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Exact solutions for Klein-Gordon equation with
quadratic non linearity
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Abstract
Availability of exact solutions are important for any nonlinear partial differential equation which represent any
physical phenomenon. A general Klein-Gordon equation with quadratic non linearity is considered in this paper
and several new exact solutions are derived. These solutions are derived in terms of Jacobi elliptic functions.
The periodic solutions and hyperbolic solutions can be derived from these solutions as limiting cases of Jacobi
elliptic function solutions.
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1. Introduction
There are several types of Klein-Gordon equation studied

in the literature. The Klein-Gordon equation with quadratic
non linearity is given by

∂ 2 f
∂ t2 −

∂ 2 f
∂x2 +α f −β f 2 = 0 (1.1)

and the equation with cubic non linearity is given by

∂ 2 f
∂ t2 −

∂ 2 f
∂x2 +α f −β f 3 = 0 (1.2)

where f = f (x, t). These equations have found applications in
many field of science and engineering. They are used to study
problems in solid state physics, optics , classical quantum and
relativistic mechanics [5, 8]. Several methods are applied to
obtain exact solutions to these equations and their variants
[1–4, 6, 9, 10].

In this paper the generalized Klein-Gordon equation with
quadratic non linearity given by

∂ 2 f
∂ t2 + c1

∂ 2 f
∂x2 + c2 + c3 f + c4 f 2 = 0 (1.3)

is considered. Certain new exact solutions of this equation are
derived in terms of Jacobi elliptic function method. Some of
the known solutions can be obtained from these new solutions
as particular cases. To obtain the required solutions a travel-
ing wave ansatz method is applied in the next section. The
required computations are done with the help of computer
algebra system.

2. Exact solutions
The traveling wave transformation is used to obtain the

exact solutions of the Klein-Gordon equation (1.3). Assume
that the required solution is in the form

v = v(ax+bt) (2.1)

Substituting this in the equation (1.3) we get an ordinary
differential equation(

a2c1 +b2)v′′+ c4v2 + c3v+ c2 = 0 (2.2)

where v = v(ζ ) with ζ = ax+bt. Any solution to this ordi-
nary differential equation will lead to a solution to the Klein-
Gordon equation. To obtain the required solutions several
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ansatz forms are assumed for the function v and the solutions
are derived with the help of computer algebra system. The
solutions are assumed in the form of the ansatz given by

v =
N

∑
i=−N

Aiui (2.3)

where u is some function of ζ . Comparing the highest order
derivative and the highest degree of the differential equation,
it can be easily seen that the N = 2. Here u(ζ ) is taken to be
the different Jacobi elliptic functions with modulus k [7]. We
take e = k2 in all the calculations in this paper.

3. Jacobi elliptic function solutions
Assume the solutions in the form

v(ζ ) = a0+a1sn(ζ )+a2sn(ζ )2+a−1ns(ζ )+a−2ns(ζ )2

(3.1)

Substituting this ansatz in the equation (2.2), this will be a
solution if the following algebraic equations are satisfied.

a−2
(
6
(
a2c1 +b2)+a−2c4

)
= 0,

2a−1
(
a2c1 +a−2c4 +b2)= 0,

a−2
(
−4(e+1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2
−1c4 = 0,

2a−2a1c4−a−1
(
(e+1)

(
a2c1 +b2)−2a0c4− c3

)
= 0,

2a−2e
(
a2c1 +b2)+2a2

(
a2c1 +a−2c4 +b2)

+a0 (a0c4 + c3)+2a−1a1c4 + c2 = 0,

2a−1a2c4−a1
(
(e+1)

(
a2c1 +b2)−2a0c4− c3

)
= 0,

a2
(
−4(e+1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2

1c4 = 0,

2a1
(
e
(
a2c1 +b2)+a2c4

)
= 0,

a2
(
6e
(
a2c1 +b2)+a2c4

)
= 0.

Solving this algebraic system simultaneously,

a−1 = a1 = 0, a−2 =
3φ

2c4
√

ψφ
,

a0 =−
c3 +

(e+1)φ√
ψφ

2c4
, a2 =

3eφ

2c4
√

ψφ
,

b =
1
2

√
−4a2c1ψ +

√
ψφ

ψ
.

(3.2)

where ψ = e(e+14)+1 and φ = c2
3−4c2c4. Then the original

solutions for the equation (1.3) are given by

v1 =
3eφsn(ax+bt)2

2c4
√

ψφ
+

3φsn(ax+bt)2

2c4
√

ψφ
+

c3 +
(e+1)φ√

ψφ

2c4
(3.3)

where the value of b is given in (3.2). The second ansatz is
taken to be

v(ζ ) = a0+a1nc(ζ )+a2nc(ζ )2+a−1cn(ζ )+a−2cn(ζ )2

(3.4)

Substituting this ansatz in the equation (2.2), this will be a
solution if the following algebraic equations are satisfied.

a−2
(
a−2c4−6(e−1)

(
a2c1 +b2))= 0,

2a−1
(
a−2c4− (e−1)

(
a2c1 +b2))= 0,

a−2
(
4(2e−1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2
−1c4 = 0,

a−1
(
(2e−1)

(
a2c1 +b2)+2a0c4 + c3

)
+2a−2a1c4 = 0,

−2a2(e−1)
(
a2c1 +b2)−2a−2

(
e
(
a2c1 +b2)−a2c4

)
+a0 (a0c4 + c3)+2a−1a1c4 + c2 = 0,

a1
(
(2e−1)

(
a2c1 +b2)+2a0c4 + c3

)
+2a−1a2c4 = 0,

a2
(
4(2e−1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2

1c4 = 0,

−2a1
(
e
(
a2c1 +b2)−a2c4

)
= 0,

a2
(
a2c4−6e

(
a2c1 +b2))= 0.

Solving this algebraic system simultaneously,

a−1 = a1 = 0, a−2 =−
3(e−1)φ
2c4
√

ψφ
,

a0 =
(2e−1)

√
ψφ − c3ψ

2c4ψ
, a2 =−

3eφ

2c4
√

ψφ
,

b =−1
2

√
−4a2c1ψ +

√
ψφ

ψ
.

(3.5)

where ψ = 16(e− 1)e + 1 and φ = c2
3 − 4c2c4. Then the

original solutions for the equation (1.3) are given by

v2 =−
3eφcn(ax+bt)2

2c4
√

ψφ
− 3(e−1)φnc(ax+bt)2

2c4
√

ψφ

+
(2e−1)

√
ψφ − c3ψ

2c4ψ

(3.6)

where the value of b is given in (3.5). The next ansatz Jacobi
elliptic function ansatz is taken to be

v(ζ ) = a0+a1cs(ζ )+a2cs(ζ )2+a−1sc(ζ )+a−2sc(ζ )2

(3.7)

Substituting this ansatz in the equation (2.2), this will be a
solution if the following algebraic equations are satisfied.

a−2
(
a−2c4−6(e−1)

(
a2c1 +b2))= 0,

2a−1
(
a−2c4− (e−1)

(
a2c1 +b2))= 0,

a−2
(
−4(e−2)

(
a2c1 +b2)+2a0c4 + c3

)
+a2
−1c4 = 0,

a−1
(
−(e−2)

(
a2c1 +b2)+2a0c4 + c3

)
+2a−2a1c4 = 0,

−2a2(e−1)
(
a2c1 +b2)+2a−2

(
a2c1 +a2c4 +b2)

+a0 (a0c4 + c3)+2a−1a1c4 + c2 = 0,

a1
(
−(e−2)

(
a2c1 +b2)+2a0c4 + c3

)
+2a−1a2c4 = 0,

a2
(
−4(e−2)

(
a2c1 +b2)+2a0c4 + c3

)
+a2

1c4 = 0,

2a1
(
a2c1 +a2c4 +b2)= 0,

a2
(
6
(
a2c1 +b2)+a2c4

)
= 0.
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(3.8)

Solving this algebraic system simultaneously,

a−1 = a1 = 0, a−2 =
3(e−1)φ
2c4
√

ψφ
,

a0 =

(e−2)φ√
ψφ
− c3

2c4
, a2 =−

3φ

2c4
√

ψφ
,

b =
1
2

√
φ√
ψφ
−4a2c1.

(3.9)

where ψ = (e− 16)e + 16 and φ = c2
3 − 4c2c4. Then the

original solutions for the equation (1.3) are given by

v3 =−
3φcs(ax+bt)2

2c4
√

ψφ
+

3(e−1)φsc(ax+bt2

2c4
√

ψφ
+

(e−2)φ√
ψφ
− c3

2c4

(3.10)

where the value of b is given in (3.9). The next ansatz function
is taken to be

v(ζ ) = a0+a1cd(ζ )+a2cd(ζ )2+a−1dc(ζ )+a−2dc(ζ )2

(3.11)

Substituting this ansatz in the equation (2.2), this will be a
solution if the following algebraic equations are satisfied.

a−2
(
6
(
a2c1 +b2)+a−2c4

)
= 0,

2a−1
(
a2c1 +a−2c4 +b2)= 0,

a−2
(
−4(e+1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2
−1c4 = 0,

2a−2a1c4−a−1
(
(e+1)

(
a2c1 +b2)−2a0c4− c3

)
= 0,

2a−2e
(
a2c1 +b2)+2a2

(
a2c1 +a−2c4 +b2)

+a0 (a0c4 + c3)+2a−1a1c4 + c2 = 0,

a1
(
−(e+1)

(
a2c1 +b2)+2a0c4 + c3

)
+2a−1a2c4 = 0,

a2
(
−4(e+1)

(
a2c1 +b2)+2a0c4 + c3

)
+a2

1c4 = 0,

2a1
(
e
(
a2c1 +b2)+a2c4

)
= 0,

a2
(
6e
(
a2c1 +b2)+a2c4

)
= 0.

(3.12)

Solving this algebraic system simultaneously,

a−1 = a1 = 0, a−2 =
3φ

2c4
√

ψφ
, a0 =−

c3 +
(e+1)φ√

ψφ

2c4
,

a2 =
3eφ

2c4
√

ψφ
, b =−1

2

√
−4a2c1ψ +

√
ψφ

ψ
.

(3.13)

where ψ = e(e+14)+1 and φ → c2
3−4c2c4. Then the origi-

nal solutions for the equation (1.3) are given by

v4 =
3eφcd((ax+bt)2

2c4
√

ψφ
+

3φdc((ax+bt)2

2c4
√

ψφ
−

c3 +
(e+1)φ√

ψφ

2c4

(3.14)

where the value of b is given in (3.13)

4. Discussion
Several new exact solutions for general Klein-Gordon

equation with quadratic non linearity are derived in this paper.
These solutions are derived using the Jacobi elliptic function
ansatz forms. Since the computations are hard, the required
calculations are performed using any of the computer algebra
system such as Maple or Mathematica. Some of the trigono-
metric and hyperbolic solutions which are existing in the
literature are obtained when the modulus of the Jacobi elliptic
functions tends to zero or one. The trigonometric solutions
are obtained by putting e = 0 in the four solutions derived in
this paper and are given by

v5 =−
−3
√

φ csc2
(

ax+
√

b1t
2

)
+ c3 +

√
φ

2c4
,

v6 =−
−3
√

φ sec2
(

ax−
√

b1t
2

)
+ c3 +

√
φ

2c4
,

v7 =
1

8c4

(
−4c3 +

√
φ −3

√
φ

(
cot2

(
ax+

√
b2t
4

)
+sec2

(
ax+

√
b2t
4

)))
,

v8 =−
−3
√

φ sec2
(

ax−
√

b1t
2

)
+ c3 +

√
φ

2c4

and, when e = 1, the hyperbolic solutions are given by

v9 =
1

8c4

(
−4c3 +

√
φ +3

√
φ

(
coth2

(
ax+

√
b3t
4

)
−sech2

(
ax+

√
b3t
4

)))
,

v10 =
−3
√

φsech2
(

ax−
√

b1t
2

)
− c3 +

√
φ

2c4
,

v11 =−
3
√

φcsch2
(

ax+
√

b4t
2

)
+ c3 +

√
φ

2c4
,

v12 =

√
φ − c3

2c4

where b1 =−4a2c1−
√

φ ,b2 =
√

φ−16a2c1,b3 =−16a2c1−√
φ and b4 =

√
φ − 4a2c1. The ansatz method used in this

paper are easier and powerful method in deriving the exact
solutions of Klein-Gordon equations. Further exact solutions
can also be derived for this equation by assuming similar
ansatz forms. Such ansatz method can be applied to obtain
exact solutions of other nonlinear partial differential equations
also.
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