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On a certain subclass of analytic functions defined
by a differential operator
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Abstract
In this paper, we introduce and study a new subclass of analytic functions which are defined by means of a new
differential operator. Some results connected to coefficient estimates, growth and distortion theorems, radii of
starlikeness, convexity close-to-convexity and integral means inequalities related to the subclass is obtained.
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1. Introduction
Let A denote the class of functions u of the form

u(z) = z+
∞

∑
η=2

anzη (1.1)

which are analytic in the open unit disc E = {z ∈ C : |z|< 1}
A function u in the class A is said to be in the class ST (α)

of starlike functions of order α in E, if it satisfy the inequality

ℜ

{
zu′(z)
u(z)

}
> α, (0≤ α < 1),z ∈ E (1.2)

Note that ST (0) = ST is the class of Starlike functions.
Denote by T the subclass of A consisting of functions u of the

form

u(z) = z−
∞

∑
η=2

aη zη , (aη ≥ 0) (1.3)

This subclass was introduced and extensively studied by
Silvermann[4].
Let u be a function in the class A. We define the following
differential operator introduced by Deniz and Ozkan [1].

D0
λ

u(z) = u(z)

D1
λ

u(z) = Dλ u(z) = λ z3(u(z))m +(2λ +1)z2(u(z))η + zu′(z)

D2
λ

u(z) = Dλ (D
1
λ

u(z))

.

.

.

Dm
λ

u(z) = Dλ (D
m−1
λ

u(z))

where λ ≥ 0 and m ∈ N0 = N ∪{0}. If u is given by (1.1),
then from the definition of the operator Dm

λ
u(z), it is to see

that

Dm
λ

u(z) = z+
∞

∑
η=2

φ
m(λ ,η)aη zη (1.4)

where

φ
m(λ ,η) = η

2m[λ (η−1)+1]m (1.5)
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If u ∈ T is given by (1.2) then we have

Dm
λ

u(z) = z−
∞

∑
η=2

φ
m(λ ,η)aη zη (1.6)

where φ m(λ ,η) is given by (1.5)

Now we define the following new subclass motivated by
Murugusunderamoorthy and Magesh [3]

Definition 1.1. The function u(z) of the form (1.1) is in the
class Sm

λ
(µ,γ), if it satisfies the inequality

ℜ

{
z(Dm

λ
u(z))′

(1−µ)z+µDm
λ

u(z)
−α

}
>

∣∣∣∣ z(Dm
λ

u(z))′

(1−µ)z+µDm
λ

u(z)
−1
∣∣∣∣

for 0≤ λ ≤ 1, 0≤ γ ≤ 1

Further we define T Sm
λ
(µ,γ) = Sm

λ
(µ,γ)∩T

The aim of present paper is to study the coefficient bounds,
radii of close-to-convex and starlikeness convex linear combi-
nations and integral means inequalities of the T Sm

λ
(µ,γ)

2. Coefficient bounds
Theorem 2.1. A function u(z) of the form (1.1) is in Sm

λ
(µ,γ),

then
∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)|aη | ≤ 1− γ (2.1)

where 0≤ µ ≤ 1, 0≤ γ ≤ 1 and φ m(λ ,η) is given by (1.5)

Proof. It suffices to show that∣∣∣∣ z(Dm
λ

u(z))′

(1−µ)z+µDm
λ

u(z)
−1
∣∣∣∣−ℜ

{
z(Dm

λ
u(z))′

(1−µ)z+µDm
λ

u(z)
−1
}

≤ 1− γ

We have∣∣∣∣ z(Dm
λ

u(z))′

(1−µ)z+µDm
λ

u(z)
−1
∣∣∣∣−ℜ

{
z(Dm

λ
u(z))′

(1−µ)z+µDm
λ

u(z)
−1
}

≤ 2
∣∣∣∣ z(Dm

λ
u(z))′

(1−µ)z+µDm
λ

u(z)
−1
∣∣∣∣

≤
2

∞

∑
η=2

(η−µ)φ m(λ ,η)|aη ||z|η−1

1−
∞

∑
η=2

µφ m(λ ,η)|aη ||z|η−1

≤
2

∞

∑
η=2

(η−µ)φ m(λ ,η)|aη |

1−
∞

∑
η=2

µφ m(λ ,η)|aη |

The last expression is bounded above by (1− γ), if
∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)|aη | ≤ 1− γ

and the proof is complete.

Theorem 2.2. Let 0≤ µ ≤ 1, 0≤ γ ≤ 1, then a function u of
the form (1.3) to be in the class T Sm

λ
(µ,γ) if and only if

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)|aη | ≤ 1− γ (2.2)

where φ m(λ ,η) is given by (1.5)

Proof. In view of Theorem (2.1) we need only to prove the
necssity. If u ∈ T Sm

λ
(µ,γ) and z is real, then

ℜ


1−

∞

∑
η=2

ηφ m(λ ,η)aη zη−1

1−
∞

∑
η=2

µφ m(λ ,η)aη zη−1
− γ


>

∣∣∣∣∣∣∣∣
∞

∑
η=2

(η−µ)φ m(λ ,η)aη zη−1

1−
∞

∑
η=2

µφ m(λ ,η)aη zη−1

∣∣∣∣∣∣∣∣
Letting z→ 1 along the real axis, we obtain the desired in-
equality

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)|aη | ≤ 1− γ

where 0 ≤ µ ≤ 1, 0 ≤ γ ≤ 1 and φ m(λ ,η) is given by (1.5)

Corollary 2.3. If u(z) ∈ T Sm
λ
(µ,γ), then

|aη | ≤
1− γ

[2η−µ(γ +1)]φ m(λ ,η)
(2.3)

where 0≤ µ ≤ 1, 0≤ γ ≤ 1 and φ m(λ ,η) is given by (1.5).
Equality holds for the function

u(z) = z− 1− γ

[2η−µ(γ +1)]φ m(λ ,η)
zη (2.4)

Theorem 2.4. Let u1(z) = z and

uη(z) = z− 1− γ

[2η−µ(γ +1)]φ m(λ ,η)
zη , η ≥ 2 (2.5)

Then u(z) ∈ T Sm
λ
(µ,γ), if and only if, it can be expressed in

the form

u(z) =
∞

∑
η=1

wη uη(z), wη ≥ 0,
∞

∑
η=1

wη = 1 (2.6)

Proof. Suppose u(z) can be written as in (2.6), then

u(z) = z−
∞

∑
η=2

wη

1− γ

[2η−µ(γ +1)]φ m(λ ,η)
zη

Now,
∞

∑
η=2

wη

(1− γ)[2η−µ(γ +1)]φ m(λ ,η)

(1− γ)[2η−µ(γ +1)]φ m(λ ,η)
=

∞

∑
η=2

wη

= 1−w1 ≤ 1
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Thus u(z) ∈ T Sm
λ
(µ,γ).

Conversely, let u(z) ∈ T Sm
λ
(µ,γ), then by using (2.3), we get

wη =
[2η−µ(γ +1)]φ m(λ ,η)

(1− γ)
aη , η ≥ 2

and w1 = 1−
∞

∑
η=2

wη . Then we have u(z) =
∞

∑
η=1

wη uη(z) and

hence this completes the proof of Theorem.

Theorem 2.5. The class T Sm
λ
(µ,γ) is a convex set.

Proof. Let the function

u j(z) = z−
∞

∑
η=2

aη , jzη , aη , j ≥ 0, j = 1,2 (2.7)

be in the class T Sm
λ
(µ,γ). It is sufficient to show that the

function h(z) defined by

h(z) = ξ u1(z)+(1−ξ )u2(z), 0≤ ξ < 1,

in the class T Sm
λ
(µ,γ). Since

h(z) = z−
∞

∑
η=2

[ξ aη ,1 +(1−ξ )aη ,2]zη ,

An easy computation with the aid of Theorem (2.2) gives

∞

∑
η=2

[2η−µ(γ +1)]ξ φ
m(λ ,η)aη ,1+

∞

∑
η=2

[2η−µ(γ +1)](1−ξ )φ m(λ ,η)aη ,2

≤ ξ (1− γ)+(1−ξ )(1− γ)

≤ (1− γ)

which implies that h ∈ T Sm
λ
(µ,γ)

Hence T Sm
λ
(µ,γ) is convex.

3. Radii of Close-to-Convexity,
Starlikeness and Convexity

In this section, we obtain the radii of close-to-convexity,
starlikeness and convexity for the class T Sm

λ
(µ,γ).

Theorem 3.1. Let the function u(z) defined by (1.3) belong
to the class T Sm

λ
(µ,γ), then u(z) is close-to-convex of order

δ (0≤ δ < 1) in the disc |z|< r1, where

r1 = in f
η≥2


(1−δ )

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)

η(1− γ)


1/η−1

,η ≥ 2

(3.1)

The result is sharp, with the external function u(z) is given by
(2.5)

Proof. Given u ∈ T and u is close-to-convex of order δ , we
have

| f ′(z)−1|< 1−δ (3.2)

For the left hand side of (3.2), we have

|u′(z)−1| ≤
∞

∑
η=2

ηaη |z|η−1

The last expression is less than 1−δ

∞

∑
η=2

η

1−δ
aη |z|η−1 ≤ 1

Using the fact, that u(z) ∈ T Sm
λ
(µ,γ) if and only if

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)

1− γ
aη ≤ 1

We can see that (3.2) is true, if

η

1−δ
|z|η−1 ≤ [2η−µ(γ +1)]φ m(λ ,η)

1− γ

or, equivalently

|z| ≤
{
(1−δ )[2η−µ(γ +1)]φ m(λ ,η)

η(1− γ)

}1/η−1

which completes the proof.

Theorem 3.2. Let the function u(z) defined by (1.3) belong
to the class T Sm

λ
(µ,γ). Then u(z) is starlike of order δ (0 ≤

δ < 1) in the disc |z|< r2, where

r2 = in f
η≥2


(1−δ )

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)

(η−δ )(1− γ)


1/η−1

(3.3)

The result is sharp, with external function u(z) is given by
(2.5)

Proof. Given u ∈ T and u is starlike of order δ , we have∣∣∣∣ zu′(z)
u(z)

−1
∣∣∣∣< 1−δ (3.4)

For the left hand side of (3.4), we have∣∣∣∣ zu′(z)
u(z)

−1
∣∣∣∣≤ ∞

∑
η=2

(η−1)aη |z|η−1

1−
∞

∑
η=2

aη |z|η−1

The last expression is less than 1−δ if

∞

∑
η=2

η−δ

1−δ
aη |z|η−1 < 1
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Using the fact that u(z) ∈ T Sm
λ
(µ,γ) if and only if

∞

∑
η=2

[2η−µ(γ +1)]φ m(λ ,η)

1− γ
aη ≤ 1

We can say (3.4) is true, if

∞

∑
η=2

η−δ

1−δ
|z|η−1 ≤ [2η−µ(γ +1)]φ m(λ ,η)

1− γ

or equivalently

|z|η−1 ≤ (1−δ )[2η−µ(γ +1)]φ m(λ ,η)

(η−δ )(1− γ)

which yields the starlikeness of the family.

4. Integral Means Inequalities

In [4], Silverman found that the function u2(z) = z− z2

2
is often extremal over the family T. He applied this function
to resolve his integral means inequality conjunctured [5] and
setteled in [6], that

2π∫
0

|u(reiϕ)|τ dϕ ≤
2π∫
0

|u2(reiϕ)η |τ dϕ

for all u ∈ T , τ > 0 and 0 < r < 1. In [6], he also proved his
conjuncture for the subclasses T ∗(α) and C(α) of T.

Now, we prove Silverman’s conjecture for the class of func-
tions T Sm

λ
(µ,γ)

We need the concept of subordination between analytic func-
tions and a subordination theorem of Littlewood [2].

Two functions u and v, which are analytic in E, the function
u is said to be subordinate to v in E, if there exists a function
w analytic in E with w(0) = 0, |w(z) < 1, (z ∈ E) such that
u(z) = v(w(z)), (z ∈ E). We denote this subordination by
u(z)≺ v(z). (≺ denote subordination)

Lemma 4.1. If the function u and v are analytic in E with
u(z)≺ v(z), then for τ > 0 and z = reiϕ , 0 < r < 1

2π∫
0

|v(reiϕ)|τ dϕ ≤
2π∫
0

|u(reiϕ)|τ dϕ

Now, we discuss the integral means inequalities for functions
u in T Sm

λ
(µ,γ)

Theorem 4.2. u∈ T Sm
λ
(µ,γ), 0≤ µ < 1, 0≤ γ < 1 and u2(z)

be defined by

u2(z) = z− 1− γ

φ2(λ ,γ)
z2 (4.1)

Proof. For u(z) = z−
∞

∑
η=2

aη zη , (4.1) is equivalent to

2π∫
0

∣∣∣∣∣1− ∞

∑
η=2

aη zη−1

∣∣∣∣∣
τ

dϕ ≤
2π∫
0

∣∣∣∣1− 1− γ

ϕ2(λ ,γ)
z
∣∣∣∣τ dϕ

By Lemma (4.1), it is enough to prove that

1−
∞

∑
η=2

aη zη−1 ≺ 1− 1− γ

ϕ2(λ ,γ)
z,

Assuming

1−
∞

∑
η=2

aη zη−1 ≺ 1− 1− γ

ϕ2(λ ,γ)
w(z),

and using (2.2), we obtain

|w(z)|=

∣∣∣∣∣ ∞

∑
η=2

ϕ2(λ ,γ)

1− γ
aη zη−1

∣∣∣∣∣≤ |z| ∞

∑
η=2

ϕ2(λ ,γ)

1− γ
aη ≤ |z|

where

ϕη(λ ,γ) = [2η−µ(γ +1)φ m(λ ,η)

This completes the proof

5. Conclusion
This research has introduced a new linear differential op-

erator related to Analytic function and studied some basic
properties of geometric function theory . Accordingly, some
results related to closure theorems have also been considered,
inviting future research for this field of study.
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