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Abstract
In this research paper, we present some new properties of Sadik transform which are related to the fractional
calculus including Reimann-Liouville fractional operator, then we prove new results of Sadik transform like the
infinite series, the convolution theorem and the Mittag-Leffler function. Moreover, it is shown that the Sadik
transform method is an efficient technique for obtaining an exact analytic solution of some linear fractional
differential equations. Some numerical examples to justify our results are illustrated.
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1. Introduction
Integral transforms are excessively applied to solve vari-

ous different type of differential equations. In the literature,
there are many integral transforms and all are appropriate to
solve various type differential equations. Recently some new
integral transforms were introduced, see [1, 6, 10, 11] and ap-
plied to solve some ordinary differential equations as well as
partial differential equations. Very recently, in the paper series
[16–19], S. L. Shaikh introduced a new integral transform so-
called Sadik transform and proved the duality theorem, and the
convolution theorem of Sadik transform. Moreover, the author
have proved that some transforms are particular cases of Sadik

transform, exclusively, such as Laplace, Sumudu, Elzaki, Ka-
mal, Tarig and Laplace-Carson transform. Fractional calculus
is generalization of calassical differentiation and integration
into non-integer order. The fractional derivatives describe the
property of memory and heredity of many materials. Frac-
tional differential equations have acquired significance during
the past decades due to its applicability in several fields of
mathematical applied such as, physics, chemistry biology and
engineering and others applications see [2–4, 6, 9, 12–14]. At
the outsight, Integral transform method is useful and effective
tool for solving fractional differential equations. But it is also
true that all types of fractional differential equations are not
solvable by integral transform technique see [7, 8, 15] and the
references therein.

Motivated by above works, in this paper we introduce new
definitions of Sadik’s transform of fractional order related to
Riemann-Liouville integral and derivative operators with prov-
ing of their properties. Further, we give a sufficient condition
to guarantee the rationality of solving fractional differential
equations by the Sadik transform method.

2. Preliminaries
In this section, we offer some notions, definitions and lem-
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mas that used through this paper. let I = [a,b] be a compact
interval on R, where R = (−∞,∞) and C[a,b] be the space
of all continuous functions defined on [a,b] with the norm
‖ f‖ = max{| f (t)| : t ∈ [a,b]} for any f ∈ C[a,b]. Cn[a,b]
denote the space of all n-times continuously differentiable
functions and L1[a,b] be the labesgue integrable functions
with the norm ‖ f‖L1 =

∫ b
a | f (t)|dt < ∞.

Definition 2.1. [14] Let q > 0 and f be a locally integrable
function on (a,+∞). The left sided Riemann-Liouville integral
of order q of the function f is given by

Iq
a+ f (t) =

1
Γ(q)

∫ t

a
(t− τ)q−1 f (τ)dτ

here Γ(·) denotes the Gamma function of Euler as fallows

Γ(z) =
∫

∞

0
e−ttz−1dt, z ∈ C.

We can write the Riemann-Liouville fractional integral by the
convolution theorem as follows:

Iq
a+ f (t) = φq(t)∗ f (t) =

∫ t

a
φ(t− τ)q−1 f (τ)dτ

where φq(t) = tq−1

Γ(q) .

Definition 2.2. [14] Let n−1< q< n, n∈N, and f ∈C[a,b].
Then the left sided Riemann-Liouville fractional derivative of
order q of a function f is defined by

Dq
a+ f (t) =

(
d
dt

)n

In−q
a+ f (t)

=

(
d
dt

)n 1
Γ(n−q)

∫ t

a
(t− τ)n−q−1 f (τ)dτ,

where n = [q]+1 and [q] denotes the integer part of the real
number q.

Definition 2.3. [16] (Sadik transform) Assume that

1) f is piecewise continuous on the interval [0,A] for any
A > 0.

2) | f (t)| ≤ Keat when t ≥M, for any real constant a, and
some positive constant K and M. Then Sadik transform of
f (t) is defined by

F(v,α,β ) = S [ f (t)] =
1
vβ

∫
∞

0
e−tvα

f (t)dt,

where v is complex variable, α is any non zero real num-
ber, and β is any real number.

Definition 2.4. [14](Mittag-Leffler function) Let µ ,ν ⊂ C,
Re(µ)> 0, Re(ν)> 0, then

Eµ,ν(z) =
∞

∑
k=0

zk

Γ(µk+ν)
.

Lemma 2.5. [9] Let q > 0, t > a and m > −1. Then the
Riemann-Liouville fractional integral and derivative of power
function are given by

(i) Iq
a+(t−a)m = Γ(m+1)

Γ(m+q+1) (t−a)m+q,

(ii) Dq
a+(t−a)m = Γ(m+1)

Γ(m−q+1) (t−a)m−q.

Lemma 2.6. [16] Sadik transform of derivative (nth) for f (t)
is

S [ f (n)(t)] = vnα F(v,α,β )−
n−1

∑
k=0

vkα−β f (n−1−k)(0).

Lemma 2.7. [9] Let p,q≥ 0. Then Ip
a+Iq

a+ = Ip+q
a+ .

Lemma 2.8. [16] If f (t) = tn, then Sadik transform of f is

S [tn] =
n!

vnα+(α+β )
.

Lemma 2.9. [16] If f (t) = eat , then Sadik transform of f is

S [eat ] =
v−β

vα −a
.

Lemma 2.10. Let f and g two functions belong to L1(R+).
Then the usuall convolution product is given by

( f ∗g)(t) =
∫

∞

−∞

f (τ)g(t− τ)dτ, t > 0.

3. Main Results
In this section, we prove the Sadik Transform of infinite

series, convolution theorem, Mitage-Leffller function, and
some properties of fractional calculus.

Lemma 3.1. Let q > 0 and f (t) = eλ t ,a > 0. Then

Dq
a+eλ t = t−qE1,q−1(λ t).

Proof.

Dq
a+eλ t =

∞

∑
k=0

Dq
a+

(λ t)k

Γ(k+1)
=

∞

∑
k=0

λ k

Γ(k+1)
Dq

a+tk

=
∞

∑
k=0

λ k

Γ(k+1)
Γ(k+1)

Γ(k−q+1)
tk−q

= t−q
∞

∑
k=0

(λ t)k

Γ(k− (q−1))
= t−qE1,q−1(λ t).
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Theorem 3.2. Let

g(t) =
∞

∑
n=0

cntn

is a converges for t ≥ 0,with |cn| ≤ Mγn

n! for all n sufficiently
large and γ > 0, M > 0. Then

S [g(t)] =
∞

∑
n=0

cnS [tn] =
∞

∑
n=0

cnn!
vnα+(α+β )

.

Proof. Since g is cotinuous on [0,∞) because it is represented
by convergent power series.

Now our aim to show that the expression∣∣∣∣∣S [g(t)]−
N

∑
n=0

cnS [tn]

∣∣∣∣∣ =

∣∣∣∣∣S
[

g(t)−
N

∑
n=0

cntn

]∣∣∣∣∣
≤ Sx

∣∣∣∣∣g(t)− N

∑
n=0

cntn

∣∣∣∣∣ ,
converges to zero as N −→ ∞,
where Sx[h(t)] = 1

vβ

∫
∞

0 e−tvα

h(t)dt where x is the Re(v).
Now∣∣∣∣∣[g(t)− N

∑
n=0

cntn]

∣∣∣∣∣ =

∣∣∣∣∣ ∞

∑
n=N+1

cntn

∣∣∣∣∣
≤ k

∞

∑
n=N+1

(γt)n

n!

= k

(
eγt −

N

∑
n=0

(γt)n

n!

)
,

where et =
∞

∑
n=0

tn

n! .

When the transform exist, we have

Sx[g1]≤Sx[g2] if g1 ≤ g2.

Thus

Sx

(∣∣∣∣∣[g(t)− N

∑
n=0

cntn]

∣∣∣∣∣
)
≤ k Sx

(
eγt −

N

∑
n=0

(γt)n

n!

)

= k

(
1

v− γ
−

N

∑
n=0

γn

vn+1

)

= k

(
1

v− γ
− 1

v

N

∑
n=0

(
γ

v

)n
)
.

Take limit to both side, we get

lim
N−→∞

Sx

(∣∣∣∣∣[g(t)− N

∑
n=0

cntn]

∣∣∣∣∣
)

≤ lim
N−→∞

k

[
1

v− γ
− 1

v

N

∑
n=0

(
γ

v

)n
]

= lim
N−→∞

k

[
1
v

∞

∑
n=0

(
γ

v

)n
− 1

v

N

∑
n=0

(
γ

v

)n
]
,
∣∣∣γ
v

∣∣∣< 1

−→ 0 as N −→ ∞.

Hence,

S [g(t)] = lim
N−→∞

N

∑
n=0

cnS [tn] =
∞

∑
n=0

cnS [tn]

=
∞

∑
n=0

cnn!
vnα+(α+β )

.

Theorem 3.3. If x(t), y(t) are infinite series, and X(v,α,β ),
Y (v,α,β ) are Sadik Transform of x(t), y(t) respectively. Then

S [x(t)∗ y(t)] = vβ X(v,α,β ).Y (v,α,β ),

where ∗ denotes convolution.

Proof. we have

x(t) =
∞

∑
n=0

antn and y(t) =
∞

∑
m=0

bmtm, (3.1)

which are infinite convergent series for t ≥ 0, so they are Sadik
Transformable. Now by definition of convlution, we have

x(t)∗ y(t) =
∫ t

0
x(t− τ)y(τ)dτ. (3.2)

From Eq.(3.1),

x(t)∗ y(t) =
∫ t

0

(
∞

∑
n=0

an(t− τ)n
∞

∑
m=0

bmτ
m

)
dτ

=
∞

∑
n=0

∞

∑
m=0

anbm

∫ t

0
(t− τ)n

τ
mdτ.

Expanding (t− τ)n by the binomial theorem, we get

=
∞

∑
n=0

∞

∑
m=0

n

∑
k=0

anbm (n
k)(−1)k

∫ t

0
τ

m
τ

kt(n−k)dτ

=
∞

∑
n=0

∞

∑
m=0

n

∑
k=0

anbm (n
k)(−1)kt(n−k)

∫ t

0
τ
(m+k)dτ

=
∞

∑
n=0

∞

∑
m=0

n

∑
k=0

anbm (n
k)(−1)k t(m+n+1)

(m+ k+1)
.

The beta function is connected with gamma function if m
and n are positive integral by the relation:

n

∑
k=0

(n
k)(−1)k 1

(m+ k+1)
=

m!n!
(m+n+1)!

. (3.3)

Therefore, Eq.(3.2) become

=
∞

∑
n=0

∞

∑
m=0

anbm
m!n!

(m+n+1)!
t(m+n+1). (3.4)
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By apply Sadik Transform for Eq.(3.4), using theorem(3.2)
and lemma (2.8), we get

S [x(t)∗ y(t)]

= S

[
∞

∑
n=0

∞

∑
m=0

anbm
m!n!

(m+n+1)!
t(m+n+1)

]

=
∞

∑
n=0

∞

∑
m=0

anbm
m!n!

(m+n+1)!
S [t(m+n+1)]

=
∞

∑
n=0

∞

∑
m=0

anbm
m!n!

(m+n+1)!
(m+n+1)!

v(m+n+1)α+(α+β )

=
∞

∑
n=0

∞

∑
m=0

anbm
m!n!

v(m+n+1)α+(α+β )

= vβ X(v,α,β ).Y (v,α,β ).

Theorem 3.4. Let 0< q and f ∈C[a,b]. The Sadik Transform
of Riemann-Liouville integral of a function f of order q is
given by

S [Iq
a+ f (t)] = v−αqF(v,α,β ),Re(α)> 0,Re(β )> 0,v∈C.

Proof. From definition of Riemann-Liouville fractional inte-
gral and by using theorem3.3, we have

S [Iq
a+ f (t)] = S

[∫ t

a+

(t− s)q−1

Γ(q)
f (s)ds

]
= S

[
(τ)q−1

Γ(q)
∗ f (τ)

]
= vβ

Φ(v,α,β ).F(v,α,β ), (3.5)

where

Φ(v,α,β ) = S [
tq−1

Γ(q)
] and F(v,α,β ) = S [ f (t)].

Now we use lemma 2.8, to get

Φ(v,α,β ) = S [
tq−1

Γ(q)
]

=
1

Γ(q)
(q−1)!

v(q−1)α+(α+β )

=
1

vqα−α+α+β
= v−(αq+β ). (3.6)

By invoking Eq.(3.6) in Eq.(3.5), we conclude that

S [Iq
a+ f (t)] = v−αqF(v,α,β ) .

Theorem 3.5. Let n− 1 < q < n and f ∈ C[a,b]. Then the
Sadik Transform of left sided Riemann-Liouville derivative of
a function f of order q is given by

S [Dq
a+ f (t)] = vαqF(v,α,β )−

n−1

∑
k=0

vkα−β Dq−k−1
a+ f (0).

Proof. By definition of Riemann-Liouville fractional deriva-
tive, we have

S [Dq
a+ f (t)] = S [

dn

dtn In−q
a+ f (t)]

= S [
dn

dtn g(t)], (3.7)

where

g(t) = In−q
a+ f (t), (3.8)

which implies that

S [Dq
a+ f (t)] = S [

dn

dtn g(t)] = S [gn(t)].

By lemma 2.6, we obtain

S [g(n)(t)] = vnα G(v,α,β )−
n−1

∑
k=0

vkα−β g(n−1−k)(0).

From Theorem 3.4, with the relation G(v,α,β )
= S [g(t)] = S [In−q

a+ f (t)], we get

S [g(n)(t)] = vnα v−α(n−q)F(v,α,β )−
n−1

∑
k=0

vkα−β g(n−1−k)(0).

(3.9)

The hypothesis Eq.(3.8), lead us to

g(n−1−k)(t) =
dn−1−k

dtn−1−k In−q
a+ f (t)

= Ik−q+1
a+ f (t)

= Dq−k−1
a+ f (t). (3.10)

Substituation Eq.(3.10) into Eq.(3.9), and using Eq.(3.7),
we conclude that

S [Dq
a+ f (t)] = vαqF(v,α,β )−

n−1

∑
k=0

vkα−β Dq−k−1
a+ f (0).

Remark 3.6. In particular, if 0 < q < 1, then

S [Dq
a+ f (t)] = vαqF(v,α,β )− v−β Dq−1

a+ f (0).

Lemma 3.7. Assume that linear fractional differential equa-
tion

Dq
0+u(t) = f (t), (3.11)

Dq−1
0+ u(t)

∣∣∣
t=0

= u0, (3.12)

has aunique continuous solution

u(t) =
u0

Γ(q)
tq−1 +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ)dτ, (3.13)

if f (t) is continuous on [0,∞) and exponentially bounded,
then u(t) and Dq

0+u(t) are both exponentially bounded, thus
their sadik Transforms exist.
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Proof. Since f (t) is exponentially bounded, there exist two
positive constants M,σ and enough large T such that ‖ f (t)‖≤
Meσt for all t ≥ T . It is easy to see that Eq.(3.11) is equivalent
to the Volterra integral equation

u(t) =
u0

Γ(q)
tq−1+

1
Γ(q)

∫ t

0
(t−τ)q−1 f (τ)dτ , 0≤ t < ∞.

(3.14)

For t ≥ T, Eq.(3.14) can be rewritten as

u(t) =
u0

Γ(q)
tq−1 +

1
Γ(q)

∫ T

0
(t− τ)q−1 f (τ)dτ

+
1

Γ(q)

∫ t

T
(t− τ)q−1 f (τ)dτ.

In view of assumptions, u(t) is unique continuous solution
on [0,∞), with Dq−1

0+ u(t)
∣∣∣
t=0

= u0, then f (t) is bounded on

[0,T ], i.e. there exists a constant k > 0 such that ‖ f (t)‖ ≤ k.
Now, we have

‖u(t)‖ ≤ ‖u0‖
Γ(q)

T q−1 +
k

Γ(q)

∫ T

0
(t− τ)q−1dτ

+
1

Γ(q)

∫ t

T
(t− τ)q−1 ‖ f (τ)‖dτ.

Multiply the last inequality by e−σt then from fact that e−σt ≤
e−σT , e−σt ≤ e−στ , and ‖ f (t)‖ ≤Meσt (t ≥ T ), we obtain

‖u(t)‖e−σt ≤ ‖u0‖
Γ(q)

T q−1e−σt +
ke−σt

Γ(q)

∫ T

0
(t− τ)q−1dτ

+
e−σt

Γ(q)

∫ t

T
(t− τ)q−1 ‖ f (τ)‖dτ

≤ ‖u0‖
Γ(q)

T q−1e−σT +
ke−σT

Γ(q+1)
[(t)q− (t−T )q]

+
M

Γ(q)

∫ t

0
(t− τ)q−1eσ(τ−t)dτ

≤ ‖u0‖
Γ(q)

T q−1e−σT +
ke−σT

Γ(q+1)
T q

+
M

Γ(q)

∫ t

0
sq−1e−σsds

≤ ‖u0‖
Γ(q)

T q−1e−σT +
ke−σT

Γ(q+1)
T q

+
M

Γ(q)

∫
∞

0
sq−1e−σsds

≤ ‖u0‖
Γ(q)

T q−1e−σT +
ke−σT

Γ(q+1)
T q +

M
σq .

Denote

A =
‖u0‖
Γ(q)

T q−1e−σT +
ke−σT

Γ(q+1)
T q +

M
σq ,

we get

‖u(t)‖ ≤ Aeσt , t ≥ T.

From Eq.(3.11) and hypothesis of f , we conclude that∥∥Dq
0+u(t)

∥∥= ‖ f (t)‖ ≤Meσt t ≥ T.

Applying Sadik transform on both sides of Eq.(3.11) and
using Theorem 3.5, we have

vαqU(v,α,β )− v−β Dq−1
0+ u(0) = F(v,α,β ).

Since Dq−1
0+ u(0) = u0, it follows

U(v,α,β ) = u0
1

vαq+β
+

F(v,α,β )

vαq .

Take the inverse of Sadik transform to both sides of the
above equation, and using Lemma 2.8, we get

u(t) = u0S
−1
[

1
vαq+β

]
+S −1

[
1

vαq F(v,α,β )

]
=

tq−1

Γ(q)
u0 +S −1

[
vβ 1

vαq+β
F(v,α,β )

]
=

tq−1

Γ(q)
u0 +S −1

[
vβ 1

v(q−1)α+α+β
F(v,α,β )

]
=

tq−1

Γ(q)
u0 +(ϕ1 ∗ϕ)(t). (3.15)

Put F1(v,α,β ) := 1
v(q−1)α+α+β

, such that S −1 [F1(v,α,β )] =

ϕ1(t) and S −1[F(v,α,β )]=ϕ(t). Applying the inverse Sadik
transform of F1(v,α,β ), with using lemma (L3), we find that

S −1 [F1(v,α,β )] = S −1
[

1
v(q−1)α+α+β

]
=

tq−1

Γ(q)
= ϕ1(t).

Therefore Eq.(3.15) becomes as follows

u(t) =
tq−1

Γ(q)
u0 +(ϕ1 ∗ϕ)(t)

=
tq−1

Γ(q)
u0 +

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ)dτ.

Theorem 3.8. Let f (t)= t pm+q−1E(m)
p,q (±at p). The Sadik Trans-

form of f is given by:

1
vβ

∫
∞

0
e−vα tt pm+q−1E(m)

p,q (±at p)dt =
m!vα p−(αq+β )

(vα p∓a)m+1 ,

where α,β ∈ C,R(p) > 0, R(q) > 0,R(v) > |a|
1

R(α p) and
E(m)

p,q (z) = dm

dtm E(m)
p,q (z).
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Proof. In view of Definition of Mittag-leffler function and by
using classical calculus, we have

1
vβ

∫
∞

0
e−vα tt pm+q−1E(m)

p,q (±at p)dt

=
1
vβ

∫
∞

0
e−vα tt pm+q−1 dm

dtm

∞

∑
k=0

(±at p)k

Γ(pk+q)
dt

=
1
vβ

∫
∞

0
e−vα tt pm+q−1

∞

∑
k=0

(k+m)!(±a)kt pk

k!Γ(pk+ pm+q)
dt

=
∞

∑
k=0

(k+m)!(±a)k

k!Γ(pk+ pm+q)
1
vβ

∫
∞

0
e−vα tt pm+pk+q−1dt

=
∞

∑
k=0

(k+m)!
k!

(±a)k

vβ

(pm+ pk+q−1)!
Γ(pk+ pm+q)

1
vα(pm+pk+q)

=
v−α(pm+q)

vβ

∞

∑
k=0

(k+m)!
k!

(
±a
vα p

)k

=
v−α(pm+q)

vβ

∞

∑
k=0

(k+m).......(k+1)
(
±a
vα p

)k

,

Now let k = k−m

1
vβ

∫
∞

0
e−vα tt pm+q−1E(m)

p,q (±at p)dt

=
v−α(pm+q)

vβ

∞

∑
k=m

(k)(k−1).......(k−m−1)
(
±a
vα p

)k

= v−α pm−αq−β dm

dam

∞

∑
k=m

(
±a
vα p

)k

= v−α pm−αq−β dm

dam

(
1

1∓ a
vα p

)
= v−α pm−αq−β m!

(1∓ a
vα p )m+1

=
m!vα p−(αq+β )

(vα p∓a)m+1 . (3.16)

Corollary 3.9. Let f (t) = t pm+q−1E(m)
p,q (±at p). The Laplace

Transform of f is given by:∫
∞

0
e−stt pm+q−1E(m)

p,q (±at p)dt =
m!sp−q

(sp∓a)m+1 , (3.17)

where R(p) > 0, R(q) > 0,R(s) > |a|
1

R(p) and E(m)
p,q (z) =

dm

dtm E(m)
p,q (z).

Remark 3.10. When α = 1 and β = 0, then Eq.(3.16) implies
to Eq.(3.17).

4. Example

In this section, we provide some examples to justify our
results.

Example 4.1. Consider the function f (t) = eat , then Sadik
transform of Riemann-Liouville fractional integral of order q
of f is given by

S [Iq
0+eat ] =

v−(αq+β )

vα −a
.

Indeed, according to Theorem 3.4, we have

S [Iq
0+ f (t)] = v−αqF(v,α,β ).

and by Lemma 2.9, we see that

F(v,α,β ) = S [eat ] =
v−β

vα −a
,

Consequently,

S [Iq
0+eat ] = v−αq v−β

vα −a
=

v−(v
αq+β )

vα −a
. (4.1)

On the other hand , by using the series of exponession function
and Lemma 2.5 part (i), we obtain

Iq
0+eat = Iq

0+

∞

∑
k=0

(at)k

(k)!
=

∞

∑
k=0

(a)k

(k)!
Iq
0+tk

=
∞

∑
k=0

(a)k

(k)!
Γ(k+1)

Γ(k+q+1)
tk+q

=
∞

∑
k=0

(a)k

Γ(k+q+1)
tk+q (4.2)

Now, we apply Sadik Transform in Eq.(4.2), using Theroem
3.2 and lemma 2.8 we get

S [Iq
0+eat ] =

∞

∑
k=0

(a)k

Γ(k+q+1)
S [tk+q]

=
∞

∑
k=0

(a)k

Γ(k+q+1)
(k+q)!

v(k+q)α+(α+β )

=
∞

∑
k=0

( a
vα

)k
v−(αq+β )v−α

=

[
1+
( a

vα

)
+
( a

vα

)2
+ ...

]
[v−(αq+β )v−α ]

=
v−(αq+β )

vα −a
. (4.3)

Note that, Eq.(4.1) and Eq.(4.3) are equal. So Theorem 3.4
holds. In particular, if q = 1

2 , then

S [I
1
2

0+eat ] =
v−(

α
2 +β )

vα −a
.

Example 4.2. Let 0 < q < 1, and f (t) = eat . Then Sadik
Transform of Riemann-Liouville fractional derivative of order
q of f is given by

S [Dq
0+eat ] =

vαq−β

vα −a
.
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In fact, by Remark 3.6, we have

S [Dq
0+eat ] = vαqS [eat ]− v−β Dq

0+eat
∣∣∣
t=0

.

From Lemma 2.9 and Lemma 3.1, we get

S [Dq
0+eat ] = vαq v−β

vα −a
− v−β t−qE1,q−1(at)

∣∣
t=0

=
vαq−β

vα −a
. (4.4)

Then again by serise of function eatand lemma 2.5, we get

Dq
0+eat = Dq

0+

∞

∑
k=0

(at)k

(k)!
=

∞

∑
k=0

(a)k

(k)!
Dq

0+tk

=
∞

∑
k=0

(a)k

(k)!
Γ(k+1)

Γ(k−q+1)
tk−q

=
∞

∑
k=0

(a)k

Γ(k−q+1)
tk−q.

An application of Sadik Transform with Theorem 3.2 and
lemma 2.8 gives

S [Dq
0+eat ] =

∞

∑
k=0

(a)k

Γ(k−q+1)
S [tk−q]

=
∞

∑
k=0

(a)k

Γ(k−q+1)
(k−q)!

v(k−q)α+(α+β )

=
∞

∑
k=0

( a
vα

)k
v(αq−β )v−α

=

[
1+
( a

vα

)
+
( a

vα

)2
+ ...

]
[v(αq−β )v−α ]

=

[
1

1− a
vα

]
[v(αq−β )v−α ]

=
vαq−β

vα −a
. (4.5)

Hence, the Theorem 3.5 is satisfied.

4.1 An application
In this part, we give a model described by a fractional differ-
ential equation through Sadik transform.

Example 4.3. Consider the fractional differential equation

Dq
0+N(t) = λN(t), (4.6)

with the initial condition

Dq−1
0+ N(0+) = N0, (4.7)

where 0 < q < 1 and N(t) is the number of individuals of a
population at the time t, λ is the population growth rate, and
N0 denotes the initial population size. Applying the Sadik
Transform on both side of Eq.(4.6), using Remark 3.6 and the
initial condition Eq.(4.7), we get

N(v,α,β ) =
N0v−β

vαq−λ
. (4.8)

Applying the inverse of Sadik transform on both side
of Eq.(4.8) with Theorem 3.8. The solution of this frac-
tional differential equation, together with the initial condition
Dq−1

0+ N(0+) = N0 is given by

N(t) = N0S
−1

[
vαq−(β+αq)

vαq−λ

]
= N0tβ+αq−1Eαq,β+αq(λ tαq).

Note that, if α = 1 and β = 0, then Sadik transform reduces to
Laplace transform. Hence the solution of (4.6)-(4.6) is given
by

N(t) = N0tq−1Eq,q(λ tq). (4.9)

This case was considered in the literature, and it was proved
that the fractional differential equation was more efficient in
modeling the population growth than the ordinary differential
equation.

Example 4.4. Consider the linear differential equation of
fractional order

Dq
0+y(t) = λ Iγ

0+y(t)+ f (t) (4.10)

with the initial condition

Dq−1
0+ y(t)

∣∣∣
t=0

= K, (4.11)

where 0 < q < 1, γ > 0 and λ ∈R. Applying the Sadik Trans-
form on both side of Eq.(4.10), using Remark 3.6, Theorem
3.4, and the initial condition Eq.(4.11), we get

Y (v,α,β ) =
K vαγ−β

(vα(q+γ)−λ )
+

vαγ F(v,α,β )

(vα(q+γ)−λ )

Applying the inverse Sadik transform, we get

y(t) = KS −1

[
vα(q+γ)−(αq+β )

(vα(q+γ)−λ )

]

+S −1
[

vβ vαγ

(vα(q+γ)+β −λ )
F(v,α,β )

]
= Ktα(q+γ)+β−1Eα(q+γ),αq+β (λ tα(q+γ))

+S −1
[
vβ G(v,α,β ).F(v,α,β )

]
,

where G(v,α,β ) =
[

vαγ

(vα(q+γ)+β−λ )

]
. Note that

g(t) = S −1 [G(v,α,β )]

= S −1
[

vαγ

(vα(q+γ)+β −λ )

]
= tα(q+γ)+2β−1Eα(q+γ)+β ,(αq+β )(λ tα(q+γ)+β ).
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Now, by the convolusion theorem of Sadik transform, we
conclude that

y(t) = Ktα(q+γ)+β−1Eα(q+γ),αq+β (λ tα(q+γ))

+[(g∗ f )(t)]

= Ktα(q+γ)+β−1Eα(q+γ),αq+β (λ tα(q+γ))

+
∫

∞

0
g(t− τ) f (τ)dτ

= Ktα(q+γ)+β−1Eα(q+γ),αq+β (λ tα(q+γ))+Ψ(t),

where

Ψ(t) =
∫

∞

0
(t− τ)α(q+γ)+2β−1

×Eα(q+γ)+β ,(αq+β )(λ (t− τ)α(q+γ)+β ) f (τ)dτ.

5. Conclusion
There are a lot of the integral transforms of exponential

type kernels, the Sadik Transform is new and a very powerful
among of them. And there are many problems in engineering
and applied sciences can be considered by Sadik transform
as integral transform to solve it, so we have provided Sadik
transform of the Riemann-Liouville fractional calculus, the
convolution theorem, and the infinite series. In order to illus-
trate the efficiency of theoretical results, suitable examples
with some applications and models described by a fractional
differential equation through Sadik transform.
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[11] A. Kiliçman and H. Eltayeb, A note On Integral Trans-
forms and Partial Differential Equations, App. Math. Sci.,
4 (2010), 109–118.

[12] K. S. Miller and B. Ross, An Introduction to the Frac-
tional Calculus and Fractional Differential Equations,
John Wiley & Sons, New York, NY, USA. (1993).

[13] K. B. Oldham and J. Spanier,The Fractional Calculus,
Academic Press, New York, NY, USA. (1974).

[14] I. Podlubny, Fractional Differential Equations: An Intro-
duction to Fractional Derivatives, Elsevier, 198 (1998).

[15] G. D. Medina, N. R. Ojeda, J. H. Pereira and L. G &
Romero, Fractional Laplace Transform and Fractional
Calculus, Int. Math. Forum , 12(2017), 991-1000.

[16] S. L. Shaikh, Introducing a new integral transform Sadik
transform, Amer. Int. J. Res. Sci. Tech. Eng. Math, (2018),
100-102.

[17] S. L. Shaikh and M. S. Chaudhary, On a new integral
transform and solution of some integral equations ,IJPAM
, 73(2011), 299-308.

[18] S. L. Shaikh, Sadik transform in control theory, Int. J.
Innov. Sci. Res. Tech, 3(2018), 1-3.

[19] S. L. Shaikh, Some applications of the new integral trans-
form for Partial differential Equations, Math. Jour. Inter-
disciplinary Sci. , 7 (2018), 45-49.

[20] S. Saleh Redhwan, L. Sadikali Shaikh, and S. Mohammed
Abdo, Some properties of Sadik transform and its appli-
cations of fractional-order dynamical systems in control
theory, Advances in the Theory of Nonlinear Analysis and
its Application , 4(1) (2019), 51-66.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

543

http://www.malayajournal.org

	Introduction
	Preliminaries
	Main Results
	Example
	An application

	Conclusion
	References

