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An evaluation of mixed type polynomial
approximation with certain condition on the roots of
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Abstract
The purpose of this paper is to find a polynomial Rn(x) of degree≤ (3n−1) satisfying (1,0;0) interpolation under
certain condition at given knots, also explicit representation of fundamental polynomials and convergence
theorem of Rn(x) has been analyzed.
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1. Introduction
In 1975 L.G. Pál[1] introduced the following interpolation

process, he consider

−∞ < x1 < x2 < ....... < xk < ...xn <+∞ (1.1)

be the set of knots which generates the polynomial

Wn(x) =
n

∏
k=1

(x− xk) (1.2)

and roots {yk}n−1
k=1 of Wn

′(x) are interscaled between the roots
of Wn(x) such that,

−∞ < x1 < y1 < x2 < ..... < xk < yk.... < yn−1 < xn <+∞

(1.3)

He proved that, there exist a unique polynomial Pn(x) of de-
gree (2n-1) satisfying the following condition{

Pn(xk) = αk (k = 1,2....,n),
P′n(yk) = βk (k = 1,2., ..,n−1), (1.4)

with initial condition Pn(x0) = 0,where x0 is a given point
differ from the nodal point (1.3) and {αk}n

k=1 and {βk}n−1
k=1

are arbitrary numbers, whose convergence for Pn(x) has been
proved by S. A. Eneduanya[2] on the roots of πn(x).
In 1985, L. Szili[3] was firstly apply this interpolation process
by taking the mixed zeroes of Hn(x) and its derivative on infi-
nite interval and shows that ,there exist a unique polynomial
Qn(x) of degree ≤ 2n−1 which satisfying the condition{

Q∗n(xk) = α∗k (k = 1,2....,n),
Q∗′n (yk) = β ∗k (k = 1,2., ..,n−1), (1.5)

Q∗n(0) =−2
n

∑
i=0

α
∗
k [

Hn(o)
H ′n(xk)

]2 (1.6)

and cunstructed a polynomial which is given by

Q∗n(x) =
n

∑
i=1

α
∗
k Ak(x)+

n−1

∑
i=1

β
∗
k Bk(x) (1.7)



An evaluation of mixed type polynomial approximation with certain condition on the roots of Hermite polynomial —
552/555

which uniqueness does not hold for taking n odd. He also
proved convergence theorem for Qn(x) and later, I.Joó[4] im-
proved Szili[3] result by modifying estimate of fundamental
polynomial.
In 1999 Z.F. Sebestyen[5] improved the result of L. Szili[3]
and I.Zoo[4] by replacing condition with an interpolatory con-
dition Qn(0) = α0 for n even.

In another paper, Srivastava and Mathur[6] studied mixed
(0;0,1) interpolation on the zeroes of Hn(x) and its derivative
which means to determine a polynomial R∗n(x) satisfies the
following conditions Rn

∗(xk) = αk
∗∗ (k = 0,1....n)

Rn
∗(yk) = βk

∗∗ (k = 1....n−1)
Rn
∗′(yk) = βk

∗∗ (k = 1....n−1)
(1.8)

for n even they proved there exist unique polynomialR∗n(x)
of degree≤ 3n−2 satisfying the above condition, for n odd
uniqueness does not exist.
Yamini Singh and R. Srivastava[7] also solve (0,1;0) interpo-
lation problem with special type of boundary condition on the
roots of Ultraspherical polynomial.
The aim of this paper to extend the study of (0;1) interpolation
problem of Z.F Sebestyen[5] to the case (0,1;0) interpolation.
We have given the following problem.

2. Problem
Let y0 = 0 be a real number differing from the interscaled

system of nodal points (1.3) where {xk}n
k=1 and {yk}n−1

k=1 are
the zeroes of Hn(x) and Hn

′(x) respectively. Therefore find a
minimal degree polynomial Rn(x) which satisfies the follow-
ing interpolation condition Rn(yk) = gk (k = 0,1....n−1),

Rn(xk) = g∗k (k = 1, .2, ...,n),
Rn
′(xk) = g∗∗k (k = 1,2, ....,n),

(2.1)

3. Preliminaries
In this section, we gave some well known results, which

we shall use in to prove theorem 4.1, lemma 5.1, lemma 5.2,
lemma 5.3 and theorem 6.1.

The differential equation satisfied by Hn(x) is given by

H ′′n (x)−2xH ′n +2nHn(x) = 0 (3.1)

H ′n(x) = 2nHn−1(x) (3.2)

Let lk(x) and Lk(x) denote the fundamental polynomial of
lagrange interpolation corresponding to the nodal point xk and
yk respectively then

lk(x) =
Hn(x)

H ′n(xk)(x− xk)
k = 1, .....,n (3.3)

Lk(x) =
H ′n(x)

H ′′n (yk)(x− yk)
k = 1, ....,n−1 (3.4)

and they follows the condition given below

lk(x j) =

{
0 f or j 6= k
1 f or j = k f or k = 1, ....,n (3.5)

Lk(y j) =

{
0 f or j 6= k
1 f or j = k f or k = 1, ....,n−1 (3.6)

G. Szegö[11] gave following results
If xk(k=1, 2, ..., n) are the roots of Hn(x), then

x2
k ∼

k2

n
(3.7)

Hn(x) = O(n
1
4
√

2nn!(1+ 3
√
|x|)e

x2
k
2 ) x ∈ R (3.8)

|H ′n(xk)|= n
1
4
√

2n+1n!e
δx2

k
2 (i = 1, ....,n) (3.9)

|Hn(yk)|= n
−1
4
√

2n+1n!e
δy2

k
2 (i = 1, ....,n−1) (3.10)

where 0 < δ < 1 is an arbitrarily given real number

|lk(x)|= O(1)
2n+1n!

√
ne

ν(x2+x2
k )

2

Hn
′2(xk)

ν > 1 and k = 1...n

(3.11)

|Lk(x)|=O(
2nn!e

ν(x2+y2
k )

2
√

nH2
n (yk)

) ν > 1 and k = 1...n−1 (3.12)

L.Szili[8] gave following results

n

∑
i=0

e−εx2
k = O(

√
n) (3.13)

n

∑
i=0

eδx2
k

Hn
′2(xk)

= O(2n+1n!)
−1

(3.14)

Definition 3.1. ω( f ,δ ) denotes the special form of modulus
of continuity introduced by G.Freud[9] given by

ω( f ,δ )= sup‖W (x+t) f (x+t)−W (x)‖+‖τ(δx)W (x) f (x)‖
(3.15)
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for 0≤ t ≤ δ

where

τ(x) =
{
|x| f or |x| ≤ 1

1 f or |x|> 1

and ‖.‖ denotes the sup-norm in C(R) and lim
|x|→∞

W (x) f (x) = 0

then lim
|x|→0

ω( f ,g) = 0.

G.Freud, (Theorem 1[9]and Theorem 4[10]) gave the fol-
lowing results:
Let f : R→ R be continuously diffrentiable.Further, let

lim
|x|→+∞

x2k f (x)ρ(x) = 0 (k = 0,1, ....)

and lim
|x|→+∞

f (x)′ρ(x) = 0
(3.16)

then there exist polynomial Qn(x) of degree ≤ such that

ρ(x)| f (x)−Qn(x)|= O(
1√
n
)ω( f ;

1√
n
) (3.17)

where ω stands for modulus of continuity defined by (6.1)
and ρ(x) the weight function.
Szili[3]( Lemma 4, Theorem 4) established the following

ρ(x)|Q(r)
n |= O(1) (3.18)

4. Explicit Representation of
interpolatory polynomial

In this section we have proved explicit representation of
fundamental polynomials.

Theorem 4.1. There exist a polynomial

Rn(x) =
n−1

∑
k=0

gkAk(x)+
n

∑
k=1

g∗kBk(x)+
n

∑
k=1

g∗∗k Ck(x) (4.1)

of degree (3n− 1) satisfying condition (2.1), where Ak(x)
(k = 0,1,2....,n−1) and Bk(x) (k = 1,2.....,n) are the funda-
mental polynomial of first kind and Ck(x) (k = 1,2.....,n) are
fundamental polynomial of second kind of (1,0;0) interpola-
tion. Each such fundamental polynomial of degree at most
3n−1 is given by

A0(x) =
Hn
′(x)Hn

2(x)
Hn
′(0)Hn

2(0)
(4.2)

Ak(x) =
xHn

2(x)Lk(x)
ykHn

2(yk)
(4.3)

Bk(x) =
xH ′n(x)l

2
k (x){1−

(1+4x2
k)

xk
(x− xk)}

xkHn
′(xk)

(4.4)

Ck(x) =
xHn(x)Hn

′(x)lk(x)
xk(H ′n(xk))2 (4.5)

Proof. It is enough to show that the polynomials Ak(x) (k =
0,1,2....,n − 1), Bk(x) (k = 0,1,2....,n), and Ck(x)
(k = 0,1,2....,n) have the following properties:

Ak(y j) =

{
0 f or j 6= k
1 f or j = k

f or ( j,k = 0....n−1) Ak(x j) = 0

(4.6)

for ( j = 1...n,k = 0, ...n−1)

A′k(x j) = 0 f or ( j = 1, ...n,k = 0, ...n−1)

Bk(x j) =

{
0 f or j 6= k
1 f or j = k

f or ( j,k = 1, ....n) B′k(x j) = 0

(4.7)

for ( j,k = 1, ...n)

Bk(y j) = 0 f or ( j = 0, ...n−1,k = 1, ...n)

and

C′k(x j) =

{
0 f or j 6= k
1 f or j = k

for ( j,k = 1...n)

Ck(x j) = 0 ( j,k = 1, ...n)

Ck(y j) = 0, ( j = 0, ...n−1,k = 1, ...n) (4.8)

First, we construct the polynomials Ck(x), let k be fixed
(k ∈{1,...n}), from (4.8) it follows that

Ck(x) = Hn(x)Hn
′(x)pk(x) (4.9)

where pk(x) is the polynomial for which

pk(0) = 0 (4.10)

by (4.9) we get

C′k(x) = (H ′k(x))
2 pk(x)+Hn(x)(H ′k(x)pk(x))′ (4.11)

according to (4.8), equations

C′k(x j)= (H ′k(x j))
2 pk(x j)=

{
0 f or j 6= k
1 f or j = k

f or j =(1, ...,n)

(4.12)

must hold for polynomial pk(x).These equations will be sat-
isfied if

pk(x) =
xlk(x)

xk(H ′n(xk))2 (4.13)

combining (4.13), (4.9), we obtain (4.5). Obviously, Ck(x) is
a polynomial of degree 3n−1, which satisfy (4.8). Second,
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we construct Bk(x), k be fixed (k∈{1,...n}). We look for Bk(x)
in the following form

Bk(x) =
xH ′n(x)l

2
k (x)

xkHn′(xk)
+H ′n(x)qk(x) (4.14)

where qk(x) is the suitable polynomial for which

qk(0) = 0 (4.15)

According to (4.7) qk(x) must hold the following conditions:
for j6=k

qk(x j) = 0 (4.16)

and for j=k

qk(x) =−
1

H ′n(xk)
(4.17)

Diffrentiating (4.14),we get
for j6=k

2x jq(x j)+q′k(x j) = 0 (4.18)

for j=k

(1+4x2
k)

xkH ′n(xk)
+2xkqk(xk)+q′k(xk) = 0 (4.19)

From (4.15)-(4.19), we conclude that

qk(x) =
xH ′n(x)l

2
k (x)(1+4x2

k)(x− xk)

x2
kHn

′(xk)
(4.20)

Combining (4.14) and (4.20), we get (4.4).
Proof of Ak(x) is like proof of Ck(x).

5. Order of convergence of fundamental
polynomials

In this Section we compute order of convergence of fun-
damental polynomials, which is required to prove Theorem
2

Lemma 5.1. For k = 0,1....n−1 and x ∈ (−∞,+∞)

n−1

∑
i=0

eβy2
k |Ak(x)|= O(1)eνx2

where ν >
3
2

(5.1)

where Ak(x) is given by (4.2).

Proof. from (4.2) we have

n−1

∑
k=0

eβy2
k |Ak(x)| ≤

n−1

∑
k=0

eβy2
k
|x|Hn

2(x)|Lk(x)|
|yk|Hn

2(yk)
(5.2)

using (3.7) (3.8), (3.9) and (3.10), (3.12), (3.13) we get the
requaired lemma.

Lemma 5.2. For k = 1....n and x ∈ (−∞,+∞)

n

∑
k=1

eβx2
k |Bk(x)|= O(

√
n)eνx2

where ν >
3
2

(5.3)

whereBk(x) is given by (3.3)

Proof. from (3.3) we have

n

∑
k=1

eβx2
k |Bk(x)| ≤

n

∑
k=1

eβx2
k
|x||H ′n(x)|l2

k (x){1+ |
(1+4x2

k)
xk
||(x− xk)|}

|xk||Hn
′(xk)|

(5.4)

Using (3.2) and (3.4), we get

n

∑
k=1

eβx2
k |Bk(x)|=

n

∑
k=1

eβx2
k
|x||H ′n(x)|l2

k (x)
|xk||H ′n(xk)|

(5.5)

+∑
n
k=1 eβy2

k
|x||H ′n(x)||Hn(x)||lk(x)||

(1+4x2
k )

xk
|

xkH ′n(xk)
2

=I1 + I2
Owing (3.3), (3.7), (3.8),(3.10), (3.11), (3.13), (3.14) we get

I1 == O(
1√
n
)eνx2

eνx2
and I2 = O(

√
n)eνx2

(5.6)

combining both above we get the required lemma.

Lemma 5.3. For k = 1,2, ....,n and x ∈ (−∞,+∞)

n

∑
k=1

eβx2
k |Ck(x)|= O(1)eνx2

where ν >
3
2

(5.7)

where Ck(x) is given by (3.4).

Proof. From (3.4) we have

n

∑
k=1

eβx2
k |Ck(x)|=

n

∑
k=1

eβx2
k
|x||Hn(x)||Hn

′(x)||lk(x)|
|xk||H ′n(xk)

2|
(5.8)

Using (3.1), (3.2), (3.7), (3.8), (3.9), (3.13) we get the required
lemma.

6. Convergence theorem of interpolatory
polynomial

In this section we have proved convergence theorem for
interpolatory polynomial Rn(x).

Theorem 6.1. Let the interpolated function f : R −→ R be
continuously differentiable such that

lim
|x|→+∞

x2k f (x)ρ(x) = 0 (k = o,1, ....)

lim
|x|→+∞

x2k f (x)ρ(x) = 0 ,where ρ(x) = e−βx2
,0≤ β < 1
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(6.1)

further taking the number δk such that

δk = O(eδx2
k ) = ω( f ′;

1√
n
) (6.2)

where ω is modulus of continuity of f ′.Then

Rn( f ,x) =
n−1

∑
k=0

f (yk)Ak(x)+
n

∑
k=1

f (yk)Bk(x)+
n

∑
k=1

δkCk(x)

(6.3)

satisfies the relation

e−δx2 | f (x)−Rn(x)|= O(
√

n)ω( f ;
1√
n
) (6.4)

Proof. Since Rn(x) given by (4.1) is exact for all polynomials
Qn(x) of degree ≤ 3n-1, we have

Qn(x)=
n−1

∑
k=0

Qn(yk)Ak(x)+
n

∑
k=1

Qn(xk)Bk(x)+
n

∑
k=1

Q′n(xk)Ck(x)

(6.5)

from (10.1) and (5.3), we have

|Rn(x)− f (x)| ≤ |Rn(x)−Qn(x)|+ |Qn(x)− f (x)| (6.6)

Now

eνx2 |Rn(x)− f (x)| ≤ eνx2 |Rn(x)− f (x)|

+ eνx2
n−1

∑
k=0
| f (yk)−Qn(yk)||Ak(x)|

+ eνx2
n

∑
k=1
| f (xk)−Qn(xk)||Bk(x)|

+ eνx2
n

∑
k=1

δk|Ck(x)

+ eνx2
n

∑
k=1
|Q′n(xk)||Ck(x)|

(6.7)

Using (3.15), (3.16), (3.17), (3.18), (7.2), and lemma 5.1-5.3,
theorem is proved.

Conclusion
Let {xk}n

k=1 and {yk}n−1
k=1 be the roots of hermite polyno-

mial Hn(x) and its derivative Hn
′(x) respectively. If f(x) be

continuously differentiable function on (−∞,+∞) satisfying
(3.16), then there exist a polynomial Rn(x) satisfying (2.1)
which uniformly converges to f(x) on (−∞,+∞) as n→ ∞
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