

https://doi.org/10.26637/MJM0802/0034

A short note on some of the fuzzy rough hyper-ideals in semihyper-groups

V. S. Subha^{1*}, N. Thillaigovindan², V. Chinnadurai³ and S. Sharmila⁴

Abstract

In this paper we apply some of the ideals in semihyper-group in terms of fuzzy rough set. Semihyper-group is an algebraic structure which is an extended structure of semigroup. We introduce the concept of fuzzy rough hyper-ideal and fuzzy rough bi hyper-ideal in semihyper-group. We define the q-level set in semihyper-group and study the relation of ideals between the fuzzy rough set and the q-level set of a fuzzy rough set.

Keywords

Fuzzy rough set, semihyper-group, Fuzzy rough hyper-ideals, Fuzzy rough subsemihyper-group, Fuzzy rough interior hyper-ideals, q-level set.

AMS Subject Classification

20M05, 08A72, 20M12.

¹Department of Mathematics, Dharmapuram Gnanambigai Government Arts College, Mayiladuthurai-609001, Tamil Nadu, India. ²Department of Mathematics, Arba Minch University, Ethopia.

^{3,4} Department of Mathematics, Annamalai University Annamalainagar-608002, Tamil Nadu, India.

***Corresponding author**: ¹ dharshinisuresh2002@gmail.com; ²thillaigovindan.natesan@gmail.com; ³kv.chinnadurai@yahoo.com; ⁴gssamithra2011@gmail.com

Article History: Received 12 November 2019; Accepted 19 March 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries
3	Fuzzy rough hyper-ideals of $(\mathscr{H}^{\star}, \rho)$ 523
4	Some properties on max-min hyper-product of fuzzy rough sets in $(\mathscr{H}^\star,\rho)\ldots\ldots\ldots\ldots524$
5	Fuzzy rough bi hyper-ideal of (\mathscr{H}^\star,ρ)
6	Fuzzy rough interior hyper-ideal of $(\mathscr{H}^{\star}, \rho)$ 525
7	Conclusion
	References

1. Introduction

Marty(1934)[6] inspired from algebraic structures, he extended the concept to algebraic hyper-structures. The attraction of hyper-structure is its special property that the image of each pair of a cross product of two sets is lead to a set where in classical structures it is an element again. Davvaz(2002)[2], Kehayopulu[4][5], Corsini and Shabir[1] studied some of the fuzzy ideals in hyper-structures. In this paper we apply some of the ideals which was introduced by Subha et.al [7] in hyperstructures. In each section we discuss distinct fuzzy rough hyper-ideals and study its properties.

2. Preliminaries

In this section we recollect the basic definitions of ideals in hyper-structures such as hyper-ideal, subsemihyper-group and bi hyper-ideal.

Definition 2.1. [4] Let \mathcal{H} be a non-empty set and Θ be the hyper-operation on \mathcal{H} is defined as

 $\Theta: \mathscr{H} \times \mathscr{H} \to \mathscr{F}(\mathscr{H})$

where $\mathscr{F}(\mathscr{H})$ is the set of all subsets of \mathscr{H} . Then the set \mathscr{H} with the hyper-operation Θ is called hyper-groupoid(say \mathscr{H}^{Θ}).

The image of the pair $(g_1, g_2) \in \mathcal{H} \times \mathcal{H}$ is denoted by $g_1 \Theta g_2$, the hyper-product of the elements $g_1, g_2 \in \mathcal{H}$. Define hyper-operation

 $\star : \mathscr{F}(\mathscr{H}) \times \mathscr{F}(\mathscr{H}) \to \mathscr{F}(\mathscr{H}).$

If X and Y are the subsets of $\mathscr{F}(\mathscr{H})$ then the hyper-product of the sets X and Y is defined by

$$X \star Y = \bigcup_{(g_1, g_2) \in X \times Y} g_1 \Theta g_2 \tag{2.1}$$

We write the hyper-operation on a set X with an element

 g'_1 as $X \star \{g_1\}$ and an hyper-operation on an element g'_1 with any set say X is defined by $\{g_1\} \star X$.

The hyper-operation between the elements is denoted by Θ . The hyper-operation between the sets is denoted by \star .

Definition 2.2. [4] A hyper-groupoid (\mathcal{H}^{Θ}) is called a semihyper-group(say \mathcal{H}^*) if $(\{r\} \star \{s\}) \star \{t\} = \{r\} \star (\{s\} \star \{t\}) \text{ for all } r, s, t \in \mathcal{H}.$

Example 2.3. Let us consider the universe set \mathcal{H} as $\mathcal{H} = \{r, s, t\}$. Define a hyper-operation Θ on \mathcal{H} is defined by $r\Theta s = \{r, s\} \forall r, s \in \mathcal{H}$ which is a hyper-groupoid. Then we have

$$r\Theta(s\Theta t) = \{r\} \star \{s,t\}$$
$$= (r\Theta s) \cup (r\Theta t)$$
$$= \{r,s\} \cup \{r,t\}$$
$$= \{r,s,t\}$$

And also we have $(r\Theta s)\Theta t = \{r, s, t\}$ Hence $r\Theta(s\Theta t) = (r\Theta s)\Theta t$ holds for all $r, s, t \in \mathcal{H}$. Therefore \mathcal{H} is a semihypergroup on the hyper-operation \star .

Definition 2.4. [4] A non-empty subset F of a semihypergroup \mathcal{H}^* is called a left(right) hyper-ideal of \mathcal{H}^* if $\mathcal{H}^*F \subseteq F(F\mathcal{H}^* \subseteq F)$.

If a subset F in \mathscr{H}^* is both a left and right hyper-ideal then F is called hyper-ideal of \mathscr{H}^* .

3. Fuzzy rough hyper-ideals of (\mathscr{H}^*, ρ)

In this section we introduce fuzzy rough hyper-ideals in semihyper-group.

Definition 3.1. Let (\mathcal{H}^*, ρ) be a fuzzy approximation space where \mathcal{H}^* is a semihyper-group with hyper-operation * and ρ be a fuzzy equivalence relation. From the fuzzy set \widetilde{F} in \mathcal{H}^* and the fuzzy equivalence relation ρ , we define a fuzzy rough(FR) set $\rho(\widetilde{F}) = (\underline{\rho}(\widetilde{F}), \overline{\rho}(\widetilde{F}))$ which is a pair of lower and upper approximations of a fuzzy set \widetilde{F} and its membership function is given by

$$\begin{split} \mu_{\underline{\rho}(\widetilde{F})} &: \mathscr{H}^{\star} \to [0,1] \text{ and} \\ \mu_{\overline{\rho}(\widetilde{F})} &: \mathscr{H}^{\star} \to [0,1] \\ \text{with the property that } \mu_{\rho(\widetilde{F})}(f) \leq \mu_{\overline{\rho}(\widetilde{F})}(f) \; \forall \; \; f \in \mathscr{H}^{\star}. \end{split}$$

Definition 3.2. A FR set $\rho(\tilde{F}) = (\underline{\rho}(\tilde{F}), \overline{\rho}(\tilde{F}))$ in $(\mathscr{H}^{\star}, \rho)$ is said to be a fuzzy rough left hyper-ideal(FRHI_L) of $(\mathscr{H}^{\star}, \rho)$ if $(i) \mu_{\underline{\rho}(\tilde{F})}(n) \leq \inf_{g \in m \Theta n} \mu_{\overline{\rho}(\tilde{F})}(g)$ $(ii) \mu_{\overline{\rho}(\tilde{F})}(n) \leq \inf_{g \in m \Theta n} \mu_{\overline{\rho}(\tilde{F})}(g) \forall m, n, g \in \mathscr{H}^{\star}.$ A FR set $\rho(\tilde{F}) = (\underline{\rho}(\tilde{F}), \overline{\rho}(\tilde{F}))$ in $(\mathscr{H}^{\star}, \rho)$ is said to be a fuzzy rough right hyper-ideal(FRHI_R) of $(\mathscr{H}^{\star}, \rho)$ if $(i) \mu_{\underline{\rho}(\tilde{F})}(m) \leq \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\tilde{F})}(g)$ (ii) $\mu_{\overline{\rho}(\widetilde{F})}(m) \leq \inf_{g \in m \otimes n} \mu_{\overline{\rho}(\widetilde{F})}(g) \forall m, n, g \in \mathscr{H}^{\star}.$ A FR set $\rho(\widetilde{F}) = (\rho(\widetilde{F}), \overline{\rho}(\widetilde{F}))$ which is both a FRHI_L and FRHI_R is called FRHI of $(\mathscr{H}^{\star}, \rho).$

Proposition 3.3. If $\rho(\widetilde{X}) = (\underline{\rho}(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ and $\rho(\widetilde{Y}) = (\underline{\rho}(\widetilde{Y}), \overline{\rho}(\widetilde{Y}))$ are the two FRHIs of (\mathscr{H}^*, ρ) then the intersection of $\rho(\widetilde{X})$ and $\rho(\widetilde{Y})$ is also a FRHI of (\mathscr{H}^*, ρ) .

Proof: Let $\underline{\rho}(\widetilde{X})$ and $\underline{\rho}(\widetilde{Y})$ are *FRHI*_L. For $m, n, g \in (\mathscr{H}^*, \overline{\rho})$ we have

$$\begin{split} \mu_{\underline{\rho}(\widetilde{X})\cap\underline{\rho}(\widetilde{Y})}(n) &= \min\{\mu_{\underline{\rho}(\widetilde{X})}(n), \mu_{\underline{\rho}(\widetilde{Y})}(n)\}\\ &\leq \min\{\inf_{g\in m\Theta n}\mu_{\underline{\rho}(\widetilde{X})}(g), \inf_{g\in m\Theta n}\mu_{\underline{\rho}(\widetilde{Y})}(g)\}\\ &\leq \inf_{g\in m\Theta n}\{\min\{\mu_{\underline{\rho}(\widetilde{X})}(g), \mu_{\underline{\rho}(\widetilde{Y})}(g)\}\}\\ &\leq \inf_{g\in m\Theta n}\{\mu_{\underline{\rho}(\widetilde{X})\cap\underline{\rho}(\widetilde{Y})}(g)\}. \end{split}$$

Therefore $\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})$ is a *FRHI*_L. Similarly we can prove that $\overline{\rho}(\widetilde{X}) \cap \overline{\rho}(\widetilde{Y})$ is also a *FRHI*_L of (\mathscr{H}^*, ρ) . Likewise we can prove that $\rho(X) \cap \rho(Y)$ is a *FRHI*_R. Hence we conclude the theorem.

Definition 3.4. Let $\rho(\widetilde{X}) = (\underline{\rho}(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ be a FR set of (\mathscr{H}^*, ρ) then the q- level set of $\rho(X)$ is defined by $X_L^q = \{g \in \mathscr{H}^* : \mu_{\underline{\rho}(\widetilde{F})}(g) \ge q\}$ and $X_U^q = \{g \in \mathscr{H}^* : \mu_{\overline{\rho}(\widetilde{F})}(g) \ge q\} \forall g \in \mathscr{H}^*.$

Theorem 3.5. If $\rho(\widetilde{X}) = (\underline{\rho}(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ is a FRHI of (\mathcal{H}^*, ρ) then the q-level set $X^q = (X_I^q, X_{II}^q)$ is a hyper-ideal.

Proof: Let us assume that $\underline{\rho}(\widetilde{X})$ be a *FRHI*_L. By Def[3.4], it is clear that X_L^q is a crisp set. Now we have to show that X_L^q is a hyper-ideal. For that let us assume $m \in \mathscr{H}^*$ and $n \in X_L^q$, which implies that

$$\mu_{\underline{\rho}(\widetilde{X})}(n) \ge q \tag{3.1}$$

Since
$$\mu_{\underline{\rho}(\widetilde{X})}(n) \leq \inf_{g \in m\Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g)$$

 $\implies \inf_{g \in m\Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \geq q$
 $\implies \mu_{\underline{\rho}(\widetilde{X})}(g) \geq q \text{ for } g \in m\Theta n$
 $\implies m\Theta n \subset X_{1}^{q} \text{ for } m \in \mathscr{H}^{\Theta} \text{ and } n \in \mathscr{H}^{Q}$

 $\implies m\Theta n \subseteq X_L^q$ for $m \in \mathscr{H}^\Theta$ and $n \in X_L^q$. Hence from the Def[2.4] we can say that X_L^q is a left hyperideal. Similarly we can prove that X_U^q is a left hyper-ideal. Therefore X_q is a hyper-ideal of \mathscr{H}^* .

Now let us assume that $\rho(\tilde{X})$ is a *FRHI*_R

$$i.e., \mu_{\underline{\rho}(\widetilde{X})}(m) = \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g)$$
(3.2)

Let $m \in X_L^q$ and $n \in \mathscr{H}^*$ which implies $\mu_{\underline{\rho}(\widetilde{X})}(m) \ge q$ Eq. (3.2) $\Longrightarrow \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(m) \ge q$

$$\implies \mu_{\underline{\rho}(\widetilde{X})}(m) \ge q \text{ for } g \in m\Theta n$$

then $m\Theta n \subseteq X_L^q$ for $m \in X_L^q$ and $n \in \mathscr{H}^*$. Therefore X_L^q is a right hyper-ideal. Similarly X_U^q is also a right hyper-ideal. Hence X^q is a right hyper-ideal of (\mathscr{H}^*, ρ) .

It is clear that if $\rho(X)$ is a *FRHI* then X^q is a left and right hyper-ideal. Therefore we conclude that X^q is a hyper-ideal of \mathscr{H}^{\star} .

4. Some properties on max-min hyper-product of fuzzy rough sets in $(\mathscr{H}^{\star},\rho)$

In this section we introduce the concept of max-min hyperproduct of fuzzy rough sets in semihyper-group and discuss some of the properties.

Definition 4.1. The max-min hyper-product of FR sets $\rho(X)$ and $\rho(\tilde{Y})$ is denoted by $\rho(\tilde{X}) \circ \rho(\tilde{Y})$ and is defined by for each $g \in \mathscr{H}^{\star}$, we have

$$\mu_{\underline{\rho}(\widetilde{X})\circ\underline{\rho}(\widetilde{Y})}(g) = \begin{cases} \max_{g\in h_1\Theta h_2} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(h_1), \mu_{\underline{\rho}(\widetilde{X})}(h_2))\} \\ \text{if } g\in h_1\Theta h_2, \ \forall \ h_1, h_2 \in \mathscr{H}^* \\ 0, \text{ if } g\notin h_1\Theta h_2, \ \forall \ h_1, h_2 \in \mathscr{H}^*. \end{cases}$$

ana

$$\mu_{\overline{\rho}(\widetilde{X}) \circ \overline{\rho}(\widetilde{Y})}(g) = \begin{cases} \max_{g \in h_1 \Theta h_2} \{\min(\mu_{\overline{\rho}(\widetilde{X})}(h_1), \mu_{\overline{\rho}(\widetilde{X})}(h_2))\} \\ \text{if } g \in h_1 \Theta h_2, \forall h_1, h_2 \in \mathscr{H}^{\star} \\ 0, \text{ if } g \notin h_1 \Theta h_2, \forall h_1, h_2 \in \mathscr{H}^{\star}. \end{cases}$$

Example 4.2. Let (\mathcal{H}^*, ρ) be a fuzzy approximation space where $\mathscr{H}^{\star} = \{h_1, h_2, h_3, h_4\}$ with a hyper-operation Θ is defined below:

Θ	h_1	h_2	h_3	h_4
h_1	h_1	h_2	<i>h</i> ₃	h_4
h_2	h_2	$\{h_1,h_3\}$	$\{h_2,h_3\}$	h_4
h_3	h_3	$\{h_2,h_3\}$	$\{h_1,h_2\}$	h_4
		h_4	h_4	\mathscr{H}^{\star}

Let us consider two fuzzy sets $\widetilde{X}, \widetilde{Y}$ and fuzzy equivalence relation ρ as

$$\begin{split} \widetilde{X} &= \{(h_1/0.2), (h_2/0.4), (h_3/0), (h_4/0.3)\}\\ \widetilde{Y} &= \{(h_1/0.3), (h_2/0.6), (h_3/0.5), (h_4/0.1)\} \text{ and }\\ h_1 \quad h_2 \quad h_3 \quad h_4 \\ \rho &= \frac{h_1}{h_2} \begin{pmatrix} 1 & 0.8 & 0 & 0.4 \\ 0.8 & 1 & 0 & 0.4 \\ 0 & 0 & 1 & 0 \\ 0.4 & 0.4 & 0 & 1 \end{pmatrix}\\ respectively. \end{split}$$

Then we have the FR sets $\rho(X)$ and $\rho(Y)$ as

$$\begin{split} \rho(\widetilde{X}) &= (\{(h_1/0.2), (h_2/0.2), (h_3/0), (h_4/0)\}, \\ &\{(h_1/0.9), (h_2/0.5), (h_3/0.5), (h_4/0.4)\}) \\ \rho(\widetilde{Y}) &= (\{(h_1/0.3), (h_2/0.3), (h_3/0.5), (h_4/0.1)\}, \\ &\{(h_1/0.6), (h_2/0.6), (h_3/0.5), (h_4/0.4)\}). \end{split}$$

Then

$$\rho(\widetilde{X}) \circ \rho(\widetilde{Y}) = (\{(h_1/0.2), (h_2/0.2), (h_3/0.2), (h_4/0.1))\}, \\ \{(h_1/0.4), (h_2/0.4), (h_3/0.4), (h_4/0.4)\}.$$

Proposition 4.3. If $\rho(\widetilde{X}), \rho(\widetilde{Y})$ and $\rho(\widetilde{Z})$ are the FR sets of $(\mathscr{H}^{\star}, \rho)$ then $(i) \rho(\widetilde{X}) \circ (\rho(\widetilde{Y}) \cup \rho(\widetilde{Z})) \supseteq (\rho(\widetilde{X}) \circ \rho(\widetilde{Y})) \cup (\rho(\widetilde{X}) \circ \rho(\widetilde{Z}))$ (*ii*) $\rho(\widetilde{X}) \circ (\rho(\widetilde{Y}) \cap \rho(\widetilde{Z})) \subseteq (\rho(\widetilde{X}) \circ \rho(\widetilde{Y})) \cap (\rho(\widetilde{X}) \circ \rho(\widetilde{Z}))$ holds.

$$\begin{aligned} & \textbf{Proof: Let } g \in \mathscr{H}^{\star}. \text{ Consider} \\ & \mu_{\underline{\rho}(\widetilde{X}) \circ (\underline{\rho}(\widetilde{Y}) \cup \underline{\rho}(\widetilde{Z}))}(g) \\ &= \max_{g \in m \Theta n} \{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{(\underline{\rho}(\widetilde{Y}) \cup \underline{\rho}(\widetilde{Z}))}(n)\}\} \\ &= \max_{g \in m \Theta n} \{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \max\{\mu_{\underline{\rho}(\widetilde{Y})}(n), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\}\} \\ &\geq \max_{g \in m \Theta n} \{\max\{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\}\} \\ &\geq \max\{\max_{g \in m \Theta n} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\} \\ &\geq \max\{\max_{g \in m \Theta n} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\} \\ &\geq \max\{\mu_{(\underline{\rho}(\widetilde{X}) \circ \underline{\rho}(\widetilde{Y}))}(g), \mu_{(\underline{\rho}(\widetilde{X}) \circ \underline{\rho}(\widetilde{Z}))}(g)\} \end{aligned}$$

Therefore

 $\rho(\widetilde{X}) \circ (\rho(\widetilde{Y}) \cup \rho(\widetilde{C})) \supseteq (\rho(\widetilde{X}) \circ \rho(\widetilde{Y})) \cup (\rho(\widetilde{X}) \circ \rho(\widetilde{Z})).$ Similarly $\overline{\rho}(\widetilde{X}) \circ (\overline{\rho}(\widetilde{Y}) \cup \overline{\rho}(\widetilde{Z})) \supseteq (\overline{\rho}(\widetilde{X}) \circ \overline{\rho}(\widetilde{Y})) \cup (\overline{\rho}(\widetilde{X}) \circ$ $\overline{\rho}(\overline{Z})$ holds. (ii) Let $g \in \mathscr{H}^*$. Consider

$$\begin{split} \mu_{\underline{\rho}(\widetilde{X})\circ(\underline{\rho}(\widetilde{Y})\cap\underline{\rho}(\widetilde{Z}))}(g) &= \max_{g\in m\Theta n} \{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{(\underline{\rho}(\widetilde{Y})\cap\underline{\rho}(\widetilde{Z}))}(n)\}\} \\ &= \max_{g\in m\Theta n} \{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \min\{\mu_{\underline{\rho}(\widetilde{Y})}(n), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\}\} \\ &= \max_{g\in m\Theta n} \{\min\{\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{X})}(n), \mu_{\underline{\rho}(\widetilde{X})}(n)\}, \\ \min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\}\} \\ &\leq \min\{\max_{g\in m\Theta n} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Z})}(n)\}\} \\ &\leq \min\{\min(\mu_{\underline{\rho}(\widetilde{X})\circ\underline{\rho}(\widetilde{Y}))}(g), \mu_{(\underline{\rho}(\widetilde{X})\circ\underline{\rho}(\widetilde{Z}))}(g)\} \\ &\leq \mu_{(\underline{\rho}(\widetilde{X})\circ\underline{\rho}(\widetilde{Y}))\cap(\underline{\rho}(\widetilde{X})\circ\underline{\rho}(\widetilde{Z}))}(g). \end{split}$$
 Therefore

 $\rho(\widetilde{X}) \circ (\rho(\widetilde{Y}) \cap \rho(\widetilde{Z})) \subseteq (\rho(\widetilde{X}) \circ \rho(\widetilde{Y})) \cap (\rho(\widetilde{X}) \circ \rho(\widetilde{Z}))).$ Similarly we can prove for upper approximation.

Proposition 4.4. If $\rho(X)$, $\rho(Y)$ and $\rho(Z)$ are the FRHI_R of $(\mathcal{H}^{\star}, \rho)$ then the following property holds:

- 1. $\rho(\widetilde{X}) \circ \rho(\widetilde{Y}) \subseteq \rho(\widetilde{X}) \cap \rho(\widetilde{Y})$
- 2. $\overline{\rho}(\widetilde{X}) \circ \overline{\rho}(\widetilde{Y}) \subseteq \overline{\rho}(\widetilde{X}) \cap \overline{\rho}(\widetilde{Y})$

Proof: Let $m, n, g \in \mathscr{H}^{\star}$. Consider $\mu_{(\rho(\widetilde{X})\circ\rho(\widetilde{Y}))}(g)$ $= \max_{g \in m \otimes n} \{ \min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\rho(\widetilde{Y})}(m)\} \}$ $\leq \max_{g\in m\Theta n} \{\min\{\inf_{g\in m\Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g), \inf_{g\in m\Theta n} \mu_{\underline{\rho}(\widetilde{Y})}(g)\}\}$ $\leq \max_{g \in m \Theta n} \{ \inf_{g \in m \Theta n} \{ \min(\mu_{\underline{\rho}(\widetilde{X})}(g), \mu_{\underline{\rho}(\widetilde{Y})}(g)) \} \}$ $\leq \max_{g \in m \Theta n} \{ \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(g) \}$ $\leq \max_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(m \Theta n) \text{ for } g \in m \Theta n$

 $\leq \mu_{\rho(\widetilde{X}) \cap \rho(\widetilde{Y})}(g)$ Therefore $\rho(\widetilde{X}) \circ \rho(\widetilde{Y}) \subseteq \rho(\widetilde{X}) \cap \rho(\widetilde{Y})$. Similarly (2) holds.

5. Fuzzy rough bi hyper-ideal of $(\mathcal{H}^{\star}, \rho)$

In this section we introduce the concept of fuzzy rough bi hyper-ideal in semihyper-groups and study its properties

Definition 5.1. [8] A non-empty subset X of a semihypergroup \mathscr{H}^{\star} is called a subsemihyper-group if $XX \subseteq X$.

Definition 5.2. A FR set $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ in $(\mathscr{H}^{\star}, \rho)$ is said to be a FR subsemilyper-group of $(\mathcal{H}^{\star}, \rho)$ if (i) $\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{X})}(n)\} \le \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g)$ (*ii*) $\min\{\overline{\mu_{\overline{\rho}(\widetilde{X})}}(m), \mu_{\overline{\rho}(\widetilde{X})}(n)\} \leq \inf_{g \in m \Theta n} \mu_{\overline{\rho}(\widetilde{X})}(g)$ $\forall m, n, g \in \mathscr{H}^{\star}.$

Proposition 5.3. If $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ and

 $\rho(\widetilde{Y}) = (\rho(\widetilde{Y}), \overline{\rho}(\widetilde{Y}))$ are the two FR subsemilyper-group of $(\mathscr{H}^{\star}, \rho)$ then the intersection of $\rho(\widetilde{X})$ and $\rho(\widetilde{Y})$ is also a FR subsemilyper-group of $(\mathscr{H}^{\star}, \rho)$.

Proof: Let $\rho(\widetilde{X})$ and $\rho(\widetilde{Y})$ be the *FR* subsemilyper-group. Let $m, n, g \in \mathscr{H}^{\star}$. Consider

$$\begin{split} \min\{ \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(m), \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(n) \} \\ &= \min\{\min(\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{Y})}(m)), \\ \min(\mu_{\underline{\rho}(\widetilde{X})}(n), \mu_{\underline{\rho}(\widetilde{Y})}(n)) \} \\ &= \min\{\min(\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{X})}(n)), \\ \min(\mu_{\underline{\rho}(\widetilde{Y})}(m), \mu_{\underline{\rho}(\widetilde{Y})}(n)) \} \\ &\leq \min\{ \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g), \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{Y})}(g) \} \\ &\leq \inf_{g \in m \Theta n} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(g), \mu_{\underline{\rho}(\widetilde{Y})}(g)) \} \\ &\leq \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(g) \end{split}$$

Therefore

 $\rho(X) \cap \rho(Y)$ is a *FR* subsemilyper-group. Similarly $\overline{\rho}(\widetilde{X}) \cap \overline{\rho}(\widetilde{Y})$ is also a *FR* subsemilyper-group of (\mathscr{H}^*, ρ) .

Theorem 5.4. If a FR set is a FR subsemilyper-group of $(\mathscr{H}^{\star}, \rho)$ then the q-level set of $\rho(X)[X^q]$ is a subsemihypergroup.

Proof: Let $\rho(X)$ be a *FR* subsemihyper-group. Let $m,n,g\in \mathscr{H}^{\star}$ such that $m,n\in X_L^q$ and $g\in \mathscr{H}^{\star}$ which implies $\mu_{\rho(\widetilde{X})}(m) \ge q$ and $\mu_{\rho(\widetilde{X})}(n) \ge q$.

Since
$$\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{X})}(n)\} \leq \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g)$$

 $\implies \inf_{g \in m \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \geq \min\{q, q\} = q$
 $\implies \mu_{\underline{\rho}(\widetilde{X})}(g) \geq q \text{ for } g \in m \Theta n$
 $\implies m \Theta n \subset X_q^q.$

Therefore X_L^q is a subsemilyper-group. Similarly we can prove for upper approximation.

Definition 5.5. [4] A subsemilyper-group X in \mathcal{H}^{\star} is called a bi hyper-ideal if $X \mathscr{H}^* X \subseteq X$.

Definition 5.6. Α FRsubsemihyper-group $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ of $(\mathscr{H}^{\star}, \rho)$ is said to be a fuzzy rough bi hyper- $\overline{ideal}(FRHI_B)$ of $(\mathscr{H}^{\star}, \rho)$ if $(i)\min\{\mu_{\underline{\rho}(\widetilde{X})}(m),\mu_{\underline{\rho}(\widetilde{X})}(n)\} \leq \inf_{g\in m\Theta u\Theta n}\mu_{\underline{\rho}(\widetilde{X})}(g)$ (*ii*) $\min\{\mu_{\overline{\rho}(\widetilde{X})}(m), \mu_{\overline{\rho}(\widetilde{X})}(n)\} \leq \inf_{g \in m \Theta u \Theta n} \mu_{\overline{\rho}(\widetilde{X})}(g)$ $\forall m, n, u, g \in \mathscr{H}^{\star}.$

Proposition 5.7. If $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ and $\rho(\widetilde{Y}) = (\rho(\widetilde{Y}), \overline{\rho}(\widetilde{Y}))$ are the two FRHI_B of $(\mathscr{H}^{\star}, \rho)$ then the intersection of $\rho(\widetilde{X})$ and $\rho(\widetilde{Y})$ is also a FR bi hyper-ideal of $(\mathscr{H}^{\star}, \rho)$.

Proof: Let $\rho(\tilde{X})$ and $\rho(\tilde{Y})$ be the *FRHI*_B. Let $m, n, u, g \in \mathscr{H}^{\star}$. Consider $\min\{\mu_{\rho(\widetilde{X})\cap\rho(\widetilde{Y})}(m),\mu_{\rho(\widetilde{X})\cap\rho(\widetilde{Y})}(n)\}\$ $\stackrel{-}{=}\min\{\min(\mu_{\rho(\widetilde{X})}^{-}(m),\mu_{\rho(\widetilde{Y})}(m)),$ $\min(\mu_{\underline{\rho}(\widetilde{X})}(n), \mu_{\rho(\widetilde{Y})}(n))\}$ $\leq \min\{\inf_{\substack{g \in m \Theta u \Theta n}} \mu_{\underline{\rho}(\widetilde{X})}(g), \inf_{g \in m \Theta u \Theta n} \mu_{\underline{\rho}(\widetilde{Y})}(g)\} \\ \leq \inf_{g \in m \Theta u \Theta n} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(g)), \mu_{\underline{\rho}(\widetilde{Y})}(g)\}$ $\leq \inf_{g \in m \Theta u \Theta n} \mu_{\underline{\rho}(\widetilde{X}) \cap \underline{\rho}(\widetilde{Y})}(g)$ Similarly

 $\min\{\mu_{\overline{\rho}(\widetilde{X})\cap\overline{\rho}(\widetilde{Y})}(m),\mu_{\overline{\rho}(\widetilde{X})\cap\overline{\rho}(\widetilde{Y})}(n)\} \leq \inf_{\substack{o \in m \Theta u \Theta n}} \mu_{\overline{\rho}(\widetilde{X})\cap\overline{\rho}(\widetilde{Y})}(g)$

Then by the Proposition [5.3] we conclude that $\rho(X) \cap$ $\rho(\widetilde{Y})$ is also a *FRHI*_B of $(\mathscr{H}^{\star}, \rho)$.

Theorem 5.8. If a FR set is a FRHI_B of $(\mathcal{H}^{\star}, \rho)$ then the *q-level set of* $\rho(X)[X^q]$ *is a bi hyper-ideal.*

Proof: Let $\rho(\tilde{X})$ be a *FRHI*_B. Since by the Theorem[5.4], X_I^q is a subsemilyper-group. Now consider $m\Theta u\Theta n \in X_I^q \mathscr{H}^* X_I^q$ such that $m, n \in X_L^q$ and $g \in \mathscr{H}^*$ which implies $\mu_{\rho(\widetilde{X})}(m) \ge q$ and $\mu_{\alpha(\widetilde{\mathbf{y}})}(n) \geq q$.

Since
$$\min\{\mu_{\underline{\rho}(\widetilde{X})}(m), \mu_{\underline{\rho}(\widetilde{X})}(n)\} \leq \inf_{g \in m \Theta u \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g)$$

 $\implies \inf_{g \in m \Theta u \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \geq \min\{q,q\} = q$
 $\implies \mu_{\underline{\rho}(\widetilde{X})}(g) \geq q \text{ for } g \in m \Theta u \Theta n$
 $\implies m \Theta u \Theta n \subseteq X_L^q.$

Therefore X_{I}^{q} is a bi hyper-ideal. Similarly we can prove for upper approximation.

6. Fuzzy rough interior hyper-ideal of $(\mathscr{H}^{\star},\rho)$

In this section we study fuzzy rough interior hyper-ideal and its properties.

Definition 6.1. A subsemilyper-group X in \mathcal{H}^{\star} is called interior hyper-ideal if $\mathscr{H}^*X\mathscr{H}^* \subseteq X$.

Definition 6.2. A FR subsemilyper-group $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ of $(\mathscr{H}^{\star}, \rho)$ is said to be a FR interior hyper-ideal of $(\mathscr{H}^{\star}, \rho)$ if

 $\begin{aligned} &(i) \ \mu_{\underline{\rho}(\widetilde{X})}(x) \leq \inf_{g \in m \Theta x \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \\ &(ii) \ \mu_{\overline{\rho}(\widetilde{X})}(x) \leq \inf_{g \in m \Theta x \Theta n} \mu_{\overline{\rho}(\widetilde{X})}(g) \ \forall \ m, x, n, g \in \mathscr{H}^{\star}. \end{aligned}$

Proposition 6.3. If $\rho(\widetilde{X}) = (\rho(\widetilde{X}), \overline{\rho}(\widetilde{X}))$ and $\rho(\widetilde{Y}) = (\rho(\widetilde{Y}), \overline{\rho}(\widetilde{Y}))$ are the two FRHI_I of $(\mathscr{H}^{\star}, \rho)$ then the intersection of $\rho(\widetilde{X})$ and $\rho(\widetilde{Y})$ is also a FRHI of $(\mathscr{H}^{\star}, \rho)$.

Proof: By the Proposition [5.3], $\rho(\widetilde{X}) \cap \rho(\widetilde{Y})$ is a *FR* subsemilyper-group. Let $\rho(\tilde{X})$, $\rho(\tilde{Y})$ be *FRHI* and let $a, b, g, x \in \mathscr{H}^{\star}$. Consider (\mathbf{r})

$$\begin{split} \mu_{\rho(\widetilde{X})\cap\underline{\rho}(\widetilde{Y})}(x) &= \min\{\mu_{\underline{\rho}(\widetilde{X})}(x), \mu_{\underline{\rho}(\widetilde{Y})}(x)\} \\ &\leq \min\{\inf_{g\in a\Theta x \Theta b} \mu_{\underline{\rho}(\widetilde{X})}(g), \\ &\inf_{g\in a\Theta x \Theta b} \mu_{\underline{\rho}(\widetilde{Y})}(g)\} \\ &\leq \inf_{g\in a\Theta x \Theta b} \{\min(\mu_{\underline{\rho}(\widetilde{X})}(g), \mu_{\underline{\rho}(\widetilde{Y})}(g))\} \\ &\leq \inf_{g\in a\Theta x \Theta b} \mu_{\underline{\rho}(\widetilde{X})\cap\underline{\rho}(\widetilde{Y})}(g). \end{split}$$

Therefore

 $\rho(\widetilde{X}) \cap \rho(\widetilde{Y})$ is a *FRHI* of $(\mathscr{H}^{\star}, \rho)$. Similarly $\overline{\rho}(\widetilde{X}) \cap \overline{\rho}(\widetilde{Y})$ is a *FRHI* of (\mathscr{H}^*, ρ) .

Theorem 6.4. If a FR set $\rho(\widetilde{X})$ is a FRHI_I of $(\mathscr{H}^{\star}, \rho)$ then for $q \in [0,1]$ the q-level set of X^q is an interior hyper-ideal.

Proof: Let $\rho(\widetilde{X})$ be a *FRHI*.

$$\mu_{\underline{\rho}(\widetilde{X})}(x) \le \inf_{g \in m \Theta x \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \tag{6.1}$$

Let us consider that $X_L^q \neq \emptyset$. For $q \in [0, 1]$ and $m\Theta x \Theta n \in \mathscr{H}^*$ such that $x \in X_L^q$ and $m, n \in \mathscr{H}^*$, then $\mu_{\rho(\widetilde{X})}(x) \ge q$. Since by Equation (6.1), $\inf_{g \in m \Theta x \Theta n} \mu_{\underline{\rho}(\widetilde{X})}(g) \ge q$ $\Longrightarrow \mu_{\underline{\rho}(\widetilde{X})}(g) \ge q$ for $g \in m \Theta x \Theta n$.

Thus it can be easily shown that $m\Theta x\Theta n \subseteq X_L^q$ for $g \in m\Theta x\Theta n$

Hence X_L^q is an interior hyper-ideal. In the same way we can prove that X_U^q is an interior hyper-ideal of (\mathscr{H}^*, ρ) .

7. Conclusion

Fuzzy rough set is a basic key for this paper. We applied the new concept of fuzzy rough hyper-ideal, fuzzy rough bi hyper-ideal and fuzzy rough interior hyper-ideal in an algebraic structure of semihyper-group. We also gave some properties on fuzzy rough hyper-ideals by using the composition concept. In future we may extend the concept of quasi ideals in semihyper-group in terms of fuzzy rough set.

References

- ^[1] P. Corsini, M. Shabir, T. Mahmood, Semisimple semihypergroups in terms of hyperideals and fuzzy hyperideals, Iranian Journal of Fuzzy Sysytems, 8(1)(2011), 95–111.
- ^[2] B. Davvaz, Fuzzy hyperideals in semihypergroups, Italian J. Pure Appl. Math., 8(2000), 67-74.

- ^[3] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. General System. 17(2-3)(1990), 191-209.
- ^[4] N. Kehayopulu, Fuzzy right(left) ideals in hypergroupoids and fuzzy bi-ideals in hypersemigroups, available at https://arxiv.org/abs/1606.00428.
- ^[5] N. Kehayopulu, M. tsingelis, On hypersemigroups, *arXiv*: 1505.00648v1[math. RA] 4 May 2015.
- [6] F. Marty, "'Sur une generalization de la notion de groupe, 8^{iem} congres, 1mathe[']ticiensScandinaves,Stoclholm, 1934, 45-49.
- ^[7] V. S. Subha, N. Thillaigovindan, V. Chinnadurai and S. Sharmila, A study on fuzzy rough interior ideals in semigroups, International Journal of Research and Analytical Reviews, 6(2)(2019), 854-860.
- ^[8] J. Tang, B. Davvaz and Y. Luo, A study on fuzzy interior hyperideals in ordered semihypergroups, Italian Journal of Pure and Applied Mathematics, 36(2016), 125–146.
- ^[9] L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.

ISSN(P):2319-3786 Malaya Journal of Matematik ISSN(O):2321-5666 *******

