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Abstract
A subset S of vertices in a connected graph G of order at least two is called a geodetic vertex cover if S is both a
geodetic set and a vertex covering set. The minimum cardinality of a geodetic vertex cover is the geodetic vertex
covering number of G denoted by gα(G). Any geodetic vertex cover of cardinality gα(G) is a gα - set of G. Some
general properties satisfied by geodetic vertex covering number of a graph are studied. The geodetic vertex
covering number of several classes of graphs are determined. Some bounds for gα(G) are obtained and the
graphs attaining these bounds are characterized. A few realization results are given for the parameter gα(G).
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1. Introduction
For basic graph theoretic terminology and basic definitions
not given here we refer to Harary [5]. We consider finite,
undirected, connected graphs without loops and multiple
edges. Denote the number of vertices and edges of a graph
G as n = |V (G)| and m = |E(G)| respectively. A vertex v is
a simplicial vertex or an extreme vertex of G if the subgraph
induced by its neighbors is complete.

Let I[u,v] denote the set consisting of u,v, and all the ver-
tices lying on a u− v geodesic and for S⊆V (G), I[S] denote
the union of all I[u,v] for u,v ∈ S. The geodetic number g(G)
of G is the minimum cardinality of its geodetic sets and any
geodetic set of cardinality g(G) is a minimum geodetic set or

a g - set of G. The geodetic number of a graph was introduced
in [1,6] and further studied in [2 - 4]. A subset S ⊆V (G) is
called a vertex covering set of G if every edge has at least one
end point in S. A vertex covering set with minimum cardinal-
ity is a minimum vertex covering set of G. The vertex covering
number of G is the cardinality of any minimum vertex cover-
ing set of G denoted as α(G). The vertex covering number of
a graph was studied in [7].

A set of vertices (edges) in a graph G is independent if no
two of the vertices (edges) are adjacent. The independence
number β (G) of G is the maximum number of vertices in an
independent set of vertices of G. By a matching in a graph G,
we mean an independent set of edges in G. A caterpillar is
a tree of order 3 or more, the removal of whose end vertices
produces a path called the spine of the caterpillar. A graph G
is called triangle free if it does not contain cycles of length 3.
A subset S⊆V (G) is a dominating set if every vertex in V −S
is adjacent to at least one vertex in S. A geodetic dominating
set of G is a subset S of vertices which is both a geodetic set
and a dominating set. The minimum cardinality of a geodetic
dominating set of a graph G is its geodetic domination number
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denoted by γg(G).

In this paper we define geodetic vertex covering number
gα(G) of a graph and initiate a study of this parameter. We
investigate about some general properties satisfied and some
bounds attained by this parameter. Also few realization results
are given for this parameter. We need the following theorems.

Theorem 1.1 ([3]) Every extreme vertex of a connected graph
G belongs to every geodetic set of G.

Theorem 1.2 ([6]) For any tree T with k end vertices, g(T ) =
k.

Throughout this paper, G is considered as a connected
graph of order at least two.

2. The Geodetic Vertex Cover of a Graph

Definition 2.1. Let G be a connected graph of order at least
2. A set S of vertices of G is a geodetic vertex cover of G if
S is both a geodetic set and a vertex covering set of G. The
minimum cardinality of a geodetic vertex cover of G is defined
as the geodetic vertex covering number of G and is denoted
by gα(G). Any geodetic vertex cover of cardinality gα(G) is
a gα - set of G.

Example 2.2. Consider the graph G of Figure 2.1. Observe
that S1 = {v2,v4,v5} is a minimum vertex covering set of G
so that α(G) = 3, S2 = {v1,v3,v6} is a minimum geodetic set
of G so that g(G) = 3 and S3 = {v1,v2,v3,v4,v6} is a gα -set
of G so that gα(G) = 5. Thus the geodetic vertex covering
number of G is different from its vertex covering number and
its geodetic number.

Theorem 2.3. Let G be any connected graph. Then 2 ≤
max{α(G),g(G)} ≤ gα(G)≤ n.

Proof. Any geodetic set of G needs at least two vertices and
so 2 ≤ max{α(G),g(G)}. From the definition of geodetic
vertex covering number of G, we have max{α(G),g(G)} ≤
gα(G). Clearly V (G) is a geodetic vertex cover of G. Hence
gα(G)≤ n. Thus 2≤ max{α(G),g(G)} ≤ gα(G)≤ n.

Remark 2.4. The bounds in Theorem 2.3 are sharp. For
C4, α(C4) = 2, g(C4) = 2 and gα(C4) = 2. For Kn (n ≥
2), gα(Kn) = n.

Remark 2.5. Clearly, union of a vertex covering set and
a geodetic set is a geodetic vertex cover of G. Thus 2 ≤
max{α(G),g(G)}≤ gα(G)≤min{α(G)+g(G),n}. Take the
graph G in Figure 2.2. Observe that S1 = {v2,v4} is a min-
imum vertex covering set of G and hence α(G) = 2, S2 =
{v1,v5} is a g - set of G so that g(G) = 2 and S3 = {v1,v2,v4,
v5}= S1∪S2 is a gα - set of G and so gα(G) = 4 = α(G)+
g(G)< n = 6.

Theorem 2.6. Every simplicial vertex of a connected graph
G belongs to every geodetic vertex cover of G.

Proof. From the definition of gα - set, every gα - set of G is a
g - set of G. Hence the result follows from Theorem 1.1.

Corollary 2.7. Let K1,n−1 (n≥ 3) be a star. Then gα(K1,n−1)
= n−1.

Proof. The result follows from Theorem 2.6.

Corollary 2.8. For the complete graph Kn(n≥ 2), gα(Kn) =
n.

Theorem 2.9. If G is a connected graph of order n≥ 2, then

(i) gα(G) = 2 if and only if G is either K2 or K2,n−2 (n≥
3).

(ii) gα(G) = n if and only if G = Kn (n≥ 2).

Proof. (i) Let gα(G) = 2. Let S = {u,v} be a minimum
geodetic vertex cover of G. We claim that G = K2 or G =
K2,n−2 (n≥ 3). Suppose that G = K2, then there is nothing to
prove. If not, then n≥ 3 and since S = {u,v} is a gα - set of
G, u and v cannot be adjacent in G. Let W =V −S. We claim
that every vertex of W is adjacent to both u and v and no two
vertices of W are adjacent.
Claim 1. Every vertex of W is adjacent to both u and v.
Suppose there is a vertex w ∈W such that w is adjacent to at
most one vertex in S. Then w lies on a u−v geodesic of length
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at least 3. Let P : u = v0,v1, ...,vi = w,vi+1, ...,vm = v be a
u− v geodesic. Then the edges in E(P)−{v0v1,vm−1vm} are
not covered by any of the vertices u and v, which is a contra-
diction.
Claim 2. No two vertices of W are adjacent.
Suppose there exist vertices wi,w j ∈W such that wi and w j
are adjacent. Since from Claim 1, every vertex of W is adja-
cent to both u and v and S = {u,v} is a gα - set of G, wi and
w j lie on the u− v geodesics, u,wi,v and u,w j,v, respectively.
Then the edge wiw j is not covered by any of the vertices of
S, which is a contradiction. Hence no two vertices of W are
adjacent in G.
Thus G is the complete bipartite graph K2,n−2(n ≥ 3) with
partite sets S and W.

Conversely, let G = K2 or K2,n−2 (n≥ 3). If G = K2, then
by Corollary 2.8, gα(G) = 2. If not, let G = K2,n−2 (n≥ 3).
Let U = {u1,u2} and W = {w1,w2, ...,wn−2} be the biparti-
tion of G. Clearly every vertex wi (1≤ i≤ n−2) lies on the
geodesic u1,wi,u2, and the vertices u1 and u2 cover all the
edges of G. Hence U is a geodetic vertex cover of G and so
gα(G) = 2.

(ii) Assume that G = Kn (n≥ 2). Then by Corollary 2.8,
gα(G) = n. Conversely, let gα(G) = n. We prove that G =
Kn (n ≥ 2). For n = 2, the result holds from (i). Let n ≥ 3.
Contrarily assume that there exist two non-adjacent vertices
u and v in G. Let a vertex x be adjacent to u lying on a u− v
geodesic. Then V (G)−{x} is a geodetic vertex cover of G,
giving a contradiction to gα(G) = n. Thus G = Kn.

Theorem 2.10. Let G be a connected graph with n≥ 3. Then
gα(G) = 3 if and only if either G = K3 or there exists a min-
imum geodetic set S on 3 vertices such that V (G)− S is an
independent set or there exists a minimum geodetic set S on 2
vertices such that 〈V (G)−S〉 is a star.

Proof. Let gα(G) = 3. Let S = {u,v,w} be a minimum geode-
tic vertex cover of G. Since g(G)≤ gα(G), we have g(G) = 2
or 3.
Case 1. g(G) = 3. If n = 3, then by Theorem 2.9, G = K3. If
n ≥ 4, then V (G)−S 6= Φ. Since S is a gα - set of G, every
edge of G is incident with at least one vertex in S. Hence
V (G)−S is an independent set of vertices of G.
Case 2. g(G) = 2. Let S′ = {u,v} ⊂ S be a g - set of G. Also
since S = {u,v,w} is a gα - set of G, the edges not covered
by the vertices of S′ should have exactly one end in w. Sup-
pose the other ends of any two of these edges, say x and y
are adjacent, then the edge xy will not be covered by any of
the vertices of S, which is a contradiction. Hence 〈V (G)−S〉
must be a star.

Conversely, if G = K3, by Corollary 2.8, gα(G) = 3. If G
has a minimum geodetic set S on 3 vertices such that

V (G)−S is independent, then every edge of G has at least one
end in S so that S is both a minimum geodetic set and a vertex
cover of G. Hence S is a gα - set of G and so gα(G) = 3.
If G has a minimum geodetic set S on 2 vertices such that
〈V (G)− S〉 is a star, then S is not a vertex cover of G. Let
w be the cut vertex of the star induced by V (G)− S. Then
S′ = S∪{w} will be a vertex cover of G so that S′ is a geodetic
vertex cover of G.

Theorem 2.11. Let G be a connected graph with g(G) ≥
n−1. Then gα(G) = g(G).

Proof. Let G be a connected graph with g(G) ≥ n− 1. By
Theorem 2.3, g(G)≤ gα(G)≤ n. If g(G)= n, then gα(G)= n
and so g(G) = gα(G). If g(G) = n−1, then let S = {x1,x2,
...,xn−1} be a g - set of G. Then there exists a vertex say, x
not in S. Then x lies on a geodesic P joining any two vertices
of S. Let x be adjacent to the vertices xi and x j on P for
some i 6= j. Then all the edges of G including xix and xx j are
covered by the vertices of S. Hence S is a gα - set of G. Thus
g(G) = gα(G).

Remark 2.12. The converse of Theorem 2.11 need not be
true. For the graph G given in Figure 2.3, S = {v1,v2,v5} is
both a minimum geodetic set and a minimum geodetic vertex
cover of G so that gα(G) = g(G) = 3 but g(G)< n−1.

Theorem 2.13. Let G be a connected graph of order n≥ 2.
Then gα(G) = g(G) if and only if either G =Kn or there exists
a minimum geodetic set S such that V (G)−S is independent.

Proof. Let gα(G) = g(G). If G = Kn, then clearly gα(G) =
g(G) = n. If not, let S be a g - set of G. Since gα(G) = g(G),
S is a geodetic vertex cover of G. Hence every edge of G is
incident with at least one vertex in S and so no edge of G has
two ends in V (G)−S. Thus no pair of vertices of V (G)−S
are adjacent and hence V (G)−S is an independent set.

Conversely, if G = Kn, then clearly gα(G) = g(G) = n. If
S is a minimum geodetic set of G such that V (G)−S is inde-
pendent, then no edge of G has two ends in V (G)−S. Thus
every edge of G has at least one end in S. Hence S is a mini-
mum geodetic vertex cover of G so that |S|= g(G) = gα(G).
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Theorem 2.14. Let T be a tree of order n≥ 2. Then the fol-
lowing statements are equivalent.

(i) gα(T ) = g(T ).

(ii) T is a star.

(iii) α(T ) = 1.

(iv) The set of all end vertices of T is a vertex cover of T.

Proof. Let S consist of all end vertices of T. Since T is a tree,
from Theorem 1.2, S is the unique g - set of T.

(i)⇒ (ii) Let gα(T ) = g(T ). We claim that T is a star. If
T is not a star, then diam T ≥ 3 and so T has at least one edge
other than the end edges. Let S′ be the set of all edges of T
which are not end edges. It is clear that S will not cover the
edges in S′. Since, from Theorem 2.6, any geodetic vertex
cover of T contains S, gα(T )> |S|= g(T ), which is a contra-
diction.

(ii)⇒ (iii) Let T be a star. If n = 2, then an end vertex of
T will cover the edge of T and if n≥ 3, then the cut vertex of
T will cover all the edges in T. Hence α(T ) = 1.

(iii)⇒ (iv) Let α(T ) = 1. Then there exists a vertex, say
x, in T such that x is an end vertex of all the edges in T. Hence
all the edges in T are end edges in T and so S forms a vertex
cover of T.

(iv)⇒ (i) Suppose that S is a vertex cover of T. Then from
Theorem 1.2, S is a g - set and by Theorem 2.6, S is a gα - set
of T. Hence gα(T ) = g(T ).

Remark 2.15. The results in Theorem 2.14 are not equivalent
for any connected graph G of order n ≥ 2. See graph G of
Figure 2.4, S = {v1,v3,v4} is both a g - set and a gα - set of G.
So gα(G) = g(G) = 3. But S′ = {v2,v3} is a minimum vertex
covering set and so α(G) = 2. Moreover, G is not a star.

Theorem 2.16. Let T be a tree of order n ≥ 4. If every cut
vertex of T lies on a diametral path of length 2k+1 or 2k+2,
then gα(T ) = g(T )+ k.

Proof. Let T be a tree of order n≥ 4 with every cut vertex of
T lies on a diametral path of length 2k+1 or 2k+2. Let P :
v0,v1,v2, ...,vm (m= 2k+1 or 2k+2) be a diametral path of T.
Let S be the set of all end vertices of T. Then by Theorem 1.2,
S is the unique g - set of T and by Theorem 2.6, any geodetic
vertex cover of T contains S. Let T ′ be a tree obtained from T
by removing all the end vertices. Then T ′ : v1,v2, ...,vm−1 is
a path of length 2k−1 or 2k. It is clear that S will cover all
the end edges of T and S will not cover the remaining edges
of T. That is, S will not cover the edges of T ′. So to cover the
edges of T ′, we can include the vertices v2,v4,v6, ...,v2k to a
geodetic vertex cover of P. Clearly, S′= S∪{v2,v4,v6, ...,v2k}
is a minimum geodetic vertex cover of T and so gα(T ) =
|S|+ k = g(T )+ k.

Theorem 2.17. Let T be a tree of order n≥ 3 with diameter
d. Then gα(T ) = n− 1 if and only if T is either a star or a
double star.

Proof. Let gα(T ) = n−1. Let P : v0,v1,v2, ...,vd be a diame-
tral path of T. Then d ≥ 2. If d ≥ 4, then S =V (T )−{v1,v3}
is a geodetic vertex cover of T and so gα(T )≤ n−2, giving
a contradiction. Then d = 2 or 3 and hence T is either a star
or a double star. Converse is clear.

Theorem 2.18. Let T be a caterpillar of order n ≥ 2 with
diameter d. Then gα(T ) = d d

2 e+k−1, where k is the number
of end vertices of T.

Proof. Let T be a caterpillar. Let P : v0,v1,v2, ...,vd be a
diametral path and k denote number of end vertices of T.
If d is even, let S = {v0,v2,v4, ...,vd} and if d is odd, let
S = {v0,v2,v4, ...,vd−1,vd}. Then |S|= d d

2 e+1 and S covers
all the edges of P. Since any vertex of P lies on the v0− vd
geodesic, S is a geodetic vertex cover of the diametral path
P. Since T is a caterpillar, S′ = (V (T )−V (P))∪{v0,vd} is
the set of all end vertices of T. Then by Theorem 2.6, every
geodetic vertex cover of T contains S′. Now, it is clear that
S′′ = (S−{v0,vd})∪S′ is a minimum geodetic vertex cover
of T and so gα(T ) = d d

2 e−1+ k = d d
2 e+ k−1.

Theorem 2.19. (i) For the cycle Cn (n≥ 4), gα(Cn) = d n
2e.

(ii) For the wheel Wn = K1 +Cn−1 (n ≥ 5), gα(Wn) =
d n−1

2 e+1.

(iii) For the graph G = K1 +∪m jK j, where ∑m j ≥ 2,
gα(G) = n−1.

Proof. (i) Let Cn : v1,v2, ...,vn,v1 be a cycle of order n. It is
clear that S = {v1,v3,v5, ...,v2d n

2 e−1} is a gα - set of Cn and
so gα(Cn) = d n

2e.
(ii) Let Cn : v1,v2, ...,vn−1,v1 be the cycle of Wn and x, the
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vertex of K1 in Wn. Then S = {x,v1,v3, ...,v2d n−1
2
e−1} is a gα

- set of Wn. Hence gα(Wn) = d n−1
2 e+1.

(iii) Let G = K1 +∪m jK j, where ∑m j ≥ 2. Then n ≥ 3 and
G has exactly one cut vertex, say x, and all the remaining
vertices are simplicial vertices of G. Then by Theorem 2.6,
S =V (G)−{x} is a subset of any geodetic vertex cover of G
and so gα(G) = n−1.

Theorem 2.20. For any connected graph G, gα(G) ≤ n−
b diam G

2 c.

Proof. Let P : v0,v1,v2, . ..,vd be a diametral path of G. If d is
even, then S = {v0,v2,v4, ...,vd} covers all the edges of P and
each vertex of P lies on a v0− vd geodesic. Hence (V (G)−
V (P))∪S is a gα - set. So gα(G)≤ n− (d +1)+( d

2 +1) =
n− d

2 . Similarly, if d is odd, then S′ = {v0,v2,v4, ...,vd−1,vd}
covers all the edges of P and every vertex of P lies on a
v0− vd geodesic. Hence (V (G)−V (P))∪ S′ is a gα - set.
So gα(G)≤ n− (d +1)+(d d

2 e+1) = n−b d
2 c. Thus in both

cases, we have gα(G)≤ n−b diam G
2 c.

Remark 2.21. The bound in Theorem 2.20 is sharp. For
the path P7 : v0,v1,v2,v3,v4,v5,v6,S = {v0,v2,v4,v6} is the
unique minimum geodetic vertex cover of P7 and so gα(P7) =

4. Also since diam P7 = 6, we have n−b diam P7
2 c= 7−3 = 4.

Thus gα(P7) = n−b diam P7
2 c.

Theorem 2.22. If G is a triangle free graph with δ (G) ≥ 2
and M is a maximal matching of G, then gα(G)≤ 2|M|.

Proof. Let S consist of all end vertices of the edges of M.
Since M is a maximal matching of G, no edge of G has its
two ends in V (G)−S. Hence V (G)−S is independent so that
S is a vertex cover of G. Thus every edge of G has at least one
end in S. Since δ (G)≥ 2, there exist at least two neighbors x
and y in S for every v ∈V (G)−S. Since G has no triangles,
the path x,v,y is an x− y geodesic. Hence S is a gα - set of G.
Thus gα(G)≤ 2|M|.

Theorem 2.23. Let G be a triangle free graph with δ (G)≥ 2.
Then gα(G) = n− β (G), where β (G) is the independence
number of G.

Proof. Let S be a maximum independent set of vertices of G
so that |S|= β (G). Then V (G)−S is a minimum vertex cover
of G. Since G is triangle free and δ (G)≥ 2, every vertex in S
has at least two neighbors which are not adjacent in V (G)−S.
Thus, every vertex v ∈ S lies on an x− y geodesic for some
vertices x,y ∈V (G)−S. Hence V (G)−S is also a g - set of G.
Thus V (G)−S is a gα - set and hence gα(G) = n−β (G).

Theorem 2.24. Every geodetic vertex cover of a connected
graph G is a geodetic dominating set of G.

Proof. Let S be a geodetic vertex cover of G. Then S is both a
geodetic set and a vertex cover of G. Since S is a vertex cover,
every edge of G has at least one end in S and hence every
vertex in V (G)−S has at least one neighbour in S so that S is
a dominating set of G. Hence S is a geodetic dominating set
of G.

Corollary 2.25. If G is any connected graph, then 2≤ γg(G)
≤ gα(G)≤ n.

Remark 2.26. Note that, γg(K2) = 2. See graph G of Figure
2.5, S1 = {v1,v2,v3} is a gα - set and S2 = {v1,v3} is a γg - set
of G. Thus gα(G) = 3 and γg(G) = 2 and so γg(G)< gα(G).
And γg(Kn) = gα(Kn) = n.

Theorem 2.27. Let S be a minimum geodetic dominating set
of a connected graph G. Then S is a geodetic vertex cover of
G if and only if V (G)−S is an independent set.

Proof. Let S be a minimum geodetic dominating set of G. If
S is a geodetic vertex cover of G, then every edge of G has
at least one end in S. Hence no two vertices in V (G)−S are
adjacent so that V (G)−S is independent.

Conversely, let V (G)−S be an independent set of G. Then
every edge of G has at least one end in S so that S is also a
vertex cover of G. Hence S is a geodetic vertex cover of G.

3. Realization Results
By Theorem 2.3, 2≤ max{α(G),g(G)} ≤ gα(G)≤ n. Also,
we have gα(G)≤ min{α(G)+g(G),n}. The following theo-
rems give realization results for these parameters.

Theorem 3.1. If a and n are positive integers such that 2≤
a≤ n, then there exists a connected graph G of order n with
gα(G) = a.

Proof. We prove this theorem by considering two cases.
Case (i) 2≤ a = n. Take G = Kn, then from Theorem 2.9 (ii),
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gα(G) = n = a.
Case (ii) 2≤ a < n. Take H = Ka−1, the complete graph on
a− 1 vertices u1,u2, ...,ua−1. Add n− a+ 1 new vertices
v1,v2, ...,vn−a,x to H and join the vertices v1,v2, ...,vn−a to
both ua−1 and x. Thus we get the graph G of Figure 3.1.

Let S = {u1,u2, ...,ua−2} consist of all simplicial vertices
of G so that by Theorem 1.1, they must belong to every geode-
tic set. Observe that S′ = S∪{x} is a g - set and the edges
of Ka−1 and the edges vix(1≤ i≤ n−a) are covered by the
vertices of S′. Now, to cover the edges ua−1vi(1≤ i≤ n−a),
we must include at least the vertex ua−1 to S′. Hence a gα -
set of G is S′′ = {u1,u2, ...,ua−2,ua−1,x} with |S′′|= a < n.

Theorem 3.2. Let a,b ≥ 2 be any pair of integers. Then
there is a connected graph G with α(G) = a, g(G) = b and
gα(G) = a+b.

Proof. Consider a cycle C4 : z1,z2,z3,z4,z1 of order 4 and a
path P : y0,y1, ...,y2(a−2) of order 2(a−2)+1. Obtain graph
H from C4 and P by joining the vertices z3 in C4 and y0 in P.
Add b−1 new vertices x1,x2, ...,xb−1 to H and join each to
the vertex z1. The resultant graph G is shown in Figure 3.2.
Observe that the set S = {z1,z3,y1,y3, ...,y2(a−2)−1} is a min-
imum vertex cover for G with |S|= a.

Let S′ = {x1,x2, ...,xb−1,y2(a−2)} be the set of all simpli-
cial vertices of G so that they must belong to every geodetic
set of G. Moreover, S′ itself is a geodetic set of G and hence S′

is a minimum geodetic set of G with |S′|= b. Thus α(G) = a
and g(G)= b. Clearly S∪S′ is a gα - set and so gα(G)= a+b.

Theorem 3.3. Every pair of integers a,b with 1≤ a < b can
be realized as the vertex covering number and geodetic vertex
covering number, respectively, of some connected graph G.

Proof. We prove this theorem by considering two cases.
Case(i) 1 = a < b. Let G = K1,b (b ≥ 2) be a star. Then by
Theorem 2.14 and Corollary 2.7, α(G) = 1 and gα(G) = b.
Case(ii) 2 ≤ a < b. Take H = Ka+1, the complete graph
on a + 1 vertices u1,u2, ...,ua+1. Add b− a new vertices
v1,v2, ...,vb−a to H by joining each of them to ua+1 and get
graph G of Figure 3.3.

Clearly the set S = {u2,u3, ...,ua+1} is a minimum vertex
cover of G with |S|= a. Let S′ = {u1,u2, ...,ua,v1,v2, ...,
vb−a} be the set of all simplicial vertices of G so that by
Theorem 1.1, they must belong to every geodetic set of G.
Moreover, S′ itself is a geodetic set of G and hence S′ is a
minimum geodetic set of G. Also, S′ covers all the edges of
G. Hence S′ is a minimum geodetic vertex cover of G with
|S′|= b.

Theorem 3.4. For any two positive integers a and b with
2 ≤ a ≤ b, there exists a connected graph G with g(G) = a
and gα(G) = b.

Proof. Let P : u1,u2, ...,u2(b−a+1) be a path of order 2(b−
a+ 1). Add a− 1 new vertices v1,v2, ...,va−1 to P and join
these to u2(b−a+1). The resultant tree G is in Figure 3.4.

Clearly, S = {u1,v1,v2, ...,va−1} is the set of all simplicial
vertices of G. Since G is a tree, by Theorem 1.2, g(G) = a. It
is clear that the set S covers the edges u1u2,viu2(b−a+1)
(1 ≤ i ≤ a−1) and the remaining edges are covered by the
vertices u3,u5, ...,u2(b−a)+1. Hence the minimum geodetic
vertex cover is S′ = {u3,u5, ...,u2(b−a)+1,u1,v1,v2, ...,va−1}
with |S′|= b.
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