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Topology conservation of vorticity field in inviscid
and viscous fluid flows
Subin P. Joseph1*

Abstract
The equation governing topology conservation of a vector fields is considered under a generating vector field.
Assuming the generating vector field as velocity field of a fluid flow, topology conservation of vorticity vector field
is discussed in this paper. Usually, the topology conservation of vorticity field holds in the case of barotropic flows
of inviscid flows. But such topology conservation of vorticity field lines are not only true for inviscid flows but also
several examples of such topology conserving vorticity fields can be obtained for Newtonian and non-Newtonian
fluid flows. We derive certain exact solutions for topology conserving vorticity fields both in the case of viscous
flows and couple stress fluid flows.
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1. Introduction
Topological properties are playing an increasing role in

the field of hydrodynamics in the recent years[1, 3, 4, 7, 11,
12, 15, 16]. Topological concepts play an important role in the
study of hydrodynamic and magnetohydrodynamics flows and
equilibrium. Ideal hydrodynamic and magnetohydrodynamics
flows conserve not only the vorticity flux and magnetic flux
but also any kind of linkage and knottedness of vortex field
lines and magnetic field lines respectively. Topological proper-
ties can be used to study the different ways in which ideal plas-
mas can minimize the magnetic energy and the corresponding

constraints. Topological considerations apply mainly to invis-
cid flows. In the case of inviscid magnetohydrodnamics flows
also they play an important role[5, 6, 8, 11, 15]. The different
local invariants that appear in the filed of fluid mechanics
can be classified in to four using the concept of differential
forms and Lie derivative[15]. If we use four dimensional Eu-
clidean space-time manifold, we get one more invariant for
fluid flow[12]. In the case of inviscid incompressible flows,
we can easily find all these invariants in connection with the
vorticity field. But In the case of viscous flows these quantities
associated with the vorticity field need not be invariants of
flow.

In this paper we are investigating the conservation of field
line topology in the case of both inviscid and viscous flows.
We are concentrating on the conservation of vorticity vector
filed lines in various types of flows. We construct several
examples of viscous fluid flows where vorticity field lines are
topology conserving. Some examples in the case of couple
stress fluid flows are also obtained.

2. Fundamental equations

A necessary and sufficient condition that the flux of an
arbitrary vector field S through an arbitrary material surface
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is constant as the motion proceeds is[8, 14]

∂tS+(w.∇)S− (S.∇) w+S(∇.w) = 0, (2.1)

and a necessary and sufficient condition for the vector tubes
of S to be material tubes is

S× (∂tS+(w.∇)S− (S.∇)w) = 0. (2.2)

The generating vector field in the equations (2.1) and (2.2) is
w . Thus, flux of the field S is conserved if it satisfies the
equation (2.1). It can be easily conclude that if a field is flux
conserving, then its vector tubes are material tubes, which
follows from (2.1) and (2.2).

The condition for topology conservation of an arbitrary
vector field S is given by[5, 14]

∂tS+(w.∇)S− (S.∇)w = λS. (2.3)

where w(x,t) is the generating vector field and λ (x,t) is a
scalar function. From this equation it can be shown that the
null points of the field lines and the orientation of field lines
are preserved. But, in general, (2.2) need not preserve such
properties[5].

Now, consider the case of barotropic inviscid fluid flow.
The Euler’s equation of motion under conservative body force
is

∂tu+
1
2

∇u2−u∧ω =−∇ψ. (2.4)

Here ω is the vorticity. ψ is defined as follows. Let ϕ be the
potential of the body force and ∇W = ∇P/ρ , where P is the
pressure and ρ is the density of the fluid. Then ψ = ϕ−W .

Taking the curl of this equation we get the vorticity equa-
tion

∂tω +(u.∇)ω− (ω .∇)u =−(∇.u)ω. (2.5)

From this it is clear that the evolution of the vorticity field is
topology conserving. This is the classical result that in the
case of a barotropic inviscid fluid flow with conservative body
forces the topology of vorticity field is conserved.

In the case of incompressible viscous flow under conser-
vative body forces the Navier-Stokes equation is given by

∇ ·u = 0 (2.6)

and

∂u
∂ t

+(u ·∇)u =−∇p+∇φ +ν∇
2u, (2.7)

where u is the velocity field P is the pressure, ∇φ is the
conservative body force and ν is the coefficient of kinematic
viscosity. Then the corresponding vorticity equation is given
by

∂ω

∂ t
+∇× (ω×u)−ν∇

2
ω = 0 (2.8)

where ω = ∇×u is the vorticity vector field.
The equation of motion of an incompressible couple stress
fluid flow under conservative body forces[13] are given by
(2.6) and

∂u
∂ t

+(u ·∇)u =−∇p+∇φ +ν∇
2u−µ∇

4u, (2.9)

where µ is the parameter due to couple stress. Then the
corresponding vorticity equation is given by

∂ω

∂ t
+∇× (ω×u)−ν∇

2
ω +µ∇

4
ω = 0 (2.10)

As we mentioned earlier, in the case of inviscid incom-
pressible flows the topology conservation of vorticity field
lines are evident. Now the question is whether there exist
topology conserving incompressible viscous fluid flows or
not. If there exist such a flow then vorticity vector field must
satisfy the equations (2.3) and (2.8) simultaneously. In the
next section we derive certain exact solutions for Newtonian
fluid flows and couple stress fluid flows for which the vorticity
fields are topology conserving and which solves the equations
(2.8) and (2.10) respectively.

3. Viscous flows
To find exact solutions to Navier-Stoke equation itself is

very difficult, since it involves nonlinear partial differential
equations in higher orders. So the available solutions for vis-
cous flows are very rare in the literature. Existing solutions are
mainly in the case of one dimensional flows, two dimensional
flows or axisymmetric flows[2, 10]. Our problem is much
more difficult as we have to solve the Navier-Stoke equation
and the equation for topology conservation simultaneously.
So, to obtain a solution for topology conserving vorticity field
in the case of viscous flows we use the following ansatz form
for the vector potential for the corresponding velocity field

V =e−Aνt (a1 sin(−ax+by+bz)+a2 cos(−ax+by+bz),

a3 sin(−ay+bx+bz)−a4 cos(−ay+bx+bz),

a5 sin(−az+bx+by)+a6 cos(−az+bx+by))
(3.1)

Taking the curl of this equation we get the velocity field as

u =be−Aνt (a4 sin(ay−b(x+ z))−a6 sin(b(x+ y)−az)

−a3 cos(ay−b(x+ z))+a5 cos(b(x+ y)−az),

a2 sin(ax−b(y+ z))+a6 sin(b(x+ y)−az)

+a1 cos(ax−b(y+ z))−a5 cos(b(x+ y)−az),

−(a2 sin(ax−b(y+ z))+a4 sin(ay−b(x+ z))

+a1 cos(ax−b(y+ z))−a3 cos(ay−b(x+ z))))
(3.2)
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Clearly this velocity field satisfy the equation (2.6). Now the
vorticity field is obtained as

ω =be−Aνt (−2a1bsin(ax−b(y+ z))

+2a2bcos(ax−b(y+ z))+a(a3 sin(−ay+bx+bz)

+a5 sin(b(x+ y)−az)−a4 cos(ay−b(x+ z))

+a6 cos(b(x+ y)−az)) ,a(a1(−sin(ax−b(y+ z)))

+a5 sin(b(x+ y)−az)+a2 cos(ax−b(y+ z))

+a6 cos(b(x+ y)−az))−2b(a3 sin(ay−b(x+ z))

+a4 cos(ay−b(x+ z))) ,a(a1(−sin(ax−b(y+ z)))

+a3 sin(−ay+bx+bz)+a2 cos(ax−b(y+ z))

−a4 cos(ay−b(x+ z)))+2b(a5 sin(b(x+ y)−az)

+a6 cos(b(x+ y)−az)))
(3.3)

This is a solution to the Navier-Stokes equation if the above
fields satisfy the vorticity equation (2.8). Substituting these
values in the vorticity equation and simplifying, it is not hard
to show that equation (2.8) is satisfied if the following nonlin-
ear algebraic equations are simultaneously satisfied.

a2−A+2b2 = 0

(a2a3−a1a4)
(
−a2 +ab+2b2)= 0

(a1a3 +a2a4)
(
−a2 +ab+2b2)= 0

(a2a5 +a1a6)
(
−a2 +ab+2b2)= 0

(a1a5−a2a6)
(
−a2 +ab+2b2)= 0

(a4a5−a3a6)
(
−a2 +ab+2b2)= 0

(a3a5 +a4a6)
(
−a2 +ab+2b2)= 0

(3.4)

Solving this system of equations by computer algebra sys-
tem we get three distinct solutions. Corresponding to these
solutions we get exact solutions to the Navier-Stoke equation.

3.0.1 First solution
A solution to the above system of nonlinear equation is given
by A = 3a2 and b = −a. Corresponding to this solution the
exact solution for Navier-Stokes equation satisfying equations
(2.6) and (2.8) is given by

u =e−3a2νta((a3−a5)cos(a(x+ y+ z))

−(a4 +a6)sin(a(x+ y+ z)),(a6−a2)sin(a(x+ y+ z))

+(a5−a1)cos(a(x+ y+ z)),(a2 +a4)sin(a(x+ y+ z))

+(a1−a3)cos(a(x+ y+ z)))
(3.5)

But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied
if 3a2ν +λ = 0. So choosing λ = −3a2ν , the topology of
vorticity filed is conserved. Hence, we derived the required
exact solution for viscous incompressible fluid flow for which
the vorticity fields are topology conserving, given by (3.5).

3.0.2 Second solution
Another solution to the system of nonlinear equation (3.4) is
given by

A =
3a2

2

b =
a
2
.

(3.6)

Corresponding to this solution the exact solution for Navier-
Stokes equation satisfying equations (2.6) and (2.8) is given
by

u =
1
2

ae−
3
2 a2νt

(
a4 sin

(
ay− 1

2
a(x+ z)

)
−a6 sin

(
1
2

a(x+ y−2z)
)
+a3

(
−cos

(
1
2

a(x−2y+ z)
))

+a5 cos
(

1
2

a(x+ y−2z)
)
,a2 sin

(
ax− 1

2
a(y+ z)

)
+a6 sin

(
1
2

a(x+ y−2z)
)
+a1 cos

(
ax− 1

2
a(y+ z)

)
−a5 cos

(
1
2

a(x+ y−2z)
)
,−

(
a2 sin

(
ax− 1

2
a(y+ z)

)
+a4 sin

(
ay− 1

2
a(x+ z)

)
+a1 cos

(
ax− 1

2
a(y+ z)

)
−a3 cos

(
1
2

a(x−2y+ z)
)))

(3.7)

But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied
if

λ =−1
2
(
3a2

ν
)

So, the topology of vorticity filed is conserved. Hence, we
derived the second family of required exact solutions for vis-
cous incompressible fluid flow for which the vorticity fields
are topology conserving given by (3.7).

3.0.3 Third solution
We can find another solution to the system of nonlinear equa-
tion (3.4) which is given by

A = a2 +2b2

a1 = a2 = a5 = a6 = 0
(3.8)

Corresponding to this solution the exact solution for Navier-
Stokes equation satisfying equations (2.6) and (2.8) is given
by

u =e−νt(a2+2b2) (a4bsin(ay−b(x+ z))

−a3bcos(ay−b(x+ z)),0,
a4 sin(−ay+bx+bz)+a3 cos(ay−b(x+ z)))

(3.9)
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But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied
if

λ =−
(
a2 +2b2)

ν

So, the topology of vorticity field is conserved in this case
also. Hence, we derived the third family of required exact
solutions for viscous incompressible fluid flow for which the
vorticity fields are topology conserving given by (3.9).

4. Couple stress flows

Consider the system of nonlinear partial differential equa-
tions (2.10) for the couple stress fluid flows which are in
higher orders than Navier-Stokes equation. In the case of
Navier-Stoke equation itself it is very difficult to find exact
solutions. So it is much more difficult to find exact solutions
to couple stress fluid flows. Hence the available solutions for
such flows are very rare in the literature and are mainly in the
case of one dimensional or two dimensional flows[9]. Here,
to obtain exact solution for topology conserving vorticity field
in the case of couple stress flows, we use the following ansatz
form for the vector potential for the corresponding velocity
field

V =e−(Aν+Bµ)t (a1 sin(by−ax+bz)+a2 cos(by−ax+bz),

a3 sin(−ay+bx+bz)−a4 cos(−ay+bx+bz),

a5 sin(−az+bx+by)+a6 cos(−az+bx+by))
(4.1)

Taking the curl of this equation we get the velocity field as

u =be−(Aν+Bµ)t (a4 sin(ay−b(x+ z))−a6 sin(b(x+ y)−az)

−a3 cos(ay−b(x+ z))+a5 cos(b(x+ y)−az),

a2 sin(ax−b(y+ z))+a6 sin(b(x+ y)−az)

+a1 cos(ax−b(y+ z))−a5 cos(b(x+ y)−az),

−(a2 sin(ax−b(y+ z))+a4 sin(ay−b(x+ z))

+a1 cos(ax−b(y+ z))−a3 cos(ay−b(x+ z))))
(4.2)

Clearly this velocity field satisfy the equation (2.6). Taking
curl of this equation we get the vorticity vector field ω .

These are solutions to the couple stress flows if the above
fields satisfy the vorticity equation (2.10). Substituting these
values in the vorticity equation and simplifying, it is again
not too hard to show that equation (2.10) is satisfied if the
following nonlinear algebraic equations are simultaneously

satisfied.

a4
µ +a2 (4b2

µ +ν
)
−Aν +4b4

µ +2b2
ν−Bµ = 0

(a2a3−a1a4)
(
−a2 +ab+2b2)= 0

(a1a3 +a2a4)
(
−a2 +ab+2b2)= 0

(a2a5 +a1a6)
(
−a2 +ab+2b2)= 0

(a1a5−a2a6)
(
−a2 +ab+2b2)= 0

(a4a5−a3a6)
(
−a2 +ab+2b2)= 0

(a3a5 +a4a6)
(
−a2 +ab+2b2)= 0

(4.3)

Solving this system of equations by computer algebra sys-
tem we get three distinct solutions. Corresponding to these
solutions we get exact solutions to the couple stress flows.

4.0.1 First solution
A solution to the above system of nonlinear equation is given
by

B =
9a4µ +3a2ν−Aν

µ

b =−a
(4.4)

Corresponding to this solution the exact solution for couple
stress flows satisfying equations (2.6) and (2.10) is given by

u =ee−3a2t(3a2µ+ν)
(a(a3−a5)cos(a(x+ y+ z))

−a(a4 +a6)sin(a(x+ y+ z)),

a(a6−a2)sin(a(x+ y+ z))

+a(a5−a1)cos(a(x+ y+ z)),

a(a2 +a4)sin(a(x+ y+ z))

+a(a1−a3)cos(a(x+ y+ z)))

(4.5)

But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied if
9a4µ +3a2ν +λ = 0. So choosing λ =−(9a4µ +a2ν), the
topology of vorticity filed is conserved. Hence, we derived the
required exact solution for incompressible couple stress fluid
flow for which the vorticity fields are topology conserving,
given by (4.5).

4.0.2 Second solution
Another solution to the system of nonlinear equation (4.3) is
given by

B =
9a4µ +6a2ν−4Aν

4µ

b =
a
2

(4.6)

Corresponding to this solution the exact solution for couple
stress fluid flow satisfying equations (2.6) and (2.10) is given
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by

u =
1
2

ae−
3
4 t(3a4µ+2a2ν)

(
a4 sin

(
ay− 1

2
a(x+ z)

)
−a6 sin

(
1
2

a(x+ y−2z)
)
+a3

(
−cos

(
1
2

a(x−2y+ z)
))

+a5 cos
(

1
2

a(x+ y−2z)
)
,a2 sin

(
ax− 1

2
a(y+ z)

)
+a6 sin

(
1
2

a(x+ y−2z)
)
+a1 cos

(
ax− 1

2
a(y+ z)

)
−a5 cos

(
1
2

a(x+ y−2z)
)
,−

(
a2 sin

(
ax− 1

2
a(y+ z)

)
+a4 sin

(
ay− 1

2
a(x+ z)

)
+a1 cos

(
ax− 1

2
a(y+ z)

)
−a3 cos

(
1
2

a(x−2y+ z)
)))

(4.7)

But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied
if

λ =−3
4
(
3a4

µ +2a2
ν
)

So, the topology of vorticity filed is conserved. Hence, we
derived the second family of required exact solutions for cou-
ple stress fluid flow for which the vorticity fields are topology
conserving given by (4.7).

4.0.3 Third solution
We can find another solution to the system of nonlinear equa-
tion (4.3) which is given by

B =
ν
(
a2−A+2b2

)
µ

+
(
a2 +2b2)2

a1 = a2 = a5 = a6 = 0
(4.8)

Corresponding to this solution the exact solution for couple
stress fluid flow satisfying equations (2.6) and (2.10) is given
by

u =e−(a2+2b2)(µ(a2+2b2)+ν) (a4bsin(ay−b(x+ z))

−a3bcos(ay−b(x+ z)),0,
a4 sin(−ay+bx+bz)+a3 cos(ay−b(x+ z)))

(4.9)

But for vorticity conservation this flow should also satisfy the
equation (2.3). Substituting the velocity field and correspond-
ing vorticity field in this equation, this equation is satisfied
if

λ =−
(
a2 +2b2)(

µ
(
a2 +2b2)+ν

)
So, the topology of vorticity field is conserved in this case
also. Hence, we derived the third family of required exact
solutions for couple stress fluid flow for which the vorticity
fields are topology conserving given by (4.9).

5. Conclusion
In this paper we have discussed the topology conservation

of vorticity field in different kinds of flows. It is known
that the Euler’s equation of motion for inviscid barotropic
flows can be compared to the ideal form of Ohm’s law. Also
the induction equation in magnetohydrodynamics flows and
vorticity equation for incompressible barotropic flows are
having the same form. So vorticity field and magnetic fields
are topology conserving vector fields in the case of inviscid
hydrodynamics and magnetohydrodynamics respectively.

Topological properties can be used to analyze character-
istics of different flow problems. Topological invariants are
used in the study of turbulence. We derived several exact
solutions for topology conserving vorticity fields in the case
of incompressible viscous flows. Certain exact solutions for
topology conserving vorticity fields are also derived for in-
compressible couple stress fluid flows.

References
[1] V. I. Arnold, B. A. Khesin, Topological methods in hydro-

dynamics, Springer, New York, 1998.
[2] P. G. Drazin, N. Riley, The Navier-Stokes Equations: A

Classification of Flows and Exact Solutions, Cambridge
University Press, 2006.

[3] A. Enciso, D. Peralta-Salas, F. Torres de Lizaur, Helic-
ity is the only integral invariant of volume-preserving
transformations, PNAS, 13(8)(2016), 2035–2040.

[4] M. Farazmand, An adjoint-based approach for finding
invariant solutions of Navier–Stokes equations, J. Fluid.
Mech., 795(2016), 278–312.

[5] G. Hornig and K. Schindler, Magnetic topology and its
invariant definition.Phys.Plasmas 3(1996), 781–791.

[6] H.K. Moffatt, The degree of knottedness of tangled vortex
lines, J.Fluid.Mech., 35(1969), 117–129.

[7] H. K. Moffatt, Helicity—invariant even in a viscous fluid,
Science, 357(6350)(2017), 448–449.

[8] W. A. Newcomb, Motion of magnetic lines of force. Ann.
Phys. 3(1958), 347–385.

[9] S.P. Joseph, Exact solutions of couple stress fluid flows,
In: Srinivasacharya D., Reddy K. (eds) Numerical Heat
Transfer and Fluid Flow. Lecture Notes in Mechanical
Engineering. Springer, Singapore, 2019.

[10] S.P. Joseph, Polynomial solutions and other exact solu-
tions of axisymmetric generalized Beltrami flows, Acta
Mech. 229(2018), 2737–2750.

[11] S. P. Joseph, Topological Invariants in Hydrodynamics
and Hydromagnetics, PhD Thesis, Cochin University of
Science and Technology, dyuthi.cusat.ac.in, 2008.

[12] P. J. Subin, M. J. Vedan, Vorticity invariants in hydrody-
namics, Z. Angew. Math. Phys., 55(2004), 258–267.

[13] V.K. Stokes, Couple Stresses in Fluids, Phys. Fluids,
9(1966), 1709, doi: 10.1063/1.1761925

[14] C. Truesdell, The Kinematics of Vorticiy, Indiana Univer-
sity Press, Bloomington, 1954.

666



Topology conservation of vorticity field in inviscid and viscous fluid flows — 667/667

[15] A. V. Tur, V.V. Yanovsky, Invariants in dissipationless hy-
drodynamics media, J.Fluid.Mech., 248(1993), 67–106.

[16] A. Yahalom, A conserved local cross helicity for non-
barotropic MHD, Geophysical and Astrophysical Fluid
Dynamics, 111(2)(2017), 131–137.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

667

http://www.malayajournal.org

	Introduction
	Fundamental equations
	Viscous flows
	First solution
	Second solution
	Third solution


	Couple stress flows
	First solution
	Second solution
	Third solution


	Conclusion 
	References

