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Action of an I-group on a vector lattice (Riesz space) is defined and the abstract structure of the space
is termed as a Riesz IG— module. Submodules namely,
Riesz 1G— submodule are defined and properties are studied. A homomorphism called RIG— module
homomorphism between two Riesz IG— modules is defined and properties are studied. An isomorphism
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1. Introduction

Group action, defined as the action of a group on a set
has many practical applications in the physical world [4]. The
concept of group action is explained in [3, 4, 7]. Lattice
ordered algebraic structures such as lattice ordered groups,
lattice ordered rings, lattice ordered fields, lattice ordered
vector spaces are studiedin [1, 5, 6, 8, 10, 11]. Representation
theory based on G - modules evoked much interest among
researchers for, the group in action is studied by means of
linear transformations on a vector space [2, 9]. An [-group
action on a lattice ordered vector space (vector lattice) was
introduced by Ursala [12] . A modified structure leads to the
definition of a Riesz [G— module.

2. Preliminaries

In this section, some basic definitions and results are
reviewed.

Through out this paper, e denotes the identity element in
the group G with binary operation * and 0 denotes the
identity element in the vector space V over the set of reals
R.

Definition 2.1. [3] Let X beaset and G be a group.
For g€ G and x€X,an action of G on X, denoted
as g.x issuch that

i) : eex=x forall xeX

i) : (g1%g2).x=g1.(g2.x) forall xeX and g, g2 €G.

Definition 2.2. [11] A partial order on a non empty set L
is a binary relation on L thatis reflexive, anti-symmetric,
and transitive. A set in which a partial order is defined is
termed as a partially ordered set or a poset.

Definition 2.3. [11] Let L be aposet and x, y €L
are such that x <y, then an interval is defined by
[x,y)={z € L:x < z <y}. A non-empty subset C of a
poset L is said to be convex if [a,b] C C forall a, b €C
with a < b.

Definition 2.4. [11] A Lattice L isa poset in which the
infimum xAy and supremum xVy exist for any pair of
elements x and y in L.

Definition 2.5. [11] A non empty subset M of a lattice
L issaidtobe a sublattice of L if xAy and xVy e M
forall x,y e M.



Definition 2.6. [11] A function f between two lattices L
!
and L isa lattice homomorphism if forall x, y € L, we

have f(xAy) = f(x) Af(y) and f(xVy) = f(x)V f(y).

Definition 2.7. [1] Let G be a groupand < be a partial
order onit. Then G isa lattice ordered group or an [-group
if for all x,y, g1, g2 €G.

i) : (G, <) isalattice.
i) 1 g1 <gp = xxg1xy <xx g%y

Definition 2.8. [1] A subgroup of G which is alsoa sub-
lattice of G iscalled an [-subgroup of G.

Definition 2.9. [1] Let G be an [- group. The positive
coneof Gisthe set GT={g € G:g > e} whose elements
are termed as positive elements of G and the negative cone
of G isthe set G~ ={g € G:g <e} which contains all
negative elements of G.

Definition 2.10. [1] Let G be an /- group. Then for g € G
the positive part of g is gt =g V e € G, and the
negative partis g~ =g ' V e € G*. The absolute value
of gis|g|=gVvVeg'l=g"+g and |g| €G".

Theorem 2.11. [1] Let G be an I-group and P =G™ be
the positive cone. Then for all g € G, g Pg~' =P.

Definition 2.12. [5] A real vector space V is an ordered
vector space if it satisfies the following conditions

i) : x <y then x +z< y+z
ii) :x < y,then Ax < Ay forall x,y,z €V and A >0.

Definition 2.13. [S] A vector lattice or a Riesz space is an
ordered vector space which is also a lattice.

Example 2.14. [5] The Euclidean space R" isan example
for a vector lattice (Riesz space) under the product order
given by, x <y if x; <y; for all i=1,2,...,n. The
supremum and infimum of two elements x and y is defined
as xVy=x;Vy;andxAy=x;Ay; forall i=1,2,...,n.

Definition 2.15. [5] A vector sublattice (Riesz subspace)
of a vector lattice (Riesz space) isa vector subspace which
is also a sublattice.

3. Main Results

Definition 3.1. Let G be an [-group. A vector lattice
(Riesz space) V is called a Riesz IG— module if the
group action G on V denoted by gox €V for all
g €G and x €V and has the following properties. For all
g 81,8 €G, x,y €V, r,s €R,

1. eox=x
2. (g1xg2)ox=g10(g20x)

3. go(rx+sy)=r(gox)+s(goy)

562

Introduction to Riesz |G— module — 562/564

4. |glo@xAy)=(lglox)A(lg] oy)
lglo(xVy)=(lglox)V(lgloy)
(g1ng2)o|x|=(g1o|x])A(g20]x])
(g1 Vg2)olx|=(gio|x])V(g20|x])

Remark 3.2. Each g€ G give rise to an endomorphism
P on V. where py(x)=gox and the map p:G —
Endr(V) is a group homomorphism. Note that p, is a
lattice homomorphism when g€ G™.

Remark 3.3. g c0=0.

Example 3.4. Consider the action of R™, the set of positive
real numbers on the Euclidean plane R2, defined by ro
(x,y) = (rx,ry) for r€ R and (x,y) € R% Then R? is
a Riesz IG— module. Here, the group action is the scalar
multiplication in R2.

Definition 3.5. Let V be a Riesz IG— module. A vec-
tor sublattice (Riesz subspace) W of V is a
Riesz IG— submodule or RIG—submodule of V if W
itself is a  Riesz [G— module under the action of G same
as that on V.

Theorem 3.6. A vector sublattice W of a Riesz |G— module
V is a Riesz IG— submodule of V if and only if W
is closed under the group action defined in V. That is,
goxe W for every g € G and x €W.

Proof. The proof is straight forward. O

Example 3.7. The line y=x is a vector sublattice of
R2.1t is a Riesz |G— submodule of R? under the group
action defined in Example 3.4 .

Example 3.8. Every vector sublattice is not a
Riesz IG— submodule. If the group action is defined as
ro(x,y) = (rx,y), then R? isa Riesz IG— module.
But the line y=ux is not a Riesz I[G— submodule of
R2. Note that under this group action the X-axis, that is,
the line y=0 is a Riesz [G— submodule of R2.

Theorem 3.9. Let V be a Riesz |G— module. Forx € VT,
let Gy={g €G:gox=x} is an l-subgroup of G.

Proof. The set G, is nonempty as e € G, .Fix xe V™.
Let g,h € G,.

Now, (g*h)ox=go(hox)=gox=ux. Thus, gxh € Gy.
g lox= (g7'o(gox)) = (g7 ' xg)ox=ecox=x, shows
that g~! € G,.

Also, (gAh) o x=(gNh)o[x|=(go|x[) A (ho|x])=
(gox) A(hox)=x Ax=x.Thus gAh € G,.
Similarly, it can be proved that gV h € Gy. Thus, G, is an

l-subgroup of G. O
Theorem 3.10. Let V be a Riesz IG— module. Then
Vo+ ={x €V: gox=x forall §€G'} isa

Riesz 1G— submodule of V. The set Vg+ is called the set
of all fixed points of V with respectto GT.



Proof. The set V+ is nonempty, since 0 € Vg+.

Let x, yeVg, g €G and g, heGH.

Now, go(x+y)=gox+goy=x+y. Therefore x+y €
Vo

go(rx) =r(gox) =rx shows that rx € Vg+.

Now, since ¢ € G",|¢| = g. Condition(4) in the definition
of a Riesz IG— module shows that § o (x Ay) = (g ox)A
(8 oy)=x Ay. Thus x Ay € Vg+. Similarly, x Vy € Vg+.
Finally, g ox=g o(§ ox) = (g*g)ox= (hxg) ox =
ho(g ox),since gGt=G" g forall g € G. Hence,
gox €Vg+. O

Theorem 3.11. Let V be a Riesz |G— module. Then any
lattice W ={g ox:8 € GT, x €V} which is closed under
vector addition is a Riesz |G— submodule of V.

Proof. Let g €G, §,h €Gt, r e R, x,ye V.
We have, r(§ ox) =go (rx) € W. Also, go (g ox) =

(g#8) ox=(h +g) o x=h o(g 0 x) € W. O

Remark 3.12. The Riesz |G— submodule in the above the-
orem is called the Riesz |G— submodule of V generated
by GT.

Theorem 3.13. For x € V™, define O(x)={g ox:g € G}.
Then O(x) is called the 1G— orbit of x and isa sublattice
of V.

Proof. Note that | x | = x foreveryx € V™.

By condition (4) in the definition of a Riesz |G— module,
(g ox) A (hox)=(g A h) ox € O(x).

Similar reasoning shows that (g ox) V (h o x) € O(x). This
proves the theorem. O

Theorem 3.14.  Intersection  of any number of
Riesz 1G— submodules is again a Riesz |G— submodule.

Proof. Simple calculations gives the result. O

Definition 3.15. A non zero Riesz IG— module V is
called an irreducible Riesz |G— module or irreducible
RIG— module if its only Riesz [G— submodules are 0
and V.

Example 3.16. The real line R is a Riesz [G— module
under the action of R, where the action is the usual multi-

plicationin R. Then R is an irreducible Riesz |G— module.

Definition 3.17. Let V and W be two Riesz |G— modules
where the group G in action is the same for both V
and W. A linear map ¢ :V — Wis a Riesz |G— module
homomorphism or an RIG— module homomorphism if it
a lattice homomorphism satisfying ¢(g o x) =g o ¢(x)
forall g €G,x €V.

Theorem 3.18. The kernel of a RIG— module homomor-
phism is a Riesz |G— submodule.
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Proof. Let ¢ :V —W isa RIG— module homomorphism.
Then Ker ¢ = {x €V :¢(x) =0w}, where Oy is the zero
elementin W. Clearly, Ker ¢ is a linear subspace of V.
For, x, yeV, ¢(xA y)=0¢(x) A ¢(y) =Ow, shows that
x Ay € Ker¢. Similar is the case with xV y.

Also, ¢(g ox)=gop(x)= g o0y = Oy.Hence gox €
Ker ¢. 0

Theorem 3.19. The Image of a RIG— module homomor-
phism is a Riesz |G— submodule.

Proof. Let ¢ :V —W is a RIG— module homomorphism.
The image of ¢, Im ¢ ={¢(x) € W: x €V} isalinear
subspace of W. Let x, yeV and g €G.

Then ¢(x) A¢(y)=¢(x Ay) € Im ¢. Similarly, ¢(x) V
0(y) €Im ¢. Finally, g op(x)=0¢(g o x) €Im¢. O

Definition 3.20. An RIG— module homomorphism which
is both one-to-one and onto is called an RIG— module
isomorphism.

Theorem 3.21. Let V and W be two irreducible
Riesz 1G— modules and let ¢ :V — W isa RIG—
module homomorphism. Then either ¢ =0 or ¢ isa
RIG— module isomorphism.

Proof. Theorem 3.18 and Theorem 3.19 together with
the fact that V and W are irreducible Riesz |G— modules
proves the theorem. O

Definition 3.22. A  Riesz [G— submodule W  of a
Riesz IG— module V is a convex Riesz IG— submodule
or a convex RIG—submodule if itis a convex subset (with
respect to the order) of V .

Example 3.23. We have seen in example 3.7, that the line
y=x is a Riesz IG— submodule of R?  But it is not
a convex subset of R2? under the product order in R2, for
(1,2) € R?, satisfies (1,1) < (1,2) <(2,2) but does not
lie on the line y = x.

But the line y=0 whichisa Riesz |G— submodule of
R? is a convex Riesz |G— submodule with respect to the
product order.

Remark 3.24. Every lattice homomorphism is an isotone
or order preserving, thatis,x <y = ¢(x) < ¢(y) [L1].
Hence it is not difficult to prove that the inverse image of
a convex Riesz |G— submodule undera RIG— module
homomorphism is a convex Riesz |G— submodule.

But the converse is not true, for, ¢(x) < ¢(y) need not
implies x < y.An RIG— module homomorphism which
maps a convex Riesz |G— submodule to a convex
Riesz 1G— submodule is termed asa convex RIG - module
homomorphism. It can be noted that every RIG—module
isomorphism 1is a convex RIG— module homomorphism.

N %,
= 7

(N
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4. Conclusion

In this paper, Riesz |G— module, Riesz |G— submodule,
convex Riesz |G— submodule, RIG— module homomor-
phism, RIG— module isomorphism etc. are defined and
their basic properties are introduced. Further properties of
RIG— module homomorphisms and RIG— module iso-
morphisms are yet to be explored. The introduction of a
Riesz |G— module is a pathway to further research in this
area, especially in representation theory.
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