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Abstract
Several exact solutions for steady state Schrodinger equation in three dimensional space are derived in this
paper. The potentials are taken to be sum of an inverse square potential and a power law potential. Different
new exact solutions of Schrodinger equation are derived for this potential with zero energy. The solutions are
derived in cartesian coordinates without separation of variables. Certain exact solutions for non-zero energy are
also derived for Schrodinger equation with inverse square potential.
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1. Introduction
Schrodinger equation is having many applications not only

in modern physics but also in several other fields such as quan-
tum information and econophysics[1, 3, 5, 27, 30]. So exact
solutions to Schrodinger equations are also having applica-
tions in these and several other fields. Availability of exact

solutions for any partial differential equation which represent
a physical system or phenomena are inevitable for a better
understanding of behavior of the system or phenomena. They
can also be utilized to check the correctness of approximate
methods developed for obtaining specific solutions.

There are several exact solutions available in the liter-
ature for Schrodinger equation corresponding to the well
known potentials such as Coulomb, harmonic oscillator in-
verse square, Mie-type, Eckart, Poschl-Teller, Morse , Rosen-
Morse, Woods-Saxen, Manning-Rosen, Scarf and Genden-
shtein potentials [7, 9, 17, 18, 23, 24, 29]. In the case of such
equations one can convert them in to ordinary differential
equations by suitable transformations. These equations can
be solved using well known special functions such as Bessel,
Hermite, Legendre, Heun, Whittaker and confluent hypergeo-
metric functions. Some of the recent works involving exact
solutions of Schrodinger equation are [12, 13, 20, 21, 25, 26]
and involving approximate solutions are [8, 11]. Exact so-
lutions of Schrodinger equation in three dimensional cases
are obtained mainly by solving the corresponding radial part
of the equation after assuming the solution in the separation
of variables form. The motion of particles in inverse square
potential has been discussed in [10, 16, 28].

There are several situations where Schrodinger equation
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with zero energy can be applied [2, 4, 6, 14, 15, 19, 22].
Schrodinger equation can be simplified by assuming zero
energy when discussing the case of scattering of ultracold par-
ticles. The zero energy eigenstates in the parabolic potential
barrier play important role in statistical mechanics in Gelfand
triplet[14]. Zero energy exact solutions are also motivated
by studies in super symmetric quantum mechanics and they
are also used in zero energy limit calculations in the study of
loosely bound systems, scattering length and coupling param-
eter calculations[2].

Plan of the paper is as follows. In the next section certain
exact solutions of Schrodinger equation with zero energy are
derived. The potential is taken to be the sum of an inverse
square potential and a power law potential. The required
three dimensional solutions are obtained without separation
of variables. In the third section certain exact solution of
Schrodinger equation are derived with non-zero energy and
in the case of inverse square potential. The exact solutions
that we have derived in both cases are always bound state
solutions.

2. Zero energy exact solutions
Most of the exact solutions available for Schrodinger equa-

tion in the literature are usually derived by the method of sepa-
ration of variables in the spherical coordinates. This will lead
to an ordinary differential equation corresponding to radial
part. This equation is solved to find various exact solutions in
the case of potentials which are functions of the radial vector
r =

√
x2 + y2 + z2 only. But, in this paper we will find out

certain exact solutions to the three dimensional Schrodinger
partial differential equations at zero energy level in cartesian
coordinates without applying the method of separation of vari-
ables. The potential that we consider here is the sum of inverse
square potential and a power law potential. The corresponding
equation is given by

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 =

(
a

x2 + y2 + z2

−b
(
x2 + y2 + z2)k

)
f (x,y,z)

(2.1)

where a, b and k are arbitrary parameters. Assuming partic-
ular forms for the required exact solutions we will solve the
Schrodinger equation (2.1). The exact solutions that we are
interested to derive are the bound state solutions f (x,y,z) to
Schrodinger equation which are zero at origin and also tends
to zero as x or y or z tends to ±∞.

2.1 Case I
The equation (2.1) is converted into an ordinary differential
equation by a suitable substitution. Putting u = x2 + y2 + z2

in equation (2.1) we get an ordinary differential equation in
terms of g(u) = f (x,y,z) given by

4
(
ug′′(u)+6g′(u)

)
+
(

buk− a
u

)
g(u) = 0 (2.2)

Now we use the following change of variables to the indepen-
dent and dependent variables

z =

√
buk+1

k+1
(2.3)

and g(u) = u
−1
4 w(z). On substitution and simplification the

differential equation (2.2) becomes

z2w′′(z)+ zw′(z)+w(z)
(

z2− 4a+1
4(k+1)2

)
= 0 (2.4)

This is a Bessel’s equation whose solutions in terms of Bessel
functions of first and second kinds are given by

c1J√4a+1
2(k+1)

(z)+ c2Y√4a+1
2(k+1)

(z) (2.5)

where c1 and c2 are arbitrary constants. Hence particular
solutions to Schrodinger equation (2.1) are given by

(
x2 + y2 + z2)− 1

4

c1J√4a+1
2(k+1)

√b
(
x2 + y2 + z2

) k+1
2

k+1


+c2Y√4a+1

2(k+1)

√b
(
x2 + y2 + z2

) k+1
2

k+1


(2.6)

For real numbers a ≥ −1/4 and b > 0, the solution given
by Bessel function of first kind satisfies the conditions for a
bound state wave function, that is, they are going to zero as x,
y or z tends to ±∞. Also it becomes zero if all x, y and z are
zeroes. Graphical representation of a particular wave function
is given in figure 1 for fixed values for the variable z.

2.2 Case II
Now we seek a solution in the form in the form f (x,y,z) =
xg(x2 +y2 + z2). We convert the corresponding equation (2.1)
into an ordinary differential equation by putting u = x2 + y2 +
z2 .Then we get an ordinary differential equation in terms of
g(u) given by

4ug′′(u)+10g′(u)+
(

buk− a
u

)
g(u) = 0 (2.7)

Here we use the change of variables to the independent and de-
pendent variables given by equation (2.3) and g(u)= u−3/4w(z).
On substitution and simplification the differential equation
(2.7) becomes

z2w′′(z)+ zw′(z)+w(z)
(

z2− 4a+9
4(1+ k)2

)
= 0 (2.8)

This is again Bessel’s equation whose solutions in terms of
Bessel functions of first and second kinds are given by

c1J√4a+9
2(k+1)

(z)+ c2Y√4a+9
2(k+1)

(z) (2.9)
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Figure 1. Graphical representation of wave function given by
equation (2.6) with c1 = 1,c2 = 0,a = 1,b = 2,k = 1 and for
z = 0,z = 1 and z = 2 respectively ( Case I)

where c1 and c2 are arbitrary constants. Hence particular
solutions to Schrodinger equation (2.1) are given by

x
(
x2 + y2 + z2)− 3

4

(
c1J√4a+9

2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

)
+

c2Y√4a+9
2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

))
(2.10)

For any real numbers a≥−4/9 and b≥ 0 , Bessel function
of first kind gives a bound sate solution of wave equation. Its
graphical representation is given in figure 2

2.3 Case III
Here we assume that a solution can be written in the form
f (x,y,z) = xyg(x2 + y2 + z2). We convert the corresponding
equation (2.1) into an ordinary differential equation by putting
u= x2+y2+z2. Then we get an ordinary differential equation
in terms of g(u) given by

4ug′′(u)+14g′(u)+
(

buk− a
u

)
g(u) = 0 (2.11)

Here we use the change of variables (2.3) and g(u) = u−
5
4 w(z).

On substitution and simplification the differential equation
(2.11) becomes

z2w′′(z)+ zw′(z)+w(z)
(

z2− 25+4a
4(k+1)2

)
= 0 (2.12)

This is a Bessel’s equation whose solutions in terms of Bessel
functions of first and second kinds are given by

c1J√25+4a
2(k+1)

(z)+ c2Y√25+4a
2(k+1)

(z) (2.13)

where c1 and c2 are arbitrary constants. Hence particular
solutions to Schrodinger equation (2.1) are given by

(xy)
(
x2 + y2 + z2)− 5

4

(
c1J√25+4a

2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

)
+

c2Y√25+4a
2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

))
(2.14)

For any real numbers a≥−25/4 and b≥ 0 , Bessel function
of first kind gives a bound sate solution of wave equation. Its
graphical representation is given in figure 3

2.4 Case IV
Here we assume that a solution can be written in the form
f (x,y) = (xyz)g(x2 + y2 + z2). We convert the corresponding
equation (2.1) into an ordinary differential equation by putting
u = x2+y2+z2 .Then we get an ordinary differential equation
in terms of g(u) given by

4ug′′(u)+18g′(u)+
(

buk− a
u

)
g(u) = 0 (2.15)
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Figure 2. Representation of wave function given by equation
(2.10) with c1 = 1,c2 = 0,a = 1,b = 2,k = 3 and and for
z = 0,z = .75 and z = 1.5 respectively ( Case II)

Here we use the change of variables given by (2.3) and g(u) =
u−

7
4 w(z).

z2w′′(z)+ zw′(z)+w(z)
(

z2− 49+4a
4(k+1)2

)
= 0 (2.16)

This is a Bessel’s equation whose solutions in terms of Bessel
functions of first and second kinds are given by

c1J√49+4a
2(k+1)

(z)+ c2Y√49+4a
2(k+1)

(z) (2.17)

where c1 and c2 are arbitrary constants. Hence particular
solutions to Schrodinger equation (2.1) are given by

(xyz)
(
x2 + y2 + z2)− 7

4

(
c1J√25+4a

2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

)

+c2Y√25+4a
2(k+1)

(√
b(x2 + y2 + z2)k+1

k+1

))
(2.18)

For any real numbers a≥−49/4 and b≥ 0 , Bessel function
of first kind gives a bound sate solution of wave equation. Its
graphical representation is given in figure 4

3. Non-zero energy solutions
Now we will derive certain exact solutions for three di-

mensional Schrodinger equation with non-zero energy. The
potential that we consider here is the inverse square potential.
The corresponding equation is given by

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 =

(
a

x2 + y2 + z2 −E
)

f (x,y) (3.1)

Assuming particular forms for the solution we will find out
certain exact solution of the equation (3.1). We are interested
to derive only the bound state solutions f (x,y) to Schrodinger
equation which are zero at origin and also tends to zero as x or
y tends to ±∞. Since the procedure is same as in the previous
section, the exact solutions are summarized below.

3.1 Case I
We convert equation (3.1) into an ordinary differential equa-
tion by a suitable substitution. Putting u = x2 + y2 + z2 in
the corresponding equation we get an ordinary differential
equation in terms of g(u) = f (x,y,z) given by

4ug′′(u)+6g′(u)−
(a

u
−E

)
g(u) = 0 (3.2)

Solving this, particular solutions to Schrodinger equation (3.1)
are given by

(
x2 + y2 + z2)− 1

4

(
c1J 1

2
√

4a+1

(√
E (x2 + y2 + z2)

)
+c2Y1

2
√

4a+1

(√
E (x2 + y2 + z2)

))

653



Several exact solutions for three dimensional Schrodinger equation involving inverse square and power law
potentials — 654/656

Figure 3. Representation of wave function given by equation
(2.14) with c1 = 1,c2 = 0,a = 1,b = 2,k = 3 and and for
z = 0,z = 0.75 and z = 1.5 respectively ( Case III)

Figure 4. Representation of wave function given by equation
(2.18) with c1 = 1,c2 = 0,a = 1,b = 2,k = 3 and and for
z = 0.5,z = 1 and z = 1.5 respectively ( Case IV)
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(3.3)

For real numbers a ≥ −1/4, the solution given by Bessel
function of first kind satisfies the conditions for a bounded
state wave function, that is, they are going to zero as x, y or
z tends to ±∞. Also it becomes zero if all x, y and z become
zero.—

3.2 Case II
Here we assume that a solution can be written in the form
f (x,y,z) = xg(x2 + y2 + z2). Then we can derive particular
solutions to Schrodinger equation (3.1) which are given by

x
(
x2 + y2 + z2)− 3

4

(
c1J 1

2
√

4a+9

(√
E (x2 + y2 + z2)

)
+c2Y1

2
√

4a+9

(√
E (x2 + y2 + z2)

))
(3.4)

For any real numbers a≥−9/4 , Bessel function of first kind
gives a solution to wave equation which satisfies the condi-
tions for a desirable wave function for all positive energy..

3.3 Case III
Next we assume that a solution can be written in the form
f (x,y,z) = xyg(x2 + y2 + z2). Then we can derive particular
solutions to Schrodinger equation (3.1) which are given by

xy
(
x2 + y2 + z2)− 5

4

(
c1J 1

2
√

4a+25

(√
E (x2 + y2 + z2)

)
+c2Y1

2
√

4a+25

(√
E (x2 + y2 + z2)

))
(3.5)

For any real numbers a ≥ −25/4 , here the Bessel function
of first kind gives a solution to wave equation which satisfies
the required conditions for a desirable wave function for all
positive energy levels.

3.4 Case IV
Here we assume that a solution can be written in the form
f (x,y,z)= (xyz)g(x2+y2+z2). Then we can derive particular
solutions to Schrodinger equation (3.1) which are given by

(xyz)
(
x2 + y2 + z2)− 7

4

(
c1J 1

2
√

4a+49

(√
E (x2 + y2 + z2)

)
+c2Y1

2
√

4a+49

(√
E (x2 + y2 + z2)

))
(3.6)

Here also for any real numbers a≥−49/4, the Bessel func-
tion of first kind gives a solution to wave equation which
satisfies the required conditions for a desirable wave function
for all positive energy levels.

4. Conclusion
Several exact solutions of Schrodinger equation in three

dimensional space are derived in this paper. Usually the solu-
tions of these equations with different potentials are derived
in spherical coordinates, after assuming the solution in the
variable separable form. Then the resulting radial equation
is solved for different potential which are given as a function
of only the radial variable r. The other parts of solution will
be having the same solution always. The solutions that we
have derived in this paper are derived without using separa-
tion of variables. There are several papers which discuss the
application of zero energy potentials [2, 4, 6, 14, 15, 19, 22].
We derived zero energy solutions of Schrodinger equation
in the case of the potential which is a sum of inverse square
potential and power law potential and all these solutions are
vanishing at origin and at infinity. Certain non-zero energy
solutions for the inverse square potentials are derived in the
third section. The assumed potentials have many applications
and such problems are recently discussed in [10, 16, 28]. All
the solutions are represented in terms of Bessel functions and
all of them vanishes at the origin and tends to zero as |x|,
|y| or |z| tends to infinity. The solutions given in terms of
Bessel functions of first kind are all bound state solutions
for the Schrodinger equation, for parameters in certain inter-
vals. The solutions obtained in the third section are continuum
wave functions for all positive values of energy E. All the
derived solutions are new in the literature and they can be used
to analyze the physical situations where the inverse square
potentials and power law potentials play a major role. The
obtained solutions can not only be applied to the areas of mod-
ern physics and chemistry but also in the emerging fields such
as quantum information and econophysics [1, 3, 5, 27, 30],
where Schrodinger equation is finding many new applications.
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