §(m) > [p1,p2]
Now. 54(y) = sup {min{3(6).L(e) } } = L(e) > [p1.p]
Consider,
(858) 0) = sup {min{Es(be).(c)}}
= yS:L}JEC {min {biggq {mm {5 } 5(6)} } }
= swp {min{$(p).L(@)}} = [propa]

Therefore, £(y) > 5ENESE > [py. pa). Hence.£(v) = [py. p2)
implies y € (&, [p1,p2]). Similarly we prove for r3;QJ.
Conversely (&, [p1,p2]) is a B;QJ of S for all
[p1,p2], [V, V2] € Z[0,1]. Letx,y €S, {(x) =
¢(y) = [v1,v2] where [p1,p2] > [v1, V2] implies
x,y € (€,[v1,v2]). We have

[p1,p2] and

S(&, [, N (& [s1,%))S ~(§ [61,6]) C (5, [61,6]) for all
[gl,gz] € 720, ll Suppose [11,12 min{21[0,1]}. Then
5(§ 1, )N (¢ U, L 25 ,[u,1]) € (&, [, 1]). Therefore

SCNESE C C Hence {isan Iy FI1B;QJ of $. Similarly we
can prove for I ¥ rB;QI. Hence the theorem.

Theorem 4.7. Let f be a non-empty 1) F sub-set of S. Then
an Iy FB;QI of S <= the {(p1,p2))-cutof § is a B;QI of S
vV [p1,p2] € Z[0,1].

Proof: Similar to Theorem 4.6
Theorem 4.8. Every Iy 11 is an 1) F B; QI
Proof: Let E, be an Iy FII of S. Letiy,r,t; € S.

S&ir= sup {min {3(r1),§,(t1)}}

i =rif

519

= sup {min{i>§l(t1)}}

AL
< sup {QVI rif }
Consider, R
5351(1'1):[:31’1% {mm{ nlvl)}}
< s {min {Gm )C(mvn}}
= G(in)

Now, (5N §5E = mm{CzS(ll) 51351(1'1)} < &(in)
Hence C; isan Iy ¥ B;QI of S.

Theorem 4.9. Every 1y FrI of S is an Iy F B; QI of S.

Proof: Assuming QN‘, be an Iy ¥rlof S and ij,a;,b; € S.

C.3ii= sup {min{f,(al)ﬁ(bl)}}

i1=a1b,
:1- illjlpb {min{é:r(m)}}
< iupb {fr(mbl)} = (i)
Also, e
(€@3e))= sw {min{E 30w, &}
<, e {min{Btamn) on}}
= ér(il)
Now, (5,51 E.5)8, = mm{ls”(il),ir.?&(il)}
<& (ir)

Thus é, is an Iy FrB; QI of S. Similarly we verify for
SCNESE C ¢, Hence C, is an 1 F B;QI of S.

Theorem 4.10. Intersection of two Iy F B;QI is 1y F B; QI

Proof: Let us take é} and fk are Iy F B;QJof S.
Let x,a,b € S. Consider

$(GN &) = sup {min{5(a). (G0 0)} ]

= sup {min {3(a),min {&(6), &) 0)} } |

= sup {min {min{5(a),Gi(b) b smin{ 5(a),GO®) } }}
= min {5@(@,5}@}

= 5GnSG W

Again consider,

(&in&)3(&Gnd)x) o
= sup &mn{(gmcw<> 5(Gn&be)}

x=abc

o
L0,
Ssa2ez
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S(Gng)n(Gné)s&ngy
=(SC)N(&GNG)N(SG)N(GSE) € &Ny
Thence §;N ¢ is a Iy F1B;QJ. Consequently we verify for

Iy FrB;QI. Therefore ;N { is a Iy FB,QI.

Theorem 4.11. Intersection of 1y FrB;QI and 1y FIB;Ql of
Sisan IyF B;Qlof S.

Proof: We take 5, and fl be Iy FrB;QI and Iy FI1B;QI of
S respectively. Then by Theorem 4.10

~(§rﬂ§1) 3&n3G and (6N )3 &) =§36n 43
S&n&)n&nd)siGné).
= (56N (&NE)NEL)N(GSE) c&nd

Hencej,’, N¢ isa IyFIB;QJ of S. In a similar fashion we
prove {,N¢ isa Iy FrB;Ql.

In section 5,6,7 and 8 we denote & as a complete congru-
ence relation over S.

5. ®B1,1 of a semigroup

In this section we introduce the concept of rough bi-
interior-ideal (RBI,1) in semigroup. It is proved that a bi-
interior-ideal(BI, I) of S is a rough bi-interior-ideal (RBI, ).

Definition 5.1. A sub-set of S is said to be RBIL, I of S if it is
both g-upper and g-lower RBI, 1.

An upper (lower) approximation of a sub-set of S is BI, I
then it is called an g-upper (fo-lower) RBI, 1.

Theorem 5.2. Prove that a BI,I of S is both g-upper and
o-lower RBIL, I of S.

Proof: Suppose that k be a BI, I of S then
SkSNkSk C k. Letx € S(x)S then x = s1 psy with
p € @(x) and 51,50 € 5. p € (k) then [plp,NK# ¢ Ig€
[Pl N K such that g € [p], and g € k implies (p,q) € £ and
q € k. Since K is a BI,I of S then s;gsy € kK and rsit € A
where 51,52 € § and ¢,7,t € K.
(P.q) € o= (s1P52,51952) €
= S1952 € [Slpszho
= [sips2]rRNK # ¢
= [pNk#¢
=x € p(K)
Thus, SP(x)S € B(K) (1)
Consider, (k)5 N @(k)S (k) C S@(K)S C o(K)by(1)
Hence, « is @-upper RBI,I of S.
(i) s(x)S N @(K)S (k)
P(8)p(K)2(5) N k) 2(8)2(K)
P(SKS) N P(KSK)
2((5x5)N (kSK))
#(x)

Hence, k is go-lower RBI, I of S.

NN Iﬂ I

/—\

Corollary 5.3. A BI,I of S is RBI, 1.

Proof: Applying Theorem 5.2 we get the proof.

520

6. R B;QI of semigroup

In this section we apply the roughness to bi-quasi-ideal(B; QI).

Definition 6.1. A sub-set of S is said to be R B;QI of S if it is
both g-upper and g-lower R B;Ql.

An upper (lower) approximation of a sub-set of S is B; QI
then it is called an go-upper (f-lower) R B;Ql.

Theorem 6.2. Prove that a B;QI of S is both @-upper and
o-lower RB;QI of S.

Proof: Suppose assume that ) be a [B;QI of S then
snNnsn Cn. Lety € S@(n)then
y=s1f with f € ©(n) and s; € 5. Since f € ©(n) then
[flonn #¢ 3 re[flpNn such that r € [f], and r € 0
implies (f,r) € g2 and r € 7. Since 7 is a B;QJ of S then
sia € n and Isom € 1 where syso € Sand a,l,m € .
(f,p) €= (s1f,s11) € @

=sir € [siflp

= [sir]pNn # ¢

= [pnn#¢

=x€o(n)
Thus, 5@(n) € (1) (1
Consider.s@2(n) N @(n)s@(n) € s@o(n) € @(n) by (1.
Thus, 1 is g-upper RIB;QI of S. In a similar way we prove
fo-upper RrB;QJ of S. Hence 1 is @-upper R B; QI of S.
(ii)sxa( )sNg(n)Sse(n)
(5)g(m)@(s) N o(n)o(s)@(n)
(sm)np(nsn)
(snnnsn)
o)
Thus, 1 is a @-lower RIB;QI of S. In similar fashion we
prove for g-lower RrB;QI. Hence 1 is go-lower R B;QI of S.

c
-
c

“@\“@\“@\

Corollary 6.3. A B;QJ is RB; QI of S.

Proof: Applying Theorem 6.2 result is obvious.

7. I1yR¥BI,1 of semigroup

We now extend the idea of interval valued fuzzy bi-interior-
ideal( I FBI,I) of S by interval valued rough fuzzy bi-interior-
ideal(Iy RFBI, I) of S.

Definition 7.1. An IyRFBI, I of S is defined as if it is both
-upper and @-lower LyRFBIL, I of S.

An Iy FBI, I T of S is called an fo-upper ( fo-lower)
LyRFBI, I of S if its upper(lower) approximation is an Iy FBI, I
of S.

Theorem 7.2. An Iy FBI, I of S is an IyRFBI, I of S.

Proof: Applying Theorem 3.3 ([py, p2])-cut of 7 is BI, I
of S. Assume that if lower approximation of ([p;, p2])-cut of
7 is non-empty, then By Theorem 5.2 (%, [p1, p2]) is BI, I of
S. By Theorem 4.6 in [8] ((%), [p1,p2]) is BI, I of S. Again
By Theorem 3.3 lower approximation of 7 is an Iy ¥BI,I of
S. Consequently, we prove the other case. Thence theorem.

009 nn,,
5:
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Theorem 7.3. Lower approximation of T is 1y FBI,1 <—
lower approximation of {[p1,pa])-cut of T is BI, I

Proof: Theorem 3.3 and Theorem4.6 (i) in [8].

Theorem 7.4. Upper approximation of T is 1y FBI,I <=
upper approximation of {(p1,p2))-cut of T is BI, I.

Proof: Theorem 3.4 and Theorem4.6(ii) in [8].

8. 1,R¥ B;QI of a semigroup

In this section we extend the roughness to interval valued
rough fuzzy set (IyR¥). In particular we extend bi-quasi-
ideal (B;QJ) to interval valued rough fuzzy bi-quasi-ideal
(IyRF B; QI) of semigroup.

Definition 8.1. 1yRF B;QI of S is defined as if it is both (-
upper and go-lower IyRF B;QI of S.

An IyFB;QI T of S is called an g-upper ( fo-lower)
IyRF B; QI of S if its upper(lower) approximation is an
Iy FB;QI of S.

Theorem 8.2. An I, F B;QI of S is an IyRF B; QI of S.

Proof: Applying Theorem 4.6 ([p1, p2])-cut of T is B;QI
of S. Assume that if lower approximation of ([p;, p2])-cut of
7 is non-empty, then By Theorem 6.2 £(%, [p1, p2]) is B; QI of
S. By Theorem 4.6 in [8] ([O(’f), [p1 7pz]) is BI, I of S. Again
Theorem 4.6 lower approximation of T is an Iy ¥BI,1 of .
Consequently, we prove the other case. Thence theorem.

Theorem 8.3. Lower approximation of T is Iy F B;Ql <—
lower approximation of {[p1,p2])- cut of T is BI, 1.

Theorem 8.4. Upper approximation of T is Iy F B;Ql <—
upper approximation of {(p1,02))- cut of T is B;Ql.
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