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Abstract
Action of an l-group on a vector lattice (Riesz space) is defined and the abstract structure of the space
thus formed is termed as a Riesz lG− module. Submodules namely, Riesz lG− submodule, convex
Riesz lG− submodule are defined and properties are studied. A homomorphism called RlG− module
homomorphism between two Riesz lG− modules is defined and properties are studied. An isomorphism
namely, RlG− module isomorphism is also defined.
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1. Introduction
Group action, defined as the action of a group on a set

has many practical applications in the physical world [4]. The
concept of group action is explained in [3, 4, 7]. Lattice
ordered algebraic structures such as lattice ordered groups,
lattice ordered rings, lattice ordered fields, lattice ordered
vector spaces are studied in [1, 5, 6, 8, 10, 11]. Representation
theory based on G - modules evoked much interest among
researchers for, the group in action is studied by means of
linear transformations on a vector space [2, 9]. An l-group
action on a lattice ordered vector space (vector lattice) was
introduced by Ursala [12] . A modified structure leads to the
definition of a Riesz lG− module.

2. Preliminaries
In this section, some basic definitions and results are

reviewed.

Through out this paper, e denotes the identity element in
the group G with binary operation ∗ and 0 denotes the
identity element in the vector space V over the set of reals
R.

Definition 2.1. [3] Let X be a set and G be a group.
For g ∈ G and x ∈ X , an action of G on X , denoted
as g. x is such that

i) : e. x = x for all x ∈ X

ii) : (g1∗g2). x= g1.(g2. x) for all x∈X and g1, g2 ∈G.

Definition 2.2. [11] A partial order on a non empty set L
is a binary relation on L that is reflexive, anti-symmetric,
and transitive. A set in which a partial order is defined is
termed as a partially ordered set or a poset.

Definition 2.3. [11] Let L be a poset and x, y ∈ L
are such that x ≤ y, then an interval is defined by
[x,y] = {z ∈ L : x ≤ z ≤ y}. A non-empty subset C of a
poset L is said to be convex if [a,b] ⊆ C for all a, b ∈C
with a ≤ b.

Definition 2.4. [11] A Lattice L is a poset in which the
infimum x∧ y and supremum x∨ y exist for any pair of
elements x and y in L.

Definition 2.5. [11] A non empty subset M of a lattice
L is said to be a sublattice of L if x∧ y and x∨ y ∈M
for all x, y ∈M.
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Definition 2.6. [11] A function f between two lattices L
and L

′
is a lattice homomorphism if for all x, y ∈ L, we

have f (x∧ y) = f (x) ∧ f (y) and f (x∨ y) = f (x)∨ f (y).

Definition 2.7. [1] Let G be a group and ≤ be a partial
order on it. Then G is a lattice ordered group or an l-group
if for all x, y, g1, g2 ∈ G.

i) : (G, ≤) is a lattice.

ii) : g1 ≤ g2 =⇒ x∗ g1 ∗ y ≤ x∗ g2 ∗ y

Definition 2.8. [1] A subgroup of G which is also a sub-
lattice of G is called an l-subgroup of G.

Definition 2.9. [1] Let G be an l- group. The positive
cone of G is the set G+ = {g ∈G : g ≥ e} whose elements
are termed as positive elements of G and the negative cone
of G is the set G− = {g ∈G : g ≤ e} which contains all
negative elements of G.

Definition 2.10. [1] Let G be an l- group. Then for g ∈ G
the positive part of g is g+ = g ∨ e ∈ G+, and the
negative part is g− = g−1 ∨ e ∈ G+. The absolute value
of g is | g |= g∨g−1 = g+ ∗ g− and | g | ∈ G+.

Theorem 2.11. [1] Let G be an l-group and P = G+ be
the positive cone. Then for all g ∈ G, g Pg−1 = P.

Definition 2.12. [5] A real vector space V is an ordered
vector space if it satisfies the following conditions

i) : x ≤ y, then x + z≤ y+ z

ii) : x ≤ y, then λ x ≤ λ y for all x, y, z ∈V and λ ≥ 0.

Definition 2.13. [5] A vector lattice or a Riesz space is an
ordered vector space which is also a lattice.

Example 2.14. [5] The Euclidean space Rn is an example
for a vector lattice (Riesz space) under the product order
given by, x ≤ y if xi ≤ yi for all i = 1,2, . . . ,n. The
supremum and infimum of two elements x and y is defined
as x∨ y = xi∨ yi and x∧ y = xi∧ yi for all i = 1,2, . . . ,n.

Definition 2.15. [5] A vector sublattice (Riesz subspace)
of a vector lattice (Riesz space) is a vector subspace which
is also a sublattice.

3. Main Results
Definition 3.1. Let G be an l-group. A vector lattice
(Riesz space) V is called a Riesz lG− module if the
group action G on V denoted by g ◦ x ∈ V for all
g ∈ G and x ∈V and has the following properties. For all
g, g1, g2 ∈ G, x, y ∈V, r, s ∈ R,

1. e◦ x = x

2. (g1 ∗g2)◦ x = g1 ◦ (g2 ◦ x)

3. g◦ (rx+ sy) = r(g◦ x)+ s(g◦ y)

4. | g | ◦ (x∧ y) = (| g | ◦ x)∧ (| g | ◦ y)
| g | ◦ (x∨ y) = (| g | ◦ x)∨ (| g | ◦ y)
(g1∧g2)◦ | x |= (g1 ◦ | x |)∧ (g2 ◦ | x |)
(g1 ∨g2)◦ | x |= (g1 ◦ | x |)∨ (g2 ◦ | x |)

Remark 3.2. Each g ∈ G give rise to an endomorphism
ρg on V where ρg(x) = g ◦ x and the map ρ : G→
End R(V ) is a group homomorphism. Note that ρg is a
lattice homomorphism when g ∈ G+.

Remark 3.3. g ◦0 = 0 .

Example 3.4. Consider the action of R+, the set of positive
real numbers on the Euclidean plane R2, defined by r ◦
(x,y) = (rx,ry) for r ∈ R and (x,y) ∈ R2. Then R2 is
a Riesz lG− module. Here, the group action is the scalar
multiplication in R2.

Definition 3.5. Let V be a Riesz lG− module. A vec-
tor sublattice (Riesz subspace) W of V is a
Riesz lG− submodule or RlG−submodule of V if W
itself is a Riesz lG− module under the action of G same
as that on V .

Theorem 3.6. A vector sublattice W of a Riesz lG− module
V is a Riesz lG− submodule of V if and only if W
is closed under the group action defined in V . That is,
g ◦ x ∈ W for every g ∈ G and x ∈W.

Proof. The proof is straight forward.

Example 3.7. The line y = x is a vector sublattice of
R2. It is a Riesz lG− submodule of R2 under the group
action defined in Example 3.4 .

Example 3.8. Every vector sublattice is not a
Riesz lG− submodule. If the group action is defined as
r ◦ (x,y) = (rx,y), then R2 is a Riesz lG− module.
But the line y = x is not a Riesz lG− submodule of
R2. Note that under this group action the X-axis, that is,
the line y = 0 is a Riesz lG− submodule of R2.

Theorem 3.9. Let V be a Riesz lG− module. For x ∈V+,
let Gx = {g ∈ G : g ◦ x = x} is an l-subgroup of G.

Proof. The set Gx is nonempty as e ∈ Gx . Fix x ∈ V+.
Let g,h ∈ Gx.
Now, (g∗h)◦ x = g◦ (h◦ x) = g◦ x = x. Thus, g∗h ∈ Gx.
g−1 ◦ x = (g−1 ◦ (g ◦ x)) = (g−1 ∗ g) ◦ x = e ◦ x = x, shows
that g−1 ∈ Gx.
Also, (g∧h) ◦ x = (g∧h) ◦ | x |= (g ◦ | x |) ∧ (h ◦ | x |) =
(g ◦ x) ∧ (h ◦ x) = x ∧ x = x. Thus g∧h ∈ Gx.
Similarly, it can be proved that g∨h ∈ Gx. Thus, Gx is an
l-subgroup of G.

Theorem 3.10. Let V be a Riesz lG− module. Then
VG+ = { x ∈ V : ĝ ◦ x = x for all ĝ ∈ G+} is a
Riesz lG− submodule of V . The set VG+ is called the set
of all fixed points of V with respect to G+.
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Proof. The set VG+ is nonempty, since 0 ∈VG+ .
Let x, y ∈VG+ , g ∈ G and ĝ, ĥ ∈ G+.
Now, ĝ◦ (x+ y) = ĝ◦ x+ ĝ◦ y = x+ y. Therefore x+ y ∈
VG+ .
ĝ◦ (rx) = r(ĝ◦ x) = rx shows that rx ∈VG+ .
Now, since ĝ ∈ G+, |ĝ|= ĝ. Condition(4) in the definition
of a Riesz lG− module shows that ĝ ◦ (x∧ y) = (ĝ ◦ x)∧
(ĝ ◦y) = x ∧y. Thus x ∧y ∈VG+ . Similarly, x ∨y ∈VG+ .
Finally, g ◦ x = g ◦ (ĝ ◦ x) = (g ∗ ĝ) ◦ x = (ĥ ∗ g) ◦ x =
ĥ ◦ (g ◦ x), since g G+ = G+ g for all g ∈ G. Hence,
g◦ x ∈VG+ .

Theorem 3.11. Let V be a Riesz lG− module. Then any
lattice W = {ĝ ◦ x : ĝ ∈ G+, x ∈V} which is closed under
vector addition is a Riesz lG− submodule of V .

Proof. Let g ∈ G, ĝ, ĥ ∈ G+, r ∈ R, x, y ∈ V .
We have, r(ĝ ◦ x) = ĝ ◦ (rx) ∈W . Also, g ◦ (ĝ ◦ x) =
(g∗ ĝ) ◦ x = (ĥ ∗g) ◦ x = ĥ ◦ (g ◦ x) ∈W .

Remark 3.12. The Riesz lG− submodule in the above the-
orem is called the Riesz lG− submodule of V generated
by G+.

Theorem 3.13. For x ∈V+, define O(x) = {g ◦x : g ∈G}.
Then O(x) is called the lG− orbit of x and is a sublattice
of V .

Proof. Note that | x |= x for every x ∈V+.
By condition (4) in the definition of a Riesz lG− module,
(g ◦ x) ∧ (h ◦ x) = (g ∧ h) ◦ x ∈ O(x).
Similar reasoning shows that (g ◦x) ∨ (h ◦ x) ∈O(x). This
proves the theorem.

Theorem 3.14. Intersection of any number of
Riesz lG− submodules is again a Riesz lG− submodule.

Proof. Simple calculations gives the result.

Definition 3.15. A non zero Riesz lG− module V is
called an irreducible Riesz lG− module or irreducible
RlG− module if its only Riesz lG− submodules are 0
and V .

Example 3.16. The real line R is a Riesz lG− module
under the action of R+, where the action is the usual multi-
plication in R. Then R is an irreducible Riesz lG− module.

Definition 3.17. Let V and W be two Riesz lG− modules
where the group G in action is the same for both V
and W . A linear map φ : V →W is a Riesz lG− module
homomorphism or an RlG− module homomorphism if it
a lattice homomorphism satisfying φ(g ◦ x) = g ◦ φ(x)
for all g ∈ G, x ∈V .

Theorem 3.18. The kernel of a RlG− module homomor-
phism is a Riesz lG− submodule.

Proof. Let φ : V →W is a RlG− module homomorphism.
Then Ker φ = {x ∈V : φ(x) = 0W}, where 0W is the zero
element in W . Clearly, Ker φ is a linear subspace of V .
For, x, y ∈ V, φ(x∧ y) = φ(x) ∧ φ(y) = 0W , shows that
x ∧ y ∈ Kerφ . Similar is the case with x∨ y.
Also, φ(g ◦x) = g ◦φ(x) = g ◦0W = 0W . Hence g ◦x ∈
Ker φ .

Theorem 3.19. The Image of a RlG− module homomor-
phism is a Riesz lG− submodule.

Proof. Let φ : V →W is a RlG− module homomorphism.
The image of φ , Im φ = {φ(x) ∈ W : x ∈V} is a linear
subspace of W . Let x, y ∈V and g ∈ G.
Then φ(x) ∧φ(y) = φ(x ∧ y) ∈ Im φ . Similarly, φ(x) ∨
φ(y) ∈ Im φ . Finally, g ◦φ(x) = φ(g ◦ x) ∈ Im φ .

Definition 3.20. An RlG− module homomorphism which
is both one-to-one and onto is called an RlG− module
isomorphism.

Theorem 3.21. Let V and W be two irreducible
Riesz lG− modules and let φ : V → W is a RlG−
module homomorphism. Then either φ = 0 or φ is a
RlG− module isomorphism.

Proof. Theorem 3.18 and Theorem 3.19 together with
the fact that V and W are irreducible Riesz lG− modules
proves the theorem.

Definition 3.22. A Riesz lG− submodule W of a
Riesz lG− module V is a convex Riesz lG− submodule
or a convex RlG−submodule if it is a convex subset (with
respect to the order) of V .

Example 3.23. We have seen in example 3.7, that the line
y = x is a Riesz lG− submodule of R2. But it is not
a convex subset of R2 under the product order in R2, for
(1,2) ∈ R2, satisfies (1,1)≤ (1,2) ≤ (2,2) but does not
lie on the line y = x.
But the line y = 0 which is a Riesz lG− submodule of
R2 is a convex Riesz lG− submodule with respect to the
product order.

Remark 3.24. Every lattice homomorphism is an isotone
or order preserving, that is, x ≤ y =⇒ φ(x) ≤ φ(y) [11].
Hence it is not difficult to prove that the inverse image of
a convex Riesz lG− submodule under a RlG− module
homomorphism is a convex Riesz lG− submodule.
But the converse is not true, for, φ(x) ≤ φ(y) need not
implies x ≤ y . An RlG− module homomorphism which
maps a convex Riesz lG− submodule to a convex
Riesz lG− submodule is termed as a convex RlG - module
homomorphism. It can be noted that every RlG−module
isomorphism is a convex RlG− module homomorphism.
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4. Conclusion
In this paper, Riesz lG− module, Riesz lG− submodule,

convex Riesz lG− submodule, RlG− module homomor-
phism, RlG− module isomorphism etc. are defined and
their basic properties are introduced. Further properties of
RlG− module homomorphisms and RlG− module iso-
morphisms are yet to be explored. The introduction of a
Riesz lG− module is a pathway to further research in this
area, especially in representation theory.
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