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Abstract
In this work, we give some relations about involutes and evolutes of a timelike curve in Lorentz 3−space. Also,
we derive a characterization of pseudo spherical evolutes corresponding to the trajectory of a point in pseudo
spherical kinematics. Then, we obtain a transformation matrix from the natural trihedron of a space curve to
the geodesic trihedron of its spherical evolutes in Lorentz 3−space. Finally, we give an example to illustrate our
results.
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1. Introduction
The curvature theory of involutes and evolutes curves has

been one of the important subject because of having many
application area in kinematic and differential geometry. So,
there are many important consequences and properties in the
curvature theory of the such curves in differential geometry
[1,2,4,8,12]. Also, many paper can be found in the litera-
ture for curves and their characterization in Lorentz 3−space
[9,13,15].

Important contributions to the kinematic geometry of
spherical curves have been made by Veldkamp and McCarthy
[5, 14]. Veldkamp studied the similarity of spherical kine-
matics to plane kinematics, [14]. Then, McCarthy and Roth
gave some results for the differential kinematics of spheri-
cal motion using kinematic mappings, [6]. Also, McCarthy
and Ravani presented differential kinematics of spherical and

spatial motions using a mapping of spatial kinematics and
derived relationships for the intrinsic properties of the image
curves corresponding to a mapping of spherical and spatial
kinematics, [7]. Schaaf and Yang defined spherical evolutes
corresponding to the trajectory of a point in spherical kine-
matics and derived general expressions for the curvature prop-
erties of the n-th spherical evolute with respect to geodesic
curvature and the its derivative, [11].

In the current study, we would like to contribute to the
study of kinematic geometry of pseudo spherical evolutes in
Lorentz 3−space. Firstly, we remind some notations about
curves in Lorentz 3−space. After that, we get some relations
about involutes and evolutes of the timelike curve. Then, we
give a transformation matrix from the natural trihedron of a
Lorentz curve to the geodesic trihedron of its pseudo spherical
evolutes in Lorentz 3−space.

2. Preliminaries
Let E3

1
be Lorentz 3−space with the inner product

< u,v >=−u1v1 +u2v2 +u3v3

and the vector product

u× v =
(
−
∣∣∣∣ u2 u3

v2 v3

∣∣∣∣ , ∣∣∣∣ u3 u1
v3 v1

∣∣∣∣ , ∣∣∣∣ u1 u2
v1 v2

∣∣∣∣) ,

where u = (u1 ,u2 ,u3), v = (v1 ,v2 ,v3) ∈ E3
1
.
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The vector v ∈ E3
1

is said to be spacelike, lightlike or
timelike whenever 〈v,v〉> 0 or v= 0, 〈v,v〉= 0 and v 6= 0, and
〈v,v〉< 0, respectively. Similarly, an arbitrary curve α = α(s)
can be spacelike, lightlike or timelike, if all of its velocity
vectors α ′(s) are, respectively, spacelike, lightlike or timelike.
The signature of a vector v is defined as

ε =

 1, v is a spacelike vector
0, v is a lightlike vector
−1, v is a timelike vector,

whereas the norm of the vector v ∈ E3
1

is given by ‖v‖ =√
|〈v,v〉|, [10].

Theorem 2.1. Let α(s) be a timelike curve and {~T ,~N,~B}
be the moving Frenet frame along the curve α(s) in E3

1
. The

Frenet derivative equations are given by ~T ′
~N′
~B′

=

 0 κ 0
κ 0 τ

0 −τ 0

 ~T
~N
~B

 ,
where

〈
~T ,~T

〉
= −1,

〈
~N,~N

〉
=
〈
~B,~B

〉
= 1 and

〈
~T ,~N

〉
=〈

~T ,~B
〉
=
〈
~N,~B

〉
= 0. κ and τ are curvature and torsion of

the timelike curve α(s), respectively, [10].

Theorem 2.2. If the timelike curve α(t) has a non-unit speed,
then

κ(t)=
‖α ′(t)×α ′′(t)‖
‖α ′(t)‖3 and τ(t)=

det(α ′(t),α ′′(t),α ′′′(t))

‖α ′(t)×α ′′(t)‖2 .

If the timelike curve α(s) has a unit speed, then

κ(s) =
∥∥α
′′(s)

∥∥ and τ(s) =
∥∥B′(s)

∥∥ ,
[10].

3. Involutes and Evolutes of a Timelike
Curve

In this section, we study characterizations of involutes-
evolutes of a timelike curve. The tangents of the timelike
curve C in E3

1 create a surface called as the tangent surface
of C. Curves on the tangent surface which are orthogonal to
the creating tangents are called as involutes of the timelike
curve C. The equation of an involute I of the timelike curve C
is written as follows

y = y(s) =~x+a~t (1)

where~x is the position vector of point P on C,~t is the tangent
vector and a is a scalar function of the arc length s. If we
differentiate Equation (1), in terms of the arc length parameter
s of the timelike curve C, we get

y′ =~t +(a′~t +a~t ′) = (1+a′)~t +aκ~n. (2)

If we use the definition of involutes

< (1+a′)~t +aκ~n,~t >= 0,

we have,
da
ds

= −1 and a = c− s where c is an arbitrary
constant. So, the vector equation of an involute I (see Figure
1) of the timelike curve C is

y = y(s) =~x+(c−s)~t. (3)

Figure 1. An involute I of the timelike curve C

Every value of c corresponds to one of a single infinity
of involutes of the given timelike curve C. So, if C is a plane
curve its tangent surface is a plane and from equation (3),
we can say that the involutes of a plane curve are also plane
curves [11]. Also, the notion of involutes can be used to define
the converse problem. For a timelike curve C, determine a
curve E which accepts the curve C as an involute. The curve
E is called as an evolute of C. The equation of evolute E has
the form

z = z(s) =~x+b~p (4)

where b is a scalar function of arc length parameter s of the
timelike curve C and the unit spacelike vector ~p (see Figure
2) lies in the normal plane of C. ~p is given by

~p = sinφ~n+ cosφ~b. (5)

Figure 2. An evolute E of the timelike curve C

The spacelike vector ~p should be tangent to the evolute E.
So, we can write

z′ = f~p (6)

623



Contribution to pseudo spherical kinematics of pseudo spherical evolutes — 624/628

where f is a scalar function. From the notion of evolutes, the
tangents to the evolutes are orthogonal to the given timelike
curve C, so we have;

<~p,~t >= 0.

If we differentiate Equation (4), in terms of the arc length
parameter s of the timelike curve C, we get

z′ =~t +b′~p+b~p′. (7)

Since < ~p,~p >= 1 and < ~p,~t >= 0, we obtain, from Equa-
tions (6) and (7) that b′ = f and

~t +b~p = 0. (8)

If we use the Frenet formula for timelike curve and the deriva-
tive of Equation (5) into Equation (8), we get

~t+b[(κ~t+τ~b)sinφ +φ
′ cosφ~n−cosφτ~n−φ

′ sinφ~b] = 0.

So, we can write

[1+κbsinφ ]~t+[(φ ′−τ)bcosφ ]~n+((τ−φ
′)bsinφ)~b= 0.

(9)

Then, we have the following proposition with the aid of linear
independence of {~t,~n,~b}:

Proposition 3.1. Let C be a timelike curve with the curvature
κ and the torsion τ in Lorentz 3−space. Then, the following
equations hold

1+κbsinφ = 0,
(φ ′− τ)cosφ = 0,
(τ−φ ′)sinφ = 0.

So, we can give relations between the curvature and the
torsion of the curve C in the following proposition:

Proposition 3.2. Let C be a timelike curve with curvature
κ and torsion τ in Lorentz 3−space. The relations between
curvature and torsion of the curve C are

bsinφ = − 1
κ
=−ρ (10)

and

φ ′ = τ. (11)

If we integrate Equation (11) with respect to s, we get the
expression of φ

φ = φ(s) =
s∫

0

τds+ c1 , c1 = const. (12)

Also, with the aid of Equations (5) and (10), the equation of
the evolute E can be written as

z = z(s) =~x−ρ(~n+λ~b), (13)

where λ = λ (s) = cotφ . From the equation (12), we can say
that each value of c1 corresponds to one of the single infinity of
evolutes of the timelike curve C. If τ = 0, the timelike curve
C lies in a Lorentz plane. So, we get from Equation (12),
φ = c1 . A plane curve has an evolute which lies in the plane,
generated by the vectors ~n and~b. This evolute corresponds
to φ = c1 =

π

2
and is the locus of the centers of curvature for

the timelike curve C, [11].

4. Pseudo Spherical Curves
In this section, we give some relations and results for

pseudo spherical curves in Lorentz 3−space. Let Cs : I →
S2

1
⊂ E3

1
be a pseudo-spherical curve and the unit vector~r is

the position vector of the point P on Cs (see Figure 3). The
timelike tangent vector~t to Cs at P is given by the derivative
of~r with respect to the arc length s of Cs,

~t =
→
r′ . (14)

Figure 3. Pseudo spherical curve, Cs

So,~t is orthogonal to~r for all points on Cs. If P and Q are
two neighboring points on Cs separated by the arc increment
∆s along the curve and the central angle between the position
vectors for P and Q is ∆q, in the limit when Q→ P , we obtain
ds = dq. Then, the timelike tangent vector can be written as

~t =
d~r
dq

. (15)

Thus, we can use the central angle q as the parameter of Cs
and prime to denote differentiation with respect to q. The
spacelike vector~k =~t×~r, (εr εt

~k =~r×~t) is called the central
normal to Cs at P. The three mutually orthogonal unit vectors
[~r,~t,~k] define the geodesic trihedron of Cs and is denoted [r].
From the Frenet formula of the timelike curve, we can write

→
t ′ = κ~n, (16)

where κ is the curvature of Cs at P and ~n is the principal
normal of Cs. The three vectors [~t,~n,~b] define the natural
trihedron [t] of Cs at point P, together with the spacelike bi-
normal εt εn

~b =~t×~n. Note that~r and~k lie in the normal plane
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and the plane defined by~r and~t is referred to as the central

plane of Cs at point P. Since <
→
t ′ ,~t >= 0, we have

→
t ′ = µ~r+σ~k. (17)

If we differentiate the expression εr εt
~k =~r×~t, we obtain

εr εt

→
k′ =

→
r′×~t +~r×

→
t ′ =~r×

→
t ′ . (18)

Substituting Equation (17) into Equation (18), we obtain

~k′ =−σ~t, (19)

where σ is the geodesic curvature of the timelike curve Cs
at point P. Then, if we take derivative of εk εr

~t =~k×~r with
respect to q and using Equations (15), (16), (19), we have

→
t ′ = σ~k+~r = κ~n. (20)

By using (20), it is easy to see that

κ =
√

1+σ2. (21)

Then, we can give the following proposition with the aid of
Equations (15), (17) and (19).

Proposition 4.1. The geodesic trihedron [t] with respect to q
is given by;

→
r′
→
t ′
→
k′

=

 0 1 0
1 0 σ

0 σ 0

 ~r
~t
~k


or

[r]′ = R[r] (22)

where

[r]′ = [
→
r′ ,
→
t ′ ,
→
k′] and R =

 0 1 0
1 0 σ

0 σ 0

 .
Since ds = dq, the Frenet formula for the natural trihedron

[t] can be given with respect to the central angle parameter q;

[t]′ = K[t] (23)

where [t]′= [
→
t ′ ,
→
n′,
→
b′] and K =

 0 κ 0
κ 0 τ

0 −τ 0

 . On the other

hand, the Darboux vector associated with the geodesic trihe-
dron is found as follows

d =−σ~r+~k. (24)

Then, from Equations (22) and (23), we can write

→
r′ = d×~r,
→
t ′ = d×~t,
→
k′ = d×~k.

The orientation angle between the geodesic trihedron and
natural trihedron about the common axis~t is denoted by q1 .
The relation between these trihedrons is given by

[r] = Q[t], (25)

where

Q =

 0 −sinq1 cosq1
1 0 0
0 cosq1 sinq1

 .
Since <~r,~n >= −sinq1 , <~r,~t >= 0 and <~r,~b >= cosq1 ,
from Equations (23) and (25), we obtain

<~r,~t ′ >= κ sinq1 (26)

and

κ =− 1
sinq1

=−cscq1 . (27)

So, we can give the following proposition related with the
radius of curvature of Cs:

Proposition 4.2. The radius of curvature of Cs at the point P
is

ρ =
1
κ
=−sinq1 .

Now, we find an expression for the torsion τ of Cs at the
point P. So, if we take first derivative of <~r,~b >= cosq1 , we
get

<~r,~b′ >=−q′
1

sinq1 . (28)

From the derivative of Equation (20) and Equation (23), the
second derivative of the timelike tangent is found as

d2~t
dq2 = κ

′~n+κτ~b+κ
2~t. (29)

From Equations (21) and (29), we have

σ
′~k = κ

′~n+κτ~b.

If we use Equation (25) into the above equation, we get

σ
′(cosq1~n+ sinq1

~b) = κ
′~n+κτ~b. (30)

Then, we can give the following proposition related with the
torsion of Cs.
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Proposition 4.3. The torsion of Cs at the point P is

τ =−σ
′(1+σ

2)−1. (31)

The equation (24) is normalized by Equation (21) and
ρ =−sinq1 . So, the instantaneous axis for the rotation of the
geodesic trihedron is express as

d̃ = ρ(−σ~r+~k). (32)

If we use the equality ρ =−sinq1 , the instantaneous axis can
be rewritten as

d̃ = cosq1~r− sinq1
~k. (33)

Equations (32) and (33) show that the geodesic curvature σ

can be given as

σ = σ(s) = cotq1 .

5. Pseudo Spherical Evolutes
The pseudo spherical evolute of the spherical curve Cs

is defined as the locus of points which belong to the set of
evolutes of Cs and lies on the pseudo unit sphere. So, the
pseudo spherical evolute of Cs denoted by Es is pseudo spher-
ical curve. ~re(s) corresponds to the vector representation of
the pseudo spherical evolute. The curvature properties of Es
are important tool to define the higher-order path curvature of
Es at P.

If we replace~x in Equation (13) with~r, we get an evolute
of Cs as

z = z(s) =~r−ρ(~n+λ~b). (34)

From the concept of the pseudo spherical evolute, Es must
lie on the unit pseudo sphere. Also, let~z =~re be the position
vector from O to Pe, a point on Es. The position vector from
O to Pe is

~re =~re(s) =~r−ρ(~n+λ~b). (35)

From the transformation given in Equations (25), (35) and
ρ =−sinq1 , we can write~re as

~re = (cosq1
~b− sinq1~n)+ sinq1~n+λ sinq1

~b,
= (cosq1 +λ sinq1)

~b.

Since~re is a spacelike unit vector it means that

~re =~b
cosq1 +λ sinq1 = 1

}
(36)

which represent the position vector of Es. The parameter λ

is a function of the geodesic curvature of the original Cs and
defined as follows

λ =
1

sinq1

− cotq1 =−κ−σ . (37)

The arbitrary constant c1 in Equation (12) used to define λ

varies from point to point on the pseudo spherical evolute.
But, the pseudo spherical evolute, corresponding to a pseudo
spherical curve is similarity with the evolute corresponding to
a plane curve. Equation (36) can be considered as a response
to the study of Kirson, [3]. Kirson defined a point Pe on the
spherical evolute as the intersection of the unit sphere with
the binormal vector originating from the center of the sphere
O. The spacelike tangent of Es is

~te =
d~re

dse
=

d~b
dse

(38)

where se is the arc length of the pseudo evolute Es. From the
Frenet formula for the natural trihedron, we get

~te =
d~b
dq

dq
dse

=−τ~n
dq
dse

.

Then, if we use Equation (31) and
dq
ds

> 0, we have

dq
dse

=
1
|τ|

=
dq1

dq
.

Therefore dse = dq1 for (q1)
′ > 0 and dse =−dq1 for (q1)

′ <
0. The central angle q1 is parameter for the pseudo evolute Es.
Then, we get

~te =−
τ

|τ|
~n =±~n.

The spacelike tangent to Es is parallel to the spacelike princi-
pal normal of Cs and the central normal of Es is given by

~ke = ε
~re

ε
~te
~re×~te =~b× (±~n) =∓~t.

The set of three unit vectors [~re,~te,~ke] is called the geodesic
trihedron of the pseudo spherical evolute and shown with [re].
So, we can give the following propositions:

Proposition 5.1. A transformation matrix between the natu-
ral trihedron of Cs and the geodesic trihedron of Es is given
by  ~re

~te
~ke

=

 0 0 1
0 ∓1 0
∓1 0 0

 ~t
~n
~b

 .
Proposition 5.2. The Frenet formula for [te] = [~te,~ne,~be] is
given by

d
dq1

 ~te
~ne
~be

=

 0 ±κe 0
∓κe 0 τe

0 −τe 0

 ~te
~ne
~be


where

~ne =±

d~te
dq1∣∣∣∣ d~te
dq1

∣∣∣∣ and~be =~ne×~te

626



Contribution to pseudo spherical kinematics of pseudo spherical evolutes — 627/628

are the timelike normal vector and the spacelike binormal of
Es, respectively.

For the Frenet formula for [re] and transformation matrix
between the [r] and [re], we can give the following proposi-
tion:

Proposition 5.3. The Frenet formula for [re] is given by

d
dq1

 ~re
~te
~ke

=

 0 1 0
∓1 0 −σe
0 ∓σe 0

 ~re
~te
~ke


and the transformation matrix between the [r] and [re] is ~re

~te
~ke

=

 cosq1 1 sinq1
∓sinq1 0 cosq1

0 ∓1 0

 ~r
~t
~k

 .
Example 5.4. Let C(s) = (

3
5

sinh(
√

5s),
3
5

cosh(
√

5s),
2√
5

s)

be a unit speed timelike curve such that

~t = (
3√
5

cosh(
√

5s),
3√
5

sinh(
√

5s),
2√
5
),

~n = (sinh(
√

5s), cosh(
√

5s), 0),
~b = (− 2√

5
cosh(

√
5s),− 2√

5
sinh(

√
5s),− 3√

5
)

and
κ

τ
=

3
2
. So, from Equation (3), the involutes of the curve

C(s) can be written as

I(s) = (
3
5

sinh(
√

5s)+(c− s)
3√
5

cosh(
√

5s),

3
5

cosh(
√

5s)+(c− s)
3√
5

sinh(
√

5s),
2c√

5
)

where c is an arbitrary constant. If φ =
π

4
, with the aid of

Equation (13), the equation of the evolute E(s) can be written
as follows

E(s) = (
4

15
sinh(

√
5s)+

2
3
√

5
cosh(

√
5s),

4
5

cosh(
√

5s)+
2

3
√

5
sinh(

√
5s),

2s√
5
− 1√

5
).
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