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On the k-distant total labeling of graphs
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Abstract
A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers. In this paper, two
new variations of labeling named k-distant edge total labeling and k-distant vertex total labeling are introduced.
Moreover, the study of two new graph parameters, called k-distant edge chromatic number (γ ′kd) and k-distant
vertex chromatic number (γkd) related this labeling are initiated. The k-distant vertex total labeling for paths,
cycles, complete graphs, stars, bi-stars and friendship graphs are studied and the value of the parameter γkd
determined for these graph classes. Then k-distant edge total labeling for paths, cycles and stars are studied.
Also, an upper bound of γkd and a lower bound of γ ′kd are presented for general graphs.
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1. Introduction
All graph considered in this paper are simple, connected

and undirected. A labeling of a graph G = (V,E) is a function
from the vertex set V or the edge set E or both to the set
of integers subject to certain restrictions. If the domain is
the vertex-set (edge-set) the labeling is called vertex-labeling
(edge labeling). Graph labeling has a variety of applications
oriented areas like coding theory, x-ray crystallography, radar,
astronomy, circuit design, communication network addressing,
etc. Despite a tremendous amount of research done, there are
still a lot of open problems in this area and many researchers
working on various aspects of graph labeling. The several
graphs labeling problems has been widely studied for many
particular classes of graphs. The purpose of this paper is to
introduce to new variations of labeling, called k-distant vertex

total labeling and k-distant edge total labeling on graphs. Now,
the notion of k-distant vertex total labeling and k-distant edge
total labeling are defined more precisely as follows.

Given an undirected connected graph G(V,E) with vertex
set V and edge set E. For x,y ∈V , let (x,y) ∈ E, i.e., the ver-
tices x and y are adjacent. A labeling f : V ∪E→{1,2, ...,r}
is called k-distant vertex total labeling if |w(x)−w(y)| ≥ k for
(x,y) ∈ E where w(x) = f (x)+ ∑

(x,y)∈E
f (x,y), is the weight

of the vertex x. The minimum r for which a graph G has
k-distant vertex total labeling is called the total k-distant chro-
matic number of G and is denoted by γkd(G).

A labeling f : V ∪ E → {1,2, ...,r} is called k-distant
edge total labeling, if for any two adjacent edges e1,e2 ∈ E,
|w(e1)−w(e2)| ≥ k where w(e) = f (e) + f (x) + f (y) and
x,y ∈V are two end vertices of the edge e ∈ E. The minimum
r for which a graph G has k-distant edge total labeling is called
the total k-distant edge chromatic number of G and is denoted
by γ ′kd(G).

From the above definitions, it follows that for the k-distant
vertex (edge) total labeling of a graph, the weights of two
adjacent vertices (edges) must differ by at least k. It is easily
observed that the parameters γkd(G) and γ ′kd(G) exist for every
connected graph having at least two vertices and two edges
respectively.

Baca et. al. introduced edge irregular total k-labeling in
[2]. A labeling f : V (G)∪E(G)→{1,2, ...,k} is said to be a
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edge irregular total k -labeling if for every two different edges
e1 and e2, w(e1) 6= w(e2) , where w(e) = f (e)+ f (u)+ f (v)
and u,v are two end vertices of the edge e. The minimum k
for which G has an edge irregular total k-labeling is defined
as the total edge irregularity strength of G and is denoted
by tes(G). Again, a labeling f : V (G)∪E(G)→{1,2, ...,k}
is said to be a vertex irregular total k -labeling if for every
two different vertices u and v, w(u) 6= w(v) , where w(u) =
f (u) + ∑

(u,v)∈E
f (u,v) . The minimum k for which G has a

vertex irregular total k-labeling is defined as the total vertex
irregularity strength of G and is denoted by tvs(G).

From the definition of vertex (edge) irregular total labeling,
it follows that w(x) 6= w(y) for all x,y ∈ V (w(e1) 6= w(e2)
for all e1,e2 ∈ E). Therefore, every vertex (edge) irregular
total labeling is a 1-distant vertex (edge) total labeling but
the converse may not be true. Clearly, tvs(G)≥ γ1d(G) and
tes(G)≥ γ ′1d(G).

In [1], Arumugam et. al. extended irregular total label-
ing and introduced a new labeling scheme for graph where
adjacent vertices (edges) get different weights. Such a ver-
tex (edge) labeling is called chromatic vertex (edge) labeling.
So, k-distant vertex total labeling and k-distant edge total la-
beling are natural extension of the chromatic vertex labeling
and chromatic edge labeling respectively. Here, the weights
of adjacent edges are not only distinct but also the absolute
difference of weights of two adjacent edges must be at least k.

The k-distant total labeling might be used to set up various
service center, so that the minimum number of service center
results most extreme advantages. Let each vertex represents a
city an edge is the road between two cities. We want to set up
minimum number of service center in cities and in between
two cities such that there are back up of at least k service
center which can serve during any disaster. This issue can be
demonstrated as k-distant total labeling problem of graphs.

1.1 Review
The study of graphs labeling was initiated by Sadlacek in 1964
[7]. This study was continued by Stewart [9] and then Rosa in
1967 and by Kotzig and Rosa [4] in 1970. In the intervening
years, many new directions and new results of graph labeling
have been developed. Most graph labeling methods find their
origin that was introduced by Rosa [6]. A labeling of a graph
G is a mapping that carries a set of graph elements into a set
of integers, called labels [10]. The labeling is called a vertex
labeling or edge labeling or total labeling, if the domain of
the mapping is a vertex set or an edge set or a union of vertex
and edge sets respectively. A lots of variation of labeling on
graphs are available in literature [3]. In the recent book ”A
Dynamic Survey of Graph labeling” by J. A. Gallian lists 2643
papers on over 200 variations of graph labeling. Irregular total
labeling is one among the kinds of labeling that appeared
in the literature which is defined by Baca et.al. [2]. For an
extended and up-to-date survey of graph labeling one can see
[3].

In this paper, the study of two new variations of labeling,

that is, k-distant vertex total labeling and k-distant edge total
labeling are initiated. Also, two new graph parameters γkd and
γ ′kd are introduced. The value of γkd and γ ′kd for some classes
of graphs are determined and bounds for these parameter of
general graph are presented.

The paper is organized as follows. In Section 2, some
results on total k-distant vertex chromatic number ( γkd ) are
presented. Section 3 presents some results on total k-distant
vertex chromatic number ( γ ′kd). An upper bounds of γkd and a
lower bound of γ ′kd for general graph are determined in Section
4. Finally, Section 5 contains some concluding remarks.

2. Some Results on γkd

This section presents the exact values of γkd for paths,
cycles, complete graphs, star graphs, bi-star and friendship
graphs.

Lemma 2.1. For a path Pn, γkd(Pn) = k (n > 2).

Proof: Let Pn be a path with n vertices v1,v2, . . . ,vn. Then
the vertex set of Pn is V = {vi : 1 ≤ i ≤ n} and edge set is
E = {vivi+1 : 1≤ i≤ n−1}.

Let us define a function f : V ∪E→{1, . . . ,k} as follows:
f (v1) = 1, f (v1v2) = 1, f (v2) = 1, f (v2v3) = k, f (v3) = k,
f (v3v4) = 2, f (v4) = 1 and so on.

Then |w(vi)−w(v j)| ≥ k for all 1≤ i, j ≤ n, i 6= j. There-
fore f is a k-distant vertex total labeling of Pn.

Observe that k is the least positive integer such that f is a
k-distant vertex total labeling and consequently γkd(Pn) = k.
�

It is easy to see that for P2, γkd(P2) = k+1.
A cycle graph Cn, n ≥ 3 of n vertices is a graph on n

vertices containing a single cycle through all the vertices.

Lemma 2.2. For a cycle Cn with n vertices, γkd(Cn) = k+1.

Proof: Let Cn be a cycle of n vertices v1, v2, . . ., vn.
If n be even, then define a mapping f : V ∪E→{1, . . . ,k+

1} as f (vnv1) = 1, f (v1) = 1, f (v1v2) = 1, f (v2) = k + 1,
f (v2v3) = 1, . . ., f (vn−1vn) = 1, f (vn) = k+ 1. Thus label
the vertices of Cn with the integers 1 and k+1 alternately and
all the edges with the label 1. Then f satisfies the conditions
of k-distant vertex total labeling and k+1 is the least positive
integer. Therefore γkd(Cn) = k+1.

If n be odd , then define a mapping φ : V ∪E→{1, . . . ,k+
1} as φ(vnv1) = 1, φ(v1) = 1, φ(v1v2) = 1, φ(v2) = k + 1,
φ(v2v3) = 1, . . ., φ(vn−2) = 1, φ(vn−2vn−1) = 1, φ(vn−1) = 1,
φ(vn−1vn) = k+ 1, φ(vn) = k+ 1. Thus, label the vertices
of Cn with the integers 1 and k+ 1 alternately but both the
vertices vn−2 and vn−1 with 1 and all the edges with the label
1 but the last edge with k+1. Then φ satisfies the conditions
of k-distant vertex total labeling and k+1 is the least positive
integer. Therefore γkd(Cn) = k+1.

A complete graph is a simple graph in which every pair
of vertices is connected by an edge. A complete graph of n
vertices is denoted by Kn.
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Lemma 2.3. For a complete graph Kn with n vertices, γkd(Kn)=
k+1

Proof: Let Kn be a complete graph of n vertices with vertex
set V = {v1, ....,vn}.

Then the edge set of the Kn is E = {viv j : 1≤ i, j ≤ n, i 6=
j}.

Let us define f :V ∪E→{1,k+1} as f (v1)= 1, f (v1vi)=
1,1 < i≤ n.

f (v2) = k+1, f (v2vi) = 1,2 < i≤ n
f (v3) = k+1, f (v3vi) = 1,3 < i≤ n−1, f (v3vn) = k+1
f (v4) = k+1, f (v4vi) = 1,4 < i≤ n−2, f (v4vn−1) = k+

1, f (v4vn) = k+1
. . . , . . . , . . .
f (vn−1) = k+1, f (vn−1vn) = k+1
f (vn) = k+1
Therefore γkd(Kn) = k+1. �
A star K1,n is the complete bipartite graph, a tree with one

internal vertex and n pendant vertices.

Lemma 2.4. For a star graph K1,n with n vertices, γkd(K1,n)={
1, k < n
k−n+2, k ≥ n .

Proof: Let K1,n be a star graph of n+1 vertices with vertex
set V = {v0,v1, ....,vn} where v0 is the internal vertex and
all other vertices are pendant vertex. The edge set of K1,n is
E = {v0vi : 1≤ i≤ n}.

Two cases may arise.
Case 1: k ≤ n−1

Let us define a mapping f from the domain V ∪ E as
f (v0) = 1, f (v0vi) = 1 and f (vi) = 1 i = 1,2, . . . ,n. Then
w(v0) = n+ 1 and w(vi) = 2,1 ≤ i ≤ n. Therefore |w(v0)−
w(vi)| = n− 1 ≥ k for all 1 ≤ i ≤ n. Hence f is a k-distant
vertex total labeling of K1,n and γkd(K1,n) = 1.
Case 2: k ≥ n−1

In this case, let us define a mapping φ from the domain
V ∪E as f (v0) = k− n+ 2, f (v0vi) = 1 and f (vi) = 1 i =
1,2, . . . ,n. Then w(v0) = k− n+ 2+ n = k+ 2 and w(vi) =
2,1 ≤ i ≤ n. Therefore |w(v0)−w(vi)| = k for all 1 ≤ i ≤ n.
Hence φ is a k-distant vertex total labeling of K1,n. Clearly,
k−n+2 is the least positive integer such that φ is a k-distant
vertex total labeling of K1,n and therefore γkd(K1,n)= k−n+2.
�

A graph obtained by joining two internal vertices of two
copies of star K1,n is called a bi-star and is denoted by Bn,n.
So a bi-star Bn,n has 2n+2 vertices and 2n+1 edges.

Lemma 2.5. For a bistar Bn,n, γkd(Bn,n)=

{
2, k ≤ n−1
d 2k+2

n+1 e, k > n−1 .

Proof: Let V = {u,v,ui,vi : 1≤ i≤ n} and E = {uv,uui,vvi}
are the vertex set and edge set of Bn,n respectively, where u
and v are two internal vertices of two stars. Case 1: k≤ n−1
We assign the label 1 to each of the vertices ui,1 ≤ i ≤ n,
edges uui,1 ≤ i ≤ n and uv. Then w(ui) = 2 and w(u) =
n+ 1. Again, we assign the label 1 to each of the vertices
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Figure 1. Star graph K1,5

vi,1≤ i≤ n, the label 2 to each of the edges vvi,1≤ i≤ n and
the vertex v. Then w(vi) = 3 and w(v) = 2n+ 1. Therefore
|w(x)−w(y)| ≥ k for all xy ∈ E and hence γkd(Bn,n) = 2.
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Figure 2. γ11d(B7,7) = 3

Case 2: k > n−1
Let us define a mapping f from the domain set V ∪E as

f (ui) = 1 for 1 ≤ i ≤ n, f (vi) = 1 for 1 ≤ i ≤ n, f (uui) = 1
for 1≤ i≤ n, f (vvi) = d 2k+2

n+1 e for 1≤ i≤ n, f (u) = k−n+1,
f (uv) = 1 and f (v) = d 2k+2

n+1 e. Then w(ui) = 2, w(u) = k+2,
w(v) = 2k+2 and w(vi) = d 2k+2

n+1 e+1. Then |w(x)−w(y)| ≥
k for all xy ∈ E and hence γkd(Bn,n) = d 2k+2

n+1 e. �
A friendship graph Fn is copies of n triangle with a com-

mon vertex. The vertex set of Fn is V (Fn) = {v00,vi1,vi2 : i =
1,2, . . . ,n} and edge set is E(Fn) = {v00vi1,v00vi2,vi1vi2 : i =
1,2, . . . ,n}. So |V (Fn)|= 2n+1 and |E(Fn)|= 3n. The exact
value of k-distant chromatic number is obtained in the next
lemma.

Lemma 2.6. γkd(Fn) =

{
2k, k ≥ n
2n, k < n .

Proof: Let Fn be a friendship graph and v be the common
vertex of n 3-cycle graphs C3i, i = 1,2, . . . ,n. Let C3i has
vertex set {v,vi1,vi2}. Then V has vertex set V = {v,vi1,vi2 :
1≤ i≤ n} and edge set E = {vvi1,vvi2,vi1vi2}

Let us define a mapping f from the domain V ∪ E as
f (v) = 1, f (vvi1) = 1, f (vvi1) = 1, f (vi1) = k, f (vvi2) = 2k
and f (vi1vi2) = 2n for 1≤ i≤ n. Then f is a k-distant vertex

total labeling of Fn and therefore γkd(Fn) =

{
2k, k ≥ n
2n, k < n .

�
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Figure 3. Friendship graph Fn

3. Some Results on γ ′kd(G)

In this section the boundary values of γ ′kd presented for
paths, cycles and star graphs.

Lemma 3.1. For a path Pn of n(> 3) vertices, γ ′kd(Pn) =

d 3k
4 e+1.

Proof: Let Pn be a path with n vertices v1,v2, . . . ,vn. Then
the vertex set of Pn is V = {vi : 1 ≤ i ≤ n} and edge set is
E = {vivi+1 : 1≤ i≤ n−1}.

Let us define a function g : V ∪E→{1, . . . ,d 3k
4 e+1} as

follows: g(v1) = 1, g(v1v2) = 1, g(v2) = 1, g(v2v3) = d k
2e+

1, g(v3) = d k
2e+ 1, g(v3v4) = d 3k

4 e+ 1, g(v4) = d 3k
4 e+ 1,

g(v4v5) = d k
4e+1. Then repeat the mapping for the remaining

vertices and edges of Pn.
Then |w(viv j)−w(vivk)| ≥ k for all i, j and k. Therefore

f is a k-distant edge total labeling of Pn.
Also, d 3k

4 e+1 is the least positive integer such that |w(viv j)−
w(vivk)| ≥ k for all i, j and k. Therefore γ ′kd(Pn) = d 3k

4 e+1.
�

It should be noted that, γ ′kd(P3) = d k
2e+1.

Lemma 3.2. For a cycle Cn with n(≥ 3) vertices,

γ ′kd(Cn) =

{
2

n
2 −1
2

n
2

k+1, n is even

k+1, n is odd
.

Proof: Let Cn be a cycle of n vertices v1, v2, . . ., vn.
Two cases which may arise.

Case 1: n is even. First, we shall show that the theorem is
true for n = 4.

Let C4 be a cycle of four vertices v1,v2,v3,v4. Let us
define a mapping g such that g(v1) = 1,g(v1v2) = 1,g(v2) =
1,g(v2v3) = d k

2e+ 1, g(v3) = d k
2e+ 1, g(v3v4) = d 3k

4 e+ 1,
g(v4) = d 3k

4 e+1, g(v4v1) = d k
4e+1. Then g satisfy the con-

dition of k-distant total edge labeling and d 3k
4 e+1 is the least

positive integer. So, γ ′kd(C4) = d 3k
4 e+1 = 2

4
2−1

2
4
2

k+1. There-

fore the lemma is true for n = 4.
Let it be true for m, where m = 2k. Then 2k vertices

and 2k edges of C2k can be labeled by using not greater than
2

m
2 −1
2

m
2

k+1 integers.
When m = 2k+2, extra two vertices and three edges will

be generated. These two vertices are vm−1, vm and three edges
are vm−2vm−1, vm−1vm, vmv1. Then define g(vm−2vm−1) =

1,g(vm−1)=
1

2
m
2 −1 k, g(vm−1vm)=

2
m
2 −1
2

m
2

k+1, g(vm)=
2

m
2 −1
2

m
2

k+

1, g(vmv1) =
1

2
m
2

k. Other vertices and edges get the same la-
bel as in the case for m = 2k. Then g satisfy the condition

of k-distant total edge labeling and 2
m
2 −1
2

m
2

k + 1 is the least
positive integer.

Therefore, by principle of mathematical induction, the
lemma is true for all even positive integers.
Case 2: n is odd.

Let Cn has the vertex set {v1,v2, . . . ,vn} where n = 2m+
1. Let us define a function g from the set V ∪E to the set
of natural numbers such that w(v1v2) = 3, w(v2v3) = k+ 3,
w(v3v4) = 2k+3, w(v4v5) = k+3 and so on.

In this case the weight of the last edge i.e., vnv1 must be
2k+3. Since vertex 1 got label 1, the sum of the labels of the
vertex vn and the edge vnv1 must be 2k+2. This is achieved
by using the least positive integer k+ 1. Hence the lemma
follows. �

Lemma 3.3. For a star graph K1,n with n vertices, γ ′kd(K1,n)=

d (n−1)k
2 e+1.

Proof: Let K1,n be a star graph of n+1 vertices with vertex
set V = {v0,v1, ....,vn} where v0 is the internal vertex and
all other vertices are pendant vertex. The edge set of K1,n is
E = {v0vi : 1≤ i≤ n}.

A mapping g from the vertex set and edge set to the set of
natural numbers is defined as follows.

g(v0) = 1, g(v0v1) = 1, g(v1) = 1
g(v0v2) = 1+ d k

2e, g(v2) = 1+ d k
2e

g(v0v3) = 1+ d 2k
2 e, g(v3) = 1+ d 2k

2 e
· · · · · ·
g(v0vn) = 1+ d (n−1)k

2 e, g(vn) = 1+ d (n−1)k
2 e

Then |w(v0vi)−w(v0v j)| ≥ k and 1+ d (n−1)k
2 e is the

least positive integer such that this inequality holds.
Therefore γ ′kd(K1,n) = d (n−1)k

2 e+1. �

4. Bounds of γkd(G) and γ ′kd(G) for general
graphs

Theorem 4.1. For an arbitrary graph G with maximum de-
gree ∆,

γkd(G)≤ k+∆.

Proof: Let G be an arbitrary graph with maximum degree
∆ and v be a vertex of degree ∆. Then minimum weight of
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the vertex v is ∆. Observe that, if there exists any leaf vertex
adjacent to v then to satisfy k-distant vertex total labeling,
minimum label of that vertex will be k+∆. Again, if there
does not exist any leaf vertex adjacent to v then minimum
label of that vertex will be not greater than k+∆. Therefore,
γkd(G)≤ k+∆. �

Theorem 4.2. For an arbitrary graph G with n vertices,

γ
′
kd(G)≥ d k

2
e+1.

Proof: Observe that, the value of γ ′kd(G) is minimum, when
it is possible to label the vertices and edges of G in such a
way that weight of each edge is least as well as difference of
weight between two adjacent edges not less than k. Now, the
least possible weight of an edge is 3. In that case each of the
end vertices of the edge and edge itself get label 1. So the
minimum weight of any adjacent edge must be at least k+3.
Since, one end vertex of the edge already labeled by 1, the
sum of the labels of another end vertex and the edge must be
k+2.

It is easy to check that, d k
2e+1 is the least positive integer

so that sum of two numbers is k + 2 and hence γ ′kd(G) ≥
d k

2e+1. �
Note that, the value of γ ′kd(G) is maximum, if there exist

en edge between every pair of vertices of G.

Conjecture 4.3. For an arbitrary graph G with n vertices,

γ
′
kd(G)≤ d (n+2)k

2
e+1.

5. Conclusion
In this paper the study of a new labeling of graph, called

k-distant total labeling is initiated. Then two new graph pam-
perers k-distant chromatic number (γkd) and k-distant edge
chromatic number (γ ′kd) are introduced as the natural exten-
sions of the vertex irregularity strength and the vertex irregu-
larity strength of a graph respectively. Also, the values of γkd
and γ ′kd for some particular classes of graphs namely, paths,
cycles, complete graphs, stars, bistars and friendship graphs
are estimated. An upper bound of γkd and a lower bound of
γ ′kd for general graph is provided. Many real life problems can
be modeled using k-distant total labeling of graphs. Future
study can be done to find the value of γkd and γ ′kd for more
general graph classes like trees, wheel graphs etc.. �
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