

https://doi.org/10.26637/MJM0802/0041

Introduction to *Riesz lG*- *module*

K. Sowmya^{1*}, Sr. Magie Jose² and Ursala Paul³

Abstract

Action of an *l*-group on a vector lattice (Riesz space) is defined and the abstract structure of the space thus formed is termed as a *Riesz 1G- module*. Submodules namely, *Riesz 1G- submodule*, *convex Riesz 1G- submodule* are defined and properties are studied. A homomorphism called *RIG- module homomorphism* between two *Riesz 1G- module* is defined and properties are studied. An isomorphism namely, *RIG- module isomorphism* is also defined.

Keywords

Riesz 1G- module; *Riesz 1G*- submodule; *convex Riesz 1G*- submodule; *R1G*- module homomorphism; *R1G*- module isomorphism; Riesz space.

AMS Subject Classification 06F25, 20CXX, 06F20.

^{1,2} Department of Mathematics, St.Mary's College, Thrissur-680020, Kerala, India.

³ Department of Mathematics, St. Theresa's College, Ernakulam-682011, Kerala, India.

*Corresponding author: ¹ sowmya.k@smctsr.ac.in; ²srmargaretmary.cmc@gmail.com; ³ursalaj@gmail.com

Article History: Received 09 January 2020; Accepted 22 April 2020

©2020 MJM.

Contents

1	Introduction	561
2	Preliminaries	561
3	Main Results	562
4	Conclusion	564
	References	564

1. Introduction

Group action, defined as the action of a group on a set has many practical applications in the physical world [4]. The concept of group action is explained in [3, 4, 7]. Lattice ordered algebraic structures such as lattice ordered groups, lattice ordered rings, lattice ordered fields, lattice ordered vector spaces are studied in [1, 5, 6, 8, 10, 11]. Representation theory based on G - modules evoked much interest among researchers for, the group in action is studied by means of linear transformations on a vector space [2, 9]. An *l*-group action on a lattice ordered vector space (vector lattice) was introduced by Ursala [12]. A modified structure leads to the definition of a *Riesz lG* - module.

2. Preliminaries

In this section, some basic definitions and results are reviewed.

Through out this paper, e denotes the identity element in the group G with binary operation * and 0 denotes the identity element in the vector space V over the set of reals **R**.

Definition 2.1. [3] Let X be a set and G be a group. For $g \in G$ and $x \in X$, an *action* of G on X, denoted as g.x is such that

i) : e. x = x for all $x \in X$

ii) : $(g_1 * g_2)$. $x = g_1 \cdot (g_2 \cdot x)$ for all $x \in X$ and $g_1, g_2 \in G$.

Definition 2.2. [11] A *partial order* on a non empty set L is a binary relation on L that is reflexive, anti-symmetric, and transitive. A set in which a partial order is defined is termed as a *partially ordered set* or a *poset*.

Definition 2.3. [11] Let *L* be a poset and $x, y \in L$ are such that $x \leq y$, then an *interval* is defined by $[x,y] = \{z \in L : x \leq z \leq y\}$. A non-empty subset *C* of a poset *L* is said to be *convex* if $[a,b] \subseteq C$ for all $a, b \in C$ with $a \leq b$.

Definition 2.4. [11] A *Lattice* L is a poset in which the infimum $x \land y$ and supremum $x \lor y$ exist for any pair of elements x and y in L.

Definition 2.5. [11] A non empty subset M of a lattice L is said to be a *sublattice* of L if $x \wedge y$ and $x \vee y \in M$ for all $x, y \in M$.

Definition 2.6. [11] A function f between two lattices L and L' is a *lattice homomorphism* if for all $x, y \in L$, we have $f(x \land y) = f(x) \land f(y)$ and $f(x \lor y) = f(x) \lor f(y)$.

Definition 2.7. [1] Let G be a group and \leq be a partial order on it. Then G is a *lattice ordered group* or an *l-group* if for all x, y, $g_1, g_2 \in G$.

i) : (G, \leq) is a lattice.

ii) : $g_1 \leq g_2 \implies x * g_1 * y \leq x * g_2 * y$

Definition 2.8. [1] A subgroup of G which is also a sublattice of G is called an *l-subgroup* of G.

Definition 2.9. [1] Let *G* be an *l*- group. The *positive cone* of *G* is the set $G^+ = \{g \in G : g \ge e\}$ whose elements are termed as positive elements of *G* and the *negative cone* of *G* is the set $G^- = \{g \in G : g \le e\}$ which contains all negative elements of *G*.

Definition 2.10. [1] Let *G* be an *l*- group. Then for $g \in G$ the *positive part* of *g* is $g^+ = g \lor e \in G^+$, and the *negative part* is $g^- = g^{-1} \lor e \in G^+$. The *absolute value* of *g* is $|g| = g \lor g^{-1} = g^+ * g^-$ and $|g| \in G^+$.

Theorem 2.11. [1] Let *G* be an *l*-group and $P = G^+$ be the positive cone. Then for all $g \in G$, $g P g^{-1} = P$.

Definition 2.12. [5] A real vector space V is an *ordered vector space* if it satisfies the following conditions

i) : $x \leq y$, then $x + z \leq y + z$

ii) : $x \leq y$, then $\lambda x \leq \lambda y$ for all $x, y, z \in V$ and $\lambda \geq 0$.

Definition 2.13. [5] A vector lattice or a Riesz space is an ordered vector space which is also a lattice.

Example 2.14. [5] The Euclidean space \mathbb{R}^n is an example for a vector lattice (Riesz space) under the *product order* given by, $x \le y$ if $x_i \le y_i$ for all i = 1, 2, ..., n. The supremum and infimum of two elements x and y is defined as $x \lor y = x_i \lor y_i$ and $x \land y = x_i \land y_i$ for all i = 1, 2, ..., n.

Definition 2.15. [5] A vector sublattice (*Riesz subspace*) of a vector lattice (*Riesz space*) is a vector subspace which is also a sublattice.

3. Main Results

Definition 3.1. Let *G* be an *l*-group. A vector lattice (Riesz space) *V* is called a *Riesz IG-module* if the group action *G* on *V* denoted by $g \circ x \in V$ for all $g \in G$ and $x \in V$ and has the following properties. For all $g, g_1, g_2 \in G, x, y \in V, r, s \in \mathbf{R}$,

1. $e \circ x = x$

2.
$$(g_1 * g_2) \circ x = g_1 \circ (g_2 \circ x)$$

3. $g \circ (rx + sy) = r(g \circ x) + s(g \circ y)$

4. $|g| \circ (x \land y) = (|g| \circ x) \land (|g| \circ y)$ $|g| \circ (x \lor y) = (|g| \circ x) \lor (|g| \circ y)$ $(g_1 \land g_2) \circ |x| = (g_1 \circ |x|) \land (g_2 \circ |x|)$ $(g_1 \lor g_2) \circ |x| = (g_1 \circ |x|) \lor (g_2 \circ |x|)$

Remark 3.2. Each $g \in G$ give rise to an endomorphism ρ_g on V where $\rho_g(x) = g \circ x$ and the map $\rho : G \rightarrow End_{\mathbf{R}}(V)$ is a group homomorphism. Note that ρ_g is a lattice homomorphism when $g \in G^+$.

Remark 3.3. $g \circ 0 = 0$.

Example 3.4. Consider the action of \mathbf{R}^+ , the set of positive real numbers on the Euclidean plane \mathbf{R}^2 , defined by $r \circ (x,y) = (rx,ry)$ for $r \in \mathbf{R}$ and $(x,y) \in \mathbf{R}^2$. Then \mathbf{R}^2 is a *Riesz lG-module*. Here, the group action is the scalar multiplication in \mathbf{R}^2 .

Definition 3.5. Let V be a Riesz lG-module. A vector sublattice (Riesz subspace) W of V is a Riesz lG-submodule or RlG-submodule of V if W itself is a Riesz lG-module under the action of G same as that on V.

Theorem 3.6. A vector sublattice W of a Riesz IG-module V is a Riesz IG-submodule of V if and only if W is closed under the group action defined in V. That is, $g \circ x \in W$ for every $g \in G$ and $x \in W$.

Proof. The proof is straight forward. \Box

Example 3.7. The line y = x is a vector sublattice of \mathbf{R}^2 . It is a *Riesz lG- submodule* of \mathbf{R}^2 under the group action defined in Example 3.4.

Example 3.8. Every vector sublattice is not a Riesz lG-submodule. If the group action is defined as $r \circ (x, y) = (rx, y)$, then \mathbf{R}^2 is a Riesz lG-module. But the line y = x is not a Riesz lG-submodule of \mathbf{R}^2 . Note that under this group action the X-axis, that is, the line y = 0 is a Riesz lG-submodule of \mathbf{R}^2 .

Theorem 3.9. Let V be a Riesz lG-module. For $x \in V^+$, let $G_x = \{g \in G : g \circ x = x\}$ is an *l*-subgroup of G.

Proof. The set G_x is nonempty as $e \in G_x$. Fix $x \in V^+$. Let $g, h \in G_x$.

Now, $(g*h) \circ x = g \circ (h \circ x) = g \circ x = x$. Thus, $g*h \in G_x$. $g^{-1} \circ x = (g^{-1} \circ (g \circ x)) = (g^{-1}*g) \circ x = e \circ x = x$, shows that $g^{-1} \in G_x$.

Also, $(g \wedge h) \circ x = (g \wedge h) \circ |x| = (g \circ |x|) \wedge (h \circ |x|) = (g \circ x) \wedge (h \circ x) = x \wedge x = x$. Thus $g \wedge h \in G_x$.

Similarly, it can be proved that $g \lor h \in G_x$. Thus, G_x is an *l*-subgroup of G.

Theorem 3.10. Let V be a Riesz IG-module. Then $V_{G^+} = \{ x \in V : \hat{g} \circ x = x \text{ for all } \hat{g} \in G^+ \}$ is a Riesz IG-submodule of V. The set V_{G^+} is called the set of all fixed points of V with respect to G^+ .

Proof. The set V_{G^+} is nonempty, since $0 \in V_{G^+}$. Let $x, y \in V_{G^+}, g \in G$ and $\hat{g}, \hat{h} \in G^+$. Now, $\hat{g} \circ (x+y) = \hat{g} \circ x + \hat{g} \circ y = x+y$. Therefore $x+y \in V_{G^+}$. $\hat{g} \circ (rx) = r(\hat{g} \circ x) = rx$ shows that $rx \in V_{G^+}$.

Now, since $\hat{g} \in G^+$, $|\hat{g}| = \hat{g}$. Condition(4) in the definition of a *Riesz* lG-module shows that $\hat{g} \circ (x \land y) = (\hat{g} \circ x) \land$ $(\hat{g} \circ y) = x \land y$. Thus $x \land y \in V_{G^+}$. Similarly, $x \lor y \in V_{G^+}$. Finally, $g \circ x = g \circ (\hat{g} \circ x) = (g * \hat{g}) \circ x = (\hat{h} * g) \circ x =$ $\hat{h} \circ (g \circ x)$, since $g G^+ = G^+ g$ for all $g \in G$. Hence, $g \circ x \in V_{G^+}$.

Theorem 3.11. Let V be a Riesz lG-module. Then any lattice $W = \{\hat{g} \circ x : \hat{g} \in G^+, x \in V\}$ which is closed under vector addition is a Riesz lG-submodule of V.

Proof. Let $g \in G$, \hat{g} , $\hat{h} \in G^+$, $r \in \mathbf{R}$, $x, y \in V$. We have, $r(\hat{g} \circ x) = \hat{g} \circ (rx) \in W$. Also, $g \circ (\hat{g} \circ x) = (g * \hat{g}) \circ x = (\hat{h} * g) \circ x = \hat{h} \circ (g \circ x) \in W$. \Box

Remark 3.12. The Riesz lG- submodule in the above theorem is called the Riesz lG- submodule of V generated by G^+ .

Theorem 3.13. For $x \in V^+$, define $O(x) = \{g \circ x : g \in G\}$. Then O(x) is called the lG- **orbit** of x and is a sublattice of V.

Proof. Note that |x| = x for every $x \in V^+$.

By condition (4) in the definition of a *Riesz lG*-module, $(g \circ x) \land (h \circ x) = (g \land h) \circ x \in O(x).$

Similar reasoning shows that $(g \circ x) \lor (h \circ x) \in O(x)$. This proves the theorem. \Box

Theorem 3.14. Intersection of any number of Riesz *lG*- submodules is again a Riesz *lG*- submodule.

Proof. Simple calculations gives the result. \Box

Definition 3.15. A non zero Riesz lG-module V is called an *irreducible Riesz* lG-module or *irreducible RIG*-module if its only Riesz lG-submodules are 0 and V.

Example 3.16. The real line **R** is a *Riesz* lG-module under the action of **R**⁺, where the action is the usual multiplication in **R**. Then **R** is an *irreducible Riesz* lG-module.

Definition 3.17. Let *V* and *W* be two *Riesz* lG-modules where the group *G* in action is the same for both *V* and *W*. A linear map $\phi : V \to W$ is a *Riesz* lG-module homomorphism or an *RlG*-module homomorphism if it a lattice homomorphism satisfying $\phi(g \circ x) = g \circ \phi(x)$ for all $g \in G, x \in V$.

Theorem 3.18. The kernel of a RlG- module homomorphism is a Riesz lG- submodule.

Proof. Let $\phi : V \to W$ is a RlG- module homomorphism. Then $Ker \phi = \{x \in V : \phi(x) = 0_W\}$, where 0_W is the zero element in *W*. Clearly, $Ker \phi$ is a linear subspace of *V*. For, $x, y \in V$, $\phi(x \land y) = \phi(x) \land \phi(y) = 0_W$, shows that

 $x \land y \in Ker\phi$. Similar is the case with $x \lor y$. Also, $\phi(g \circ x) = g \circ \phi(x) = g \circ 0_W = 0_W$. Hence $g \circ x \in Ker\phi$.

Theorem 3.19. The Image of a RIG- module homomorphism is a Riesz IG- submodule.

Proof. Let $\phi : V \to W$ is a *RlG*- module homomorphism. The image of ϕ , $Im \phi = \{\phi(x) \in W : x \in V\}$ is a linear subspace of *W*. Let $x, y \in V$ and $g \in G$.

Then $\phi(x) \land \phi(y) = \phi(x \land y) \in Im \phi$. Similarly, $\phi(x) \lor \phi(y) \in Im \phi$. Finally, $g \circ \phi(x) = \phi(g \circ x) \in Im \phi$. \Box

Definition 3.20. An RlG- module homomorphism which is both one-to-one and onto is called an RlG- module isomorphism.

Theorem 3.21. Let V and W be two irreducible Riesz lG-modules and let $\phi: V \rightarrow W$ is a RlGmodule homomorphism. Then either $\phi = 0$ or ϕ is a RlG-module isomorphism.

Proof. Theorem 3.18 and Theorem 3.19 together with the fact that V and W are *irreducible Riesz lG-modules* proves the theorem.

Definition 3.22. A Riesz lG-submodule W of a Riesz lG-module V is a convex Riesz lG-submodule or a convex RlG-submodule if it is a convex subset (with respect to the order) of V.

Example 3.23. We have seen in example 3.7, that the line y = x is a *Riesz lG- submodule* of \mathbb{R}^2 . But it is not a convex subset of \mathbb{R}^2 under the product order in \mathbb{R}^2 , for $(1,2) \in \mathbb{R}^2$, satisfies $(1,1) \leq (1,2) \leq (2,2)$ but does not lie on the line y = x.

But the line y = 0 which is a *Riesz* lG-submodule of \mathbf{R}^2 is a *convex Riesz* lG-submodule with respect to the product order.

Remark 3.24. Every lattice homomorphism is an isotone or order preserving, that is, $x \le y \implies \phi(x) \le \phi(y)$ [11]. Hence it is not difficult to prove that the inverse image of a **convex** Riesz lG- submodule under a RlG- module homomorphism is a **convex** Riesz lG- submodule.

But the converse is not true, for, $\phi(x) \leq \phi(y)$ need not implies $x \leq y$. An *RlG- module homomorphism* which maps a **convex** *Riesz lG- submodule* to a **convex** *Riesz lG- submodule* is termed as a **convex** *RlG- module homomorphism*. It can be noted that every *RlG-module isomorphism* is a **convex** *RlG- module homomorphism*.

4. Conclusion

In this paper, Riesz lG-module, Riesz lG-submodule, convex Riesz lG-submodule, RlG-module homomorphism, RlG-module isomorphism etc. are defined and their basic properties are introduced. Further properties of RlG-module homomorphisms and RlG-module isomorphisms are yet to be explored. The introduction of a Riesz lG-module is a pathway to further research in this area, especially in representation theory.

References

- ^[1] T.S. Blyth, *Lattices and Ordered Algebraic Structures*, Springer-Verlag, 2005.
- [2] C. W. Curtis and I. Reiner, *Representation Theory of Finite Groups and Associative Algebras*, Interscience publishers, 1962.
- ^[3] J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, 1999.
- [4] J. A. Gallian, *Contemporary Abstract Algebra*, Narosa Publishing House, 1999.
- [5] R. F. Gloden, Lectures on Riesz given by Prof. A. C. Zaanen, EU publications, 1966.
- [6] W. A. J. Luxemburg and A. C Zaanen, *Riesz Spaces Vol-ume 1*, North-Holland Publishing Company, Amsterdam, 1971.
- [7] L. Michel and B. Zhilinskii, Introduction to Lattice Geometry through Group action, EDP Sciences, 2015.
- [8] J. S. Oliveira and G. C. Rota, Selected Papers on Algebra and Topology by Garrett Birkhoff, Springer Science & Business Media, 1987.
- [9] B. Steinberg, *Representation Theory of Finite Groups*, Springer, 2012.
- ^[10] S.A. Steinberg, Examples of Lattice-Ordered Rings, J. *Algebra*, 72(1981), 223-236.
- ^[11] S.A. Steinberg, *Lattice-ordered Rings and Modules*, Springer, 2010.
- P. Ursala and P. Isaac, An Introduction to Lattice Ordered G-Modules, J. Glob. Res. Math. Arch., 4(11)(2017), 76-82.

