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An evaluation of mixed type polynomial
approximation with certain condition on the roots of
Hermite polynomial
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Abstract

The purpose of this paper is to find a polynomial R, (x) of degree< (3n — 1) satisfying (1,0;0) interpolation under
certain condition at given knots, also explicit representation of fundamental polynomials and convergence
theorem of R,(x) has been analyzed.
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1. Introduction by taking the mixed zeroes of H,(x) and its derivative on infi-
nite interval and shows that ,there exist a unique polynomial
On(x) of degree < 2n — 1 which satisfying the condition

6 Convergence theorem of interpolatory polynomial554

In 1975 L.G. Pdl[1] introduced the following interpolation
process, he consider

e - O (xx) = o (k=1,2....,n),
<xp<x2 < oo <xp < xp <+ (1.1 { 07 (y) =B (k=12,..n—1), (1.5)
be the set of knots which generates the polynomial
n N n N H )
Wo(x) = [J(x—xx) (1.2) 0;(0)==-2Y o [H/”( ) 1 (1.6)
k=1 i=0 n(xk)

and roots {yk}z;ll of W,/ (x) are interscaled between the roots  and cunstructed a polynomial which is given by

of W, (x) such that,

n n—1
* = oA ‘B 1.7
—00 KX <YL X2 erere <X < Voo < Yp1 < Xy < 00 (%) ; k "(x)Jr;ﬁk k) 4.7
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which uniqueness does not hold for taking n odd. He also
proved convergence theorem for O, (x) and later, L.Jod[4] im-
proved Szili[3] result by modifying estimate of fundamental
polynomial.

In 1999 Z.F. Sebestyen[5] improved the result of L. Szili[3]
and [.Zoo[4] by replacing condition with an interpolatory con-
dition Q,,(0) = oy for n even.

In another paper, Srivastava and Mathur[6] studied mixed
(0;0,1) interpolation on the zeroes of H,(x) and its derivative
which means to determine a polynomial R} (x) satisfies the
following conditions

R,,*(xk) = Otk** (k= 0, 1n)
R*(yi) =B (k=1..n—1) (1.8)
R i) =B"" (k=1..n—1)

for n even they proved there exist unique polynomialR};(x)
of degree< 3n — 2 satisfying the above condition, for n odd
uniqueness does not exist.

Yamini Singh and R. Srivastava[7] also solve (0,1;0) interpo-
lation problem with special type of boundary condition on the
roots of Ultraspherical polynomial.

The aim of this paper to extend the study of (0;1) interpolation
problem of Z.F Sebestyen[5] to the case (0,1;0) interpolation.
We have given the following problem.

2. Problem

Let yg = 0 be a real number differing from the interscaled
system of nodal points (1.3) where {x;}7_, and {y;}/_| are
the zeroes of H,(x) and H,’(x) respectively. Therefore find a
minimal degree polynomial R, (x) which satisfies the follow-
ing interpolation condition

R,,(yk):gk (k:(),l....n—l),
R”(xk) = gZ (k=1,2,...,n), 2.1
R/ =g k=12, ).

3. Preliminaries

In this section, we gave some well known results, which
we shall use in to prove theorem 4.1, lemma 5.1, lemma 5.2,
lemma 5.3 and theorem 6.1.

The differential equation satisfied by H,(x) is given by

H)/(x) — 2xH), +2nH,(x) = 0 3.1
H)(x) = 2nH,_ (x) (3.2)

Let [;(x) and Li(x) denote the fundamental polynomial of
lagrange interpolation corresponding to the nodal point x; and
Yk respectively then

" (3.3)
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H,(x)
Lix)=—+2"— k=1,....n—1 34
= B
and they follows the condition given below
N_J 0 for j#k _
I(xj) = { I for j=k for k=1,....n (3.5)

Lk()’j):{ O Jor j#k k=1 ..n—1 (36)

1 for j=k

G. Szego[11] gave following results
If x;(k=1, 2, ..., n) are the roots of H,(x), then

k2
xF~— (3.7
n
1 X%
Hy(x) = 0(n*v2n!(1+ {/|x])e?) x€R (3.8)
H (x)| = nt V2 inle 2 (i=1,....,n) (3.9)

(i=1,...,n—1) (3.10)

where 0 < § < 1 is an arbitrarily given real number

v(x2+xl%)
2n+1 ! —F5
L) = o) 2T and k=1
H,/ (xk)
(3.11)
v(x2+y1%)
L)) =0 2y Yot and k=1n—1 (3.12)
k = —_— =1..n— .
VH (vi)
L.Szili[8] gave following results
Y e % = 0(y/n) (3.13)
i=0
n 5x2
e — oy (3.14)
i=0 Hn'" (1)

Definition 3.1. w(f,0) denotes the special form of modulus
of continuity introduced by G.Freud[9] given by

o(f,8) =sup [W(x+1)f (x+1) =W (x)[|+ [ T(8x)W (x) f ()]
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for 0<1<d
where
_ K for x| <1
T = { 1 for | >1
and ||.|| denotes the sup-norm in C(R) and lim W (x)f(x)=0

[x|—reo
then lim o(f,g) =
|x|—0
G.Freud, (Theorem 1[9]and Theorem 4[10]) gave the fol-
lowing results:
Let f: R — R be continuously diffrentiable.Further, let

| ‘lim *fx)p(x)=0 (k=0,1,....)
x| — o0
and‘ |lirr+1 fx)p(x)=0 (3.16)

then there exist polynomial Q,(x) of degree < such that

1 1
p)[f(x) = On(x)| = 0(%)(9(]‘,%

where @ stands for modulus of continuity defined by (6.1)

and p (x) the weight function.
Szili[3]( Lemma 4, Theorem 4) established the following

p)0Y| = o(1)

) (3.17)

(3.18)

4. Explicit Representation of
interpolatory polynomial

In this section we have proved explicit representation of
fundamental polynomials.

Theorem 4.1. There exist a polynomial

Z grAk(x

of degree (3n — 1) satisfying condition (2.1), where Aj(x)
(k=0,1,2.....n—1) and By(x) (k= 1,2.....,n) are the funda-
mental polynomial of first kind and C(x) (k=1,2.....,n) are
fundamental polynomial of second kind of (1,0,0) interpola-
tion. Each such fundamental polynomial of degree at most
3n—1is given by

x)+ ) 8¢ Cel(x) (4.1)
k=1

)+ Z 8 Bi(x

Ao = T 0R.20) @2
B xH,,%(x) Ly (x)
Axlx) = YiH? (Vi) @3
*H ()0 {1 — L0 ()
Bilx) = xeHy' (xc) @
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Proof. 1t is enough to show that the polynomials A (x) (k =

0,1,2.....n — 1), Bi(x) (k = 0,1,2.....n), and Ci(x)
(k=0,1,2....,n) have the following properties:
0 j #k ;
Ak(y,->:{1 ;Z:j.ﬁk for (jk=0...n—1) Ag(x;)=0
(4.6)
for (j=1..nk=0,..n—1)
A;c(xj):O for (j=1,..nk=0,..n—1)
0 j £k .
B ={ | IR for Gk 1) By(x) =0
4.7)
for (j,k=1,...n)
Bi(yj) =0 for (j=0,.n—1,k=1,..n)
and
/v 0 for j#k
Ck(xj)_{ 1 for j=k
for (j,k=1..n)
Ck(xj):O (]7](:1?”)
Ce(y)) =0, (j=0,.n—1k=1,..n) (4.8)

First, we construct the polynomials Ci(x), let k be fixed

(k €{1,..n}), from (4.8) it follows that

Culx) = Hu(0)H, () piv) (49)
where py(x) is the polynomial for which

pe(0)=0 (4.10)
by (4.9) we get

Cr(x) = (Hi(x))? pi(x) + Hy (%) (Hy (%) pr(x)) (4.11)
according to (4.8), equations
o) = His) Pruto) = { | I IR for = (1

(4.12)

must hold for polynomial py(x).These equations will be sat-
isfied if

xli(x)
xXi(Hjy (xe))?

combining (4.13), (4.9), we obtain (4.5). Obviously, Cy(x) is
a polynomial of degree 3n — 1, which satisfy (4.8). Second,

pr(x) = (4.13)

8%
aet“@ﬂ”ﬂ,
(S
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we construct By (x), k be fixed (ke{1,...
in the following form

n}). We look for By (x)

xH! (x) 12 (x)
By(x) = 2k g 4.14
k(x) kan/(xk) + n(x)qk(x) ( )
where g (x) is the suitable polynomial for which
qx(0)=0 (4.15)

According to (4.7) g (x) must hold the following conditions:
for j#k

qk(xj) =0 (416)
and for j=k
(x) = . 4.17)
T T H ) |
Diffrentiating (4.14),we get
for j#k
2xjq(xj) + qi(x;) =0 (4.18)
for j=k
(1+4x3) ,
— 42 =0 4.19
ol (%) + 2xqx (k) + g (k) (4.19)
From (4.15)-(4.19), we conclude that
xH) (%) 12 (x) (1 +4x7) (x — x¢)
qr(x) = (4.20)
(x) x2H,' (xy)
Combining (4.14) and (4.20), we get (4.4).
Proof of Ax(x) is like proof of Ci(x). O

5. Order of convergence of fundamental
polynomials
In this Section we compute order of convergence of fun-

damental polynomials, which is required to prove Theorem
2

Lemma 5.1. Fork=0,1...n—1 and x € (—o0,+o0)

n—1
3
Z P |[Ax(x)| = 0(1)6”2 where v > 3 (5.1
i=0
where Ay(x) is given by (4.2).
Proof. from (4.2) we have
n—1 n—1 2
H, L,
Y P AL (x)| < y eﬁyiw (5.2)
k=0 k=0 vk |H” (vi)

using (3.7) (3.8), (3.9) and (3.10), (3.12), (3.13) we get the
requaired lemma. O
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Lemma 5.2. Fork=1....

"l 2
Y P (B (x)
k=1

nand x € (—oo, +0)
Vil 3
= 0(v/n)e"™ where v > 3 (5.3)

whereBy(x) is given by (3.3)
Proof. from (3.3) we have

n X H, 12 1 + 1+4xk
e \<Zeﬁx o x| [Hy (o) () {1+ | [[(x—x0)[}
) A

5.4)
Using (3.2) and (3.4), we get
Hy ()|l (x)
ﬁxk‘B B |XH7 (5.5)
e .
Z Zl x| | H (x|
. 2 ) () ) L),
Li-i XeHf (xi)*
=I+h
Owing (3.3), (3.7), (3.8),(3.10), (3.11), (3.13), (3.14) we get
I == 0(“2)e" ™ and I = 0(/n)e™ (5.6)
7 .
combining both above we get the required lemma.
O
Lemma 5.3. Fork=1,2,.....n and x € (—oo, +)
L 2 3
Z Bt |C(x)| = O(1)e"™ where v > 3 5.7
where Cy(x) is given by (3.4).
Proof. From (3.4) we have
H,( H )
IXkIIH’ (xk) |

Using (3.1), (3.2), (3.7), (3.8), (3.9), (3.13) we get the required
lemma.
0

6. Convergence theorem of interpolatory
polynomial

In this section we have proved convergence theorem for
interpolatory polynomial R, (x).

Theorem 6.1. Let the interpolated function f : R — R be
continuously differentiable such that

lim x**f(x)p(x) =0

[x|—oo

lim x* f(x)p(x)

[ -o

(k=o0,1,....)

=0 ,where p(x) =P’ o< B<l1
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6.1)
further taking the number 8 such that
1
8 = 0(%%) = (/" =) 6.2)

where ® is modulus of continuity of f'.Then

n—1 n
Ru(fox) =) FOR)AX) + Y fr)Br(x) + Z 0, Cr(x
k=0 k=1
(6.3)

satisfies the relation

e % f(x) = Ra(x)| = O(Vm) 0 (f;—=) (6.4)

<~

Proof. Since R,(x) given by (4.1) is exact for all polynomials
O, (x) of degree < 3n-1, we have

n

Z On (Vi) Ax (x) + Z On (1) By (x) + Y, 05, (1) Ci(x)
. (6.5)
from (10.1) and (5.3), we have
|Rn(x) = f(x)| < [Rn(x) = Qn(x)[ +[Qn(x) — f(x)] (6.6)
Now

" |Ru(x) — f(x)] < €7 [Ru(x) — f(x)]

anl
+et Z 1 O) =
vx Z|f xk

+€Vx2 Z Sk\Ck(x
k=1

+e Y 10 (u)1Ci ()]
k=1

On (Vi) [|Ak (%)

—On xk)HBk( )| 6.7)

Using (3.15), (3.16), (3.17), (3.18), (7.2), and lemma 5.1-5.3,
theorem is proved.
O

Conclusion

Let {x;}7_, and {yx }Z;i be the roots of hermite polyno-
mial H,(x) and its derivative H,'(x) respectively. If f(x) be
continuously differentiable function on (—eo, +o0) satisfying
(3.16), then there exist a polynomial R, (x) satisfying (2.1)
which uniformly converges to f(x) on (—eo, +0) as n — oo
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