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Abstract
This work addresses the result of sampled-data-based H∞ control of Takagi-Sugeno (T-S) fuzzy systems. The
sampling period is assumed to be varying within an interval. In order to construct a less delay dependent
stability condition, a Lyapunov-Krasovskii functional (LKF) containing new integral terms is imported. Approach
of convex is applied to determine a less stability conditions in the form of linear matrix inequalities (LMIs) without
any free-weighting matrices approach which increase badly the computational anxiety of the stability analysis.
Through the use of the derived inequality and by constructing a suitable LKF, improved stability criteria are shown
in the form of LMIs. Two simulation examples are carried out to demonstrate that the results out perform the
state of the art in the literature.
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1. Introduction
In real-world, nonlinearities exist in most of the physical

systems which make it complex. To represent these com-
plex nonlinear systems, Takagi-Sugeno fuzzy systems have
emerged to be an effective and conceptually simple tool. This
class of systems is described by a set of if-then rules which
gives linear representation of the considered system which
is then easy to analyze [1, 13]. Hence the fuzzy representa-
tion has turned out to be a significant way to approach the
complex nonlinear systems. The study of T-S fuzzy systems
has received considerable attention and many pronounced
advances have been achieved ([4, 7–9]). Besides, the rate

of change of physical models depends not only on current
time but also on the previous time instants. Hence the system
stability explicitly depends on the time delay also. At the
same time, the existence of time delay may result in instability
and undesirable performance of the system. Hence the time
delay in dynamical systems has received substantial attention
and popularity. In addition to this, external disturbances and
nonlinearities make the modelling and formulation of dynam-
ical systems sophisticated. As a consequence, the study on
the stability and stabilization of dynamical systems subject
to time delay, uncertainties, disturbances and nonlinearities
is exceptionally demanding and worth of further research
([9, 14]).

The concept of sampled-data feedback control is a prac-
tical and useful tool to implement some complicated control
schemes and it has been applied in many areas of science
and engineering. A sampled-data scheme is driven by a pe-
riodic clock and on each clock edge, it samples its inputs,
changes state and updates its outputs. Moreover, it’s technolo-
gies has been constructed relatively well in control theory,
especially sampled-data scheme result for complex dynam-
ical control systems has paid small attention according to
the mathematical complexity. Hence, under the rapid con-
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struction of computer hardware, the sampled-data scheme has
explicit superiority over another feedback control techniques
([6, 10, 12]). Uncertain disturbance design in H∞ ambience
have good gain and easily represented that the H∞ control is
associated to the competence of perturbation elimination in
complex dynamical models [2]. Then, the H∞ performances
guarantee the covet achievement by rejecting the effect of
alikeness errors, parametric perturbations and sound pertur-
bations in the dynamical models ([3, 5]). To the best of our
knowledge, there are no works on H∞ feedback sampled-data
control of T-S fuzzy systems via a novel integral inequality
approach. Motivated by the above discussions, in this work,
we consider the result of feedback based H∞ control for T-S
fuzzy systems via a novel double integral inequality approach.

2. Preliminaries
Consider a nonlinear time-delayed system which can be

expressed by T-S fuzzy model with r plant rules:
Fuzzy rule i: IF x1(t) is Fi1 and x2(t) is Fi2 and . . . and

xg(t) is Fig, THEN ẋ(t) = Aix(t)+Ahix(t−h(t))+Biu(t)+Bwiw(t),
z(t) =Cix(t)+Diw(t),
x(t) = φ(t), t ∈ [h,0]

(2.1)

where i = 1,2, . . . ,r, r denotes the number of IF-THEN rules;
x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the control input
signal; z(t) ∈ Rl is the output; w(t) ∈ Rv is the external dis-
turbance which belongs to L2[0,∞); xa(t) (a = 1,2, . . . ,g) are
the premise variables; Fia (i = 1,2, . . . ,r, a = 1,2, . . . ,g) are
the fuzzy sets; Ai,Ahi,Bi,Ci, Bwi and Di are known constant
matrices. Further, h(t) is time-varying delay that obeys the
condition 0 < h(t)≤ h, ḣ(t)≤ µ < 1 in which h is the upper
bound of time-varying delay.

Now, based on fuzzy blending, the above formulated T-S
fuzzy model (2.1) can be expressed as:

ẋ(t) =
r
∑

i=1
νi(x(t))[Aix(t)+Ahix(t−h(t))+Biu(t)

+Bwiw(t)],

z(t) =
r
∑

i=1
νi(x(t))[Cix(t)+Diw(t)],

(2.2)

where νi(x(t)) is the normalized membership function defined

by νi(x(t)) = νi(x(t))/
r
∑

i=1
νi(x(t)) with νi(x(t)) =

g
∏

a=1
Fia(xa(t)) and Fia(xa(t)) is the degree of membership of

xa(t) in Fia. Then, it is considered that νi(x(t)) ≥ 0 and
r
∑

i=1
νi(x(t))= 1 for all t > 0. Moreover, it is seen that νi(x(t))≥

0 and
r
∑

i=1
νi(x(t)) = 1 for all t > 0.

Control rule i: IF x1(t) is Fi1 and x2(t) is Fi2 and . . . and
xg(t) is Fig, THEN

u(t) = Kix(ikh), t ∈ [ikh+ τik , ik+1h+ τik+1), (2.3)

where u(t) = u(ikh) = Kix(ikh), Ki (i = 1,2, . . . ,r) are the
controller gains, ik (k = 1,2, . . .) represent some non-negative
values and ikh denotes the sensor sampling instant. Then, it
is seen that ∪∞

k=1[ikh+τik , ik+1h+τik+1) = [0,∞). Further, for
some interval [ikh+ τik , ik+1h+ τik+1), define γ(t) = (t− ikh)
which implies that ikh = t− (t− ikh) = t− γ(t). Based on the
analysis of γ(t), we obtain that η̇(t) = 1 and 0≤ τik ≤ η(t)≤
(ik+1− ik)h+ τik+1 ≤ η̄ .

Then, the fuzzy controller (2.3) is expressed in the follow-
ing form

u(t) =
r

∑
j=1

ν j(x(t))K jx(t− γ(t)), (2.4)

where t ∈ [ikh+ τik , ik+1h+ τik+1 ].
Combining (2.4) with (2.2), we get the upcoming closed-

loop fuzzy model:
ẋ(t) =

r
∑

i=1

r
∑
j=1

νi(x(t))ν j(x(t))[Aix(t)+Ahix(t−h(t))

+BiK jx(t− γ(t))+Bwiw(t)],

z(t) =
r
∑

i=1

r
∑
j=1

νi(x(t))ν j(x(t))[Cix(t)+Diw(t)]

(2.5)

Lemma 2.1. (Schur Complement Lemma)
Given appropriate dimensioned matrices S11, S12 and S22 with
ST

11 = S11, ST
22 = S22, then the inequality S11 +ST

12S−1
22 S12 < 0

holds if and only if
[

S11 ST
12

∗ −S22

]
< 0 or

[
−S22 S12
∗ S11

]
<

0.

Lemma 2.2. [11] For any matrix S > 0, the following in-
equality satisfies for all continuously differential function x in
[a,b]→ Rn :∫ b

a
ẋT (s)Sẋ(s)ds≥ 1

b−a
ω

T
1 Sω1 +

3
b−a

ω
T
2 Sω2

+
5

b−a
ω

T
3 Sω3,

where

ω1 = x(b)− x(a),

ω2 = x(b)+ x(a)− 2
b−a

∫ b

a
x(s)ds,

ω3 = x(b)− x(a)+
6

b−a

∫ b

a
x(s)ds

− 12
(b−a)2

∫ b

a

∫ b

u
x(s)dsdu.

Lemma 2.3. [11] For any matrix S > 0, the following in-
equality satisfies for all continuously differential function x in
[a,b]→ Rn :∫ b

a

∫ b

u
ẋT (s)Sẋ(s)dsdu≥ 2ω

T
4 Sω4 +4ω

T
5 Sω5

+6ω
T
6 Sω6,

609
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where

ω4 = x(b)− 1
b−a

∫ b

a
x(s)ds,

ω5 = x(b)+
2

b−a

∫ b

a
x(s)ds

− 6
(b−a)2

∫ b

a

∫ b

u
x(s)dsdu,

ω6 = x(b)− 3
b−a

∫ b

a
x(s)ds

+
24

(b−a)2

∫ b

a

∫ b

u
x(s)dsdu

− 60
(b−a)3

∫ b

a

∫ b

u

∫ b

s
x(r)drdsdu.

Definition 2.4. [3] T-S fuzzy system (2.5) is said to be asymp-
totically stable with a prescribed H∞ performance η > 0 if
w(t) ∈ L2[0,∞), output z(t) satisfies under the zero initial
condition∫

∞

0
zT (t)z(t)dt ≤ η

2
∫

∞

0
wT (t)w(t)dt. (2.6)

3. Main results
Theorem 3.1. Given positive scalars µ,h,γ , symmetric ma-
trix N and the gain matrix K j, the considered system (2.5)
is asymptotically stable if there exist positive definite matri-
ces P1, Q1, Q2,Q3,Q4, R1, R2,S1,S2, such that the upcoming
matrix inequalities satisfied for 1≤ i≤ j ≤ r:

[Φii]< 0, i = j,

[Φi j]+ [Φ ji]< 0, i < j, (3.1)

where,
Φ1,1 = Q1 +Q2 +Q3 +Q4−9R1−9R2−12S1−12S2

+sym(N Ai),
Φ1,2 = N Ahi,
Φ1,3 = N BiK j,
Φ1,4 = R1 +3R1,
Φ1,5 = 3R2,

Φ1,6 =− 24R1
h + 12S1

h −
54S1

h2 ,

Φ1,7 =− 24R2
γ̄

+ 12S2
γ̄
− 54S2

γ̄2 ,

Φ1,8 =
60R1

h2 + 24S1
h2 + 432S1

h3 − 144S1
h2 ,

Φ1,9 =
60R2

h2 + 24S2
γ̄2 − 144S2

γ̄2 ,

Φ1,10 =
360S1

h3 − 1080S1
h4 ,

Φ1,11 =
360S2

γ̄3 ,

Φ1,12 = N Bwi,
Φ1,13 = 2P−N +AT

i N T ,
Φ2,2 =−(1−µ)Q1,
Φ2,14 = AT

hiN ,

Φ3,3 =−(1− ˙γ(t))Q2,
Φ3,13 = KT

j BT
i N ,

Φ4,4 =−5R1 +Q3,

Φ4,5 = 32 R1
h ,

Φ4,6 =
60R1

h2 ,

Φ5,5 =−9R2 +Q4,

Φ5,7 =
2R2

γ̄
+ 30R2

γ̄2 ,

Φ5,9 =
60R2

γ̄
,

Φ6,6 =− 192R1
h2 − 18S1

h2 ,

Φ6,8 =
360R1

h3 + 48S1
h3 ,

Φ7,7 =− 192R2
γ̄2 −

70S2
γ̄2 ,

Φ7,9 =
360R2

γ̄2 + 480S2
γ̄3 ,

Φ7,11 =− 1080S2
γ̄4 ,

Φ8,8 =− 720R1
h4 − 144S1

h4 − 3456S1
h4 ,

Φ8,10 =
8640S1

h5 ,

Φ9,9 =− 720R2
γ̄4 − 144S2

γ̄4 − 3456S2
γ̄4 ,

Φ9,11 =
8640S2

γ̄5 ,

Φ10,10 =− 21600S1
h6 ,

Φ11,11 =− 21600S2
γ̄6 ,

Φ13,13 = (h2R1 + γ̄2R2 +h2S1 + γ̄2S2−N ).

Proof. We consider the following L-K functional:

V (x(t)) =
4

∑
s=1

Vs(x(t)), (3.2)

where

V1(x(t)) = xT (t)P1x(t),

V2(x(t)) =
∫ t

t−h(t)
xT (s)Q1x(s)ds+

∫ t

t−γ(t)
xT (s)Q2x(s)ds

+
∫ t

t−h
xT (s)Q3x(s)ds+

∫ t

t−γ̄

xT (s)Q4x(s)ds,

V3(x(t)) = h
∫ t

t−h

∫ t

u
ẋT (s)R1ẋ(s)dsdu

+ γ̄

∫ t

t−γ̄

∫ t

u
ẋT (v)R2ẋ(v)dsdu,

V4(x(t)) =
h2

2

∫ t

t−h

∫ t

u

∫ t

s
ẋT (r)S1ẋ(r)drdsdu

+
γ̄2

2

∫ t

t−γ̄

∫ t

u

∫ t

s
ẋT (r)S2ẋ(r)drdsdu.

Calculating the derivatives of V (x(t)) along the trajectories of

610
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the closed-loop system (2.5), we obtain

V̇1(x(t)) = xT (t)2P1ẋ(t), (3.3)

V̇2(x(t)) = xT (t)(Q1 +Q2 +Q3 +Q4)x(t)

− (1−µ)xT (t−h(t))Q1x(t−h(t))

− xT (t−h)Q3x(t−h)

− xT (t− γ̄)Q4x(t− γ̄), (3.4)

V̇3(x(t)) = h2ẋT (t)R1ẋ(t)+ γ̄
2ẋT (t)R2ẋ(t)

−h
∫ t

t−h
ẋT (s)R1ẋds

− γ̄

∫ t

t−γ̄

ẋT (s)R2ẋds, (3.5)

V̇4(x(t)) =
γ̄4

4
ẋT (t)S1ẋ(t)+

h4

4
ẋT (t)S2ẋ(t)

− h2

2

∫ t

t−h

∫ t

s
ẋT (s)S1ẋ(s)dsdu

− γ̄2

2

∫ t

t−γ̄

∫ t

s
ẋT (s)S2ẋ(s)dsdu.

Using Lemma 2.2, the integral terms in (3.5) can be ex-
pressed as
−
∫ t

t−h ẋT (s)R1ẋds

≤ −1
h

[x(t)− x(t−h)]T R1[x(t)− x(t−h)]

− 3
h

[
x(t)+ x(t−h)− 2

h

∫ t

t−h
x(s)ds

]T

R1

×

[
x(t)+ x(t−h)− 2

h

∫ t

t−h
x(s)ds

]

− 5
h

[
x(t)− x(t−h)

+
6
h

∫ t

t−h
x(s)ds− 12

h2

∫ t

t−h

×
∫ t

u
x(s)dsdu

]T

R1

[
x(t)− x(t−h)

+
6
h

∫ t

t−h
x(s)ds− 12

h2

∫ t

t−h

∫ t

u
x(s)dsdu

]
(3.6)

Similarly, for the integral term in R2

−
∫ t

t−γ̄
ẋT (s)R2ẋds

≤ −1
γ̄

[x(t)− x(t− γ̄)]T R2

× [x(t)− x(t− γ̄)]− 3
γ̄

[
x(t)+ x(t− γ̄)

− 2
γ̄

∫ t

t−γ̄

x(s)ds

]T

R2

[
x(t)+ x(t− γ̄)− 2

γ̄

∫ t

t−γ̄

x(s)ds

]

− 5
γ̄

[
x(t)− x(t− γ̄)+

6
γ̄

∫ t

t−γ̄

x(s)ds− 12
γ̄2

∫ t

t−γ̄

×
∫ t

u
x(s)dsdu

]T

R2

[
x(t)− x(t− γ̄)+

6
γ̄

∫ t

t−γ̄

x(s)ds

− 12
γ̄2

∫ t

t−γ̄

∫ t

u
x(s)dsdu

]
(3.7)

Using Lemma 2.3, the integral terms in (3.5) can ex-
pressed as
−
∫ t

t−h
∫ t

u ẋT (s)S1ẋ(s)dsu

≤−2

[
x(t)− 1

h

∫ t

t−h
x(s)ds

]T

S1

[
x(t)− 1

h

∫ t

t−h
x(s)ds

]

−4

[
x(t)+

2
h

∫ t

t−h
x(s)ds− 6

h2

∫ t

t−h

∫ t

u
x(s)dsdu

]T

S1

×

[
x(t)+

2
h

∫ t

t−h
x(s)ds− 6

h2

∫ t

t−h

∫ t

u
x(s)dsdu

]

−6

[
x(t)− 3

h

∫ t

t−h
x(s)ds

+
24
h2

∫ t

t−h

∫ t

u
x(s)dsdu− 60

h3

∫ t

t−h

∫ t

u

∫ t

s
x(r)drdsdu

]T

S2×

[
x(t)− 3

h

∫ t

t−h
x(s)ds

+
24
h2

∫ t

t−h

∫ t

u
x(s)dsdu− 60

h3

∫ t

t−h

∫ t

u

∫ t

s
x(r)drdsdu

]T

(3.8)

Similarly, we can obtain for the integral term in S2 as
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−
∫ t

t−γ̄

∫ t
u ẋT (s)S2ẋ(s)dsu

≤−2

[
x(t)− 1

γ̄

∫ t

t−γ̄

x(s)ds

]T

S2

[
x(t)− 1

γ̄

∫ t

t−γ̄

x(s)ds

]

−4

[
x(t)+

2
γ̄

∫ t

t−γ̄

x(s)ds− 6
γ̄2

∫ t

t−γ̄

∫ t

u
x(s)dsdu

]T

S2

×

[
x(t)+

2
γ̄

∫ t

t−γ̄

x(s)ds− 6
γ̄2

∫ t

t−γ̄

∫ t

u
x(s)dsdu

]

−6

[
x(t)− 3

γ̄

∫ t

t−γ̄

x(s)ds+
24
γ̄2

∫ t

t−γ̄

∫ t

u
x(s)dsdu

− 60
γ̄3

∫ t

t−γ̄

∫ t

u

∫ t

s
x(r)drdsdu

]T

S2

[
x(t)− 3

γ̄

∫ t

t−γ̄

x(s)ds

+
24
γ̄2

∫ t

t−γ̄

∫ t

u
x(s)dsdu− 60

γ̄3

∫ t

t−γ̄

∫ t

u

∫ t

s
x(r)drdsdu

]T

(3.9)

On the other side, for any matrix N , the upcoming equal-
ity holds:

2[xT (t) ẋT (t)]N

[
r

∑
i=1

r

∑
j=1

νi(x(t))ν j(x(t− γ(t)))

× [Aix(t)+Ahix(t−h(t))+Biu(t)

+Bwiw(t)− ẋ(t)]

]
= 0 (3.10)

Define

χ
T =

[
xT (t), xT (t−h(t)), xT (t− γ(t)), xT (t−h),

xT (t− γ̄),
∫ t

t−h
xT (s)ds,

∫ t

t−γ̄

xT (s)ds,∫ t

t−h

∫ t

u
xT (s)dsdu,

∫ t

t−γ̄

∫ t

u
xT (s)dsdu,∫ t

t−h

∫ t

u

∫ t

s
xT (r)drdsdu,

∫ t

t−γ̄

∫ t

u

∫ t

s
xT (r)drdsdu,

wT (t), ẋT (t)

]
.

Adding the equations from (3.3)-(3.10), then we have

V̇ (x(t))≤ χ
T (t)Φi jχ(t), (3.11)

where Φi j are defined in theorem statement. Therefore it
observes that Φi j < 0. Due to the definition of stability, the
considered system (2.5) is asymptotically stable. Hence, com-
plete the proof.

Theorem 3.2. Given positive scalars µ,h,γ , symmetric ma-
trix X, the considered system (2.5) is asymptotically stable and

satisfies the H∞ performance condition if there exist positive
definite matrices P̄1, Q̄1, Q̄2,Q̄3,Q̄4, R̄1, R̄2,S̄1,S̄2, such that
the upcoming matrix inequalities satisfied for 1≤ i≤ j ≤ r:

[Φ̄ii]< 0, i = j,

[Φ̄i j]+ [Φ̄ ji]< 0, i < j, (3.12)

where, Φ̄1,1 = Q̄1+Q̄2+Q̄3+Q̄4−9R̄1−9R̄2−12S̄1−12S̄2+
sym(AiX),
Φ1,2 = AhiX ,Φ̄1,3 = BiYj,
Φ̄1,4 = R̄1 +3R̄1,
Φ̄1,5 = 3R̄2,

Φ̄1,6 =− 24R̄1
h + 12S̄1

h −
54S̄1

h2 ,

Φ̄1,7 =− 24R̄2
γ̄

+ 12S̄2
γ̄
− 54S̄2

γ̄2 ,

Φ̄1,8 =
60R̄1

h2 + 24S̄1
h2 + 432S̄1

h3 − 144S̄1
h2 ,

Φ̄1,9 =
60R̄2

h2 + 24S̄2
γ̄2 − 144S̄2

γ̄2 ,

Φ̄1,10 =
360S̄1

h3 − 1080S1
h4 ,

Φ̄1,11 =
360S̄2

γ̄3 ,

Φ̄1,12 = XBwi,Φ̄1,13 = 2P̄−X +XAT
i ,

Φ̄1,14 =CT

Φ̄2,2 =−(1−µ)Q̄1,
Φ̄2,14 = XAT

hi,

Φ̄3,3 =−(1− ˙γ(t))Q̄2,
Φ̄3,13 = Y T

j BT
i ,

Φ̄4,4 =−5R̄1 + Q̄3,

Φ̄4,6 = 32 R̄1
h ,

Φ̄4,6 =
60R̄1

h2 ,

Φ̄5,5 =−9R̄2 + Q̄4,

Φ̄5,7 =
2R̄2

γ̄
+ 30R̄2

γ̄2 ,

Φ̄5,9 =
60R̄2

γ̄
,

Φ̄6,6 =− 192R̄1
h2 − 18S̄1

h2 ,

Φ̄6,8 =
360R̄1

h3 + 48S̄1
h3 ,

Φ̄7,7 =− 192R̄2
γ̄2 −

70S̄2
γ̄2 ,

Φ̄7,9 =
360R̄2

γ̄2 + 480S̄2
γ̄3 ,

Φ̄7,11 =− 1080S̄2
γ̄4 ,

Φ̄8,8 =− 720R̄1
h4 − 144S̄1

h4 − 3456S̄1
h4 ,

Φ̄8,10 =
8640S̄1

h5 ,

Φ̄9,9 =− 720R̄2
γ̄4 − 144S̄2

γ̄4 − 3456S̄2
γ̄4 ,

Φ̄9,11 =
8640S̄2

γ̄5 ,

Φ̄10,10 =− 21600S̄1
h6 ,

Φ̄11,11 =− 21600S̄2
γ̄6 ,

Φ̄11,11 =−X ,
Φ̄12,12 =−η2,
Φ̄12,14 = DT ,

Φ̄13,13 = (h2R̄1 + γ̄2R̄2 +h2S̄1 + γ̄2S̄2−X),
Φ̄14,14 = −I. Further, the control values are estimated as
K j = YjX−1.
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Proof. To discuss the H∞ feedback control performance of
the system, we have

Zn(t) =
∫

∞

0

[
zT (t)z(t)−η

2wT (t)w(t)]dt. (3.13)

By applying H∞ Definition 2.4, initial and boundary condition,
we have V (0) = 0 and V (∞)≥ 0. Then

V̇ (x(t))+Zn(t)≤ χ
T (t)Φi jχ(t), (3.14)

where Φ1,1 =Q1+Q2+Q3+Q4−9R1−9R2−12S1−12S2+
sym(N Ai)+CTC,Φ12,12 = −η2,Φ12,14 = DT D and the re-
maining parameters same in Φi j. The above inequality is not
linear. To make linear matrix inequality, mention N −1 = X ,
P̄1 = XP1X , Q̄1 = XQ1X , Q̄2 = XQ2X , Q̄3 = XQ3X , Q̄4 =
XQ4X , R̄1 = XR1X , R̄2 = XR2X , S̄1 = XS1X and S̄2 = XS2X ,
then pre and post multiply (3.14), through diag{X ,X ,X ,X ,X ,
X ,X ,X ,X ,X ,X ,X ,X} and using Schur Complement Lemma,
it is easy to get the LMI (3.12). Thus finishes the proof.

4. Numerical examples
We consider numerical simulations to show the effective-

ness and advantages of the proposed method.

Example 4.1. Consider the T-S fuzzy system (2.5) with two
fuzzy rules are provided as below:

A1 =

[
−2 −1.4
1 0

]
,Ad1 =

[
0.4 0
0.4 −0.7

]
,

B1 =

[
1.7
0

]
,Bw1 =

[
1.6
0

]
,C1 =

[
0.6 0

]
,

A2 =

[
−1.76 −2.155

2 0

]
Ad2 =

[
0.9123 0.5

0 −1.2

]
,

B2 =

[
0.7
0

]
,Bw2 =

[
1.23

0

]
C2 =

[
0.7 0

]
D1 = 0.3,D2 = 0.6.

The membership functions are chosen as

ν1(x) =
1

1+ exp(x1 +0.5)
and ν2(x) = 1−ν1(x).

Some scalar values included in the simulation are chosen
as: η = 0.2, h = 1.8, γ̄ = 2.8. We take the external distur-
bance and initial condition as w(t) = 0.2t sin(0.1exp(0.8t)),
x(0) = [−2,2]T for the simulation purpose respectively. Fig.1
represents the state trajectories of the unforced system. By
Fig.1, it is seen that the unforced system is not stable. To make
this unstable system, using Theorem 2 provides the upcoming
control gain matrices:

K1 = Y1X−1 =
[
−0.0058 −0.0781

]
,

K2 = Y2X−1 =
[
−0.0048 −0.0489

]
.
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Figure 1. State responses of the unforced system (2.5)
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Figure 2. State responses of the closed loop system (2.5)

Based on the same initial state criteria, the state trajecto-
ries of the considered system are provided in Fig.2. Under
the figure we see that the modeled sampled-data controllers
make the closed-loop states converge to zero. Thus, the con-
trol method gives that the constructed sampled-data technique
provided in Theorem 2 can make the system stable in the
presence of time delays effectively.

Example 4.2. This simulation example is developed via a
simple nonlinear mass spring damper physical system which
is given in Fig. 3. More details about the proposed model and
its values are available in [9].

Mention x(t) = [ẏ(t) y(t)]T . Further, the state space rep-
resentation of the mass spring damper model can be expressed
by the proposed fuzzy system (2.5) with two rules in the up-
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Figure 3. Mass spring damper system.

coming path:
Plant rule 1: IF ẏ(t) is about F 1

1 , THEN

ẋ(t) = (A1)x(t)+B1u(t)+B1w(t),

z(t) =C1x(t)+D1u f (t),

Plant rule 2: IF ẏ(t) is about F 2
1 , THEN

ẋ(t) = (A2)x(t)+B2u(t)+B2w(t),

z(t) =C2x(t)+D2u(t),

where

A1 =

[
0.0 −0.02
1 0

]
,B1 = B2 =

[
1
0

]
,

Bw1 = Bw2 =

[
1
0

]
,C1 =C2 =

[
0 1

]
,D1 = D2 = 1,

A2 =

[
−0.225 −0.02

1 0

]
.

Moreover, the two membership functions are given as

F 1
1 = µ1(x(t)) = 1− x2

1(t)
2.25 and F 2

1 = µ2(x(t)) =
x2

1(t)
2.25 .

The purpose of this example is to design the fuzzy feed-
back controller (2.4) such that the closed-loop uncertain fuzzy
system (2.5) is asymptotically stable. Take the remaining sim-
ulation parameters as µ = 0.2. By determining the LMI based
criteria provided in Theorem 3.2 with γ̄ = 1.9, we get a set of
feasible solutions that are not shown here. Under these, the
sampled-data gain values can be estimated as

K1 =
[
−0.0402 −0.2725

]
and

K2 =
[
−0.0393 −0.2637

]
.

With the aforementioned gain values and the initial state
x(0) = [−2,2]T , the state responses of the sampled-data con-
trol system and unforced fuzzy system (2.5) are shown in Figs.
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(a) State responses of the closed loop system
Figure 4. Simulation results of the T-S fuzzy system (2.5)
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(b) State responses of the unforced system
Figure 5. Simulation results of the T-S fuzzy system (2.5)

5(a) and 5(b). From the simulation analysis, the important
and the necessity of the modeled sampled-data scheme (2.4)
can be observed.
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5. Conclusion
In this work, a novel condition has been constructed for

the fuzzy model with the sampled-data scheme. By develop-
ing a new LKF, a new stability criteria has been obtained in the
form of LMIs. The primary objective has been proposed on
designing a sampled-data scheme such that for all admissible
uncertainties, the considered system is asymptotically sta-
ble. Eventually, numerical simulations have been provided to
illustrate the less conservativeness of the considered method.
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