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Abstract
In fixed point diffusion analysis, many river distinguished such as the length, width, and depth have been un
weeded. Some characteristics have crystal clear effects on the inter connectivity. Thus, the edge weight index is
mature and can be used to energizing the actual forms. Populations are growing in a flash and exodus to inner
city areas in progressing countries has out turned in a paramount need for the inauguration of centralized water
systems to promulgate drink worthy water to occupants. Ripening, accented or gravely kept up apportionment
systems can causes the quality of piped drinking water to dip below agreeable levels and lay out grievous health
risks. Many aspects can affect the river discharge volume, such as the flow section area, flow section area, flow
velocity, geometrical shape, length, slope, roughness, and evaporation. However, because the research area is
flat, the slope seems to be zero, and above all the flow velocity is sedate; other characteristics are ancillary and
knotty to smack dab measure in actual situations.
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1. Introduction
Fixed point theory is a note worthy area of functional

examination. This section handle with the scrutiny of litera-
ture, coupled to postulation of fixed point theorems. Fixed
point theory has tantalize chiliad of analyst since 1922 with
the celebrated Banach’s fixed point theorem. There endure
enormous literature on this topic and it is a extremely nimble
field of indignation at present. A self map T of a metric space
X is said have a fixed point x if T x = x. Theorems anent the
existence and properties of fixed points are known as fixed
point theorems. Such theorems are very salient tools for man-
ifesting the existence and individuality of the solutions to
copious mathematical models stand for phenomena transpire
in discrete fields, such as steady state temperature distribution,
chemical equation, economic theories and flow of fluids. They
are also used to study the problems of optimal control linked
to these systems.

The most cardinal result in the fixed point theory is the
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well known theorem of Brouwer, which says that every on-
going self mapping of the closed unit interval in Rn, the n-
dimensional Euclidean space possesses a fixed point. This
result was published by Brouwer [2]. Brouwer ratified his
notable theorem in 1910, where the space are subsets of Rn are
not of much use in functional analysis where one is generally
involve with an fathomless dimensional subset of some func-
tion spaces. There exist many contraction mapping theorems
in different spaces. In 1930, Schauder [10] extended Brouwer
fixed point theorem to the result that every compact convex set
in a Banach space has the fixed point property for contentious
mapping, as well as that every weakly compact convex set
in a separable Banach space has the fixed point property for
weakly continuous mappings. The condition of denseness in
Schauder fixed point theorem was a very strong condition. As
many problems in the analysis do not have compact setting, it
is natural to modify this theorem by relaxing the condition of
compactness.

The interconnection of a stream system is in particularly
the chief one, which set the seal on that the stream network
drop ship water, nutrients, and sediments via the basin and has-
ten the self cleaning faculty of the system. There are sundry
studies that scrutinize the numerous dearth of spasmodic sup-
ply, since it causes a hornets’ nest in the system infrastructure
itself, produces health menace for uses [1, 4, 7] and give rise
to the inequity.

On one hand, the natural sedimentation, chunks and dry
spell retard the flow and cause water exchange ability to turn
down. On the other hand, because of the pursuit of high
acquittal rate of land in the urbanization contrive process,
many rivers were filled or diminish to issue more contrive
land, which feigned reinforce the uncouple the situation of
the stream network and causes drainage strain. Water idiosyn-
crasy deterioration, poor ecological environment and many
types of water hurdle. Howbei, water is currently delivered
to millions of people around the world under fitful supply
conditions.

Euler (1707-1782) became the father of graph theory as
well as topology when in 1736 he settled a prominent unsolved
problem of his day called the Konigsberg bridge problem. An-
other puzzle approach to the graphs was proffer by Hamilton.
The psychologist Lewin proposed in 1936 that the “life space”
of an individual be stand in by a planar map (Lewin used
only planar maps because he always drew his figures in the
plane). In such a map the regions would stands for various
activities of a person, such as his work environment, his digs
and his sideline. The psychologists at the Research center for
group dynamics to another psychological exegesis of a graph,
in which people are stand in by points and communal tie–up
by lines. Such tie-ups include doting, abhor, divulgence, and
power. In fact, it was precisely this approach which led the
author to a personal breakthrough of graph theory, aided and
abetted by psychologists L. Festinger and D. Cartwright. The
study of Markov chains in probability theory take account
of directed graphs in the sense that events are stand in by

points and a directed line from one point to another indicates
a positive probability of direct line-up of these dyad events.
This is made clear-cut in which a Markov chains elucidate as
a network with the sum of the values the directed lines from
each point equal to 1. A similar simulacrum of a directed
graph arise in that part of numerical analysis entail matrix
inversion and the calculation of eigen values. A square matrix
is given, preferably “sparse,” and a directed graph is cognate
with it in the following way. The points denote the index
of the rows and columns of the given matrix, and there is a
directed line from point i to point j whenever i, j entry of
the matrix is nonzero. The alikeness betwixt this approach
and that for Markov chains is whirlwind Graph theory is a
theoretical model that uses an abstract method to stand in by
the mutual relations among the study objects. The graphs in
graph theory do not have exclusive such as size, shape or mass
except objects (stand in by nodes) and their tie-ups(stand in
by edges). The edge node structure in graph theory system is
highly kindred to actual stream network. The rivers in an ac-
tual stream network can be simplified to edges, and the lakes
and junctions (points where dyad channels coalesce into one)
can be simplified to nodes. According to the structure charac-
teristic of stream network and the graph theory method, the
stream network can be gauged by some analysis methods of
graph theory where the connectivity of the stream network can
be quantitatively analyzed. Many quondam studies scrutinize
the stream network analysis using graph theory. Although
plunk flow meters at the incoming pipes of each sector is com-
mon for leak control, sectors without measurement can exit
in fitful supply networks , since their main goal is to deliver
water at differentiated agenda.

However, most researchers used single indicators to ana-
lyze the connectivity of stream networks, which introduced
many problems caused by the limitations of individual indices.
Nevertheless, different indicators of graph theory are spo-
radically unify to make a comprehensive analysis of stream
systems. For district metered area implementation in networks
with continuous water supply, there is a general drift to use
optimization techniques to achieve an adequate service level.
Sundry authors also suggest graph theory for sectorization
process. In both supply system improvement perspectives, net-
works sectorization is a root step. Sectors are also important
in change over processes to unbroken supply, and pivotal for
intermittent supply system management that aims to improve
fairness in supply. Moreover, sectorization under an inter-
mittent supply based on slant may be useful for vulnerable
unceasing supply systems. In 2016, for cite, the unbroken
supply network of Lapaz (Bolivia) had to become ephemeral
intermittent due to paltry water in its supply sources.

If an intermittent supply network is not sectorized, the
peak flow exigency during supply hours is very high, since
water exigency occurs concomitantly for the total network.
Thus, high water exigency results in low service level condi-
tions and may produce deficient pressure areas, which then
produces supply inequity. Network sectorization and supply
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agenda setting help taper this high peak exigency.
In this paper, an approach based on the theoretical pinnacle

of flow concept, which uses soft computing tools from graph
theory and cluster analysis, is burgeon to explicate sectors to
produce scrupulous water supply. For node clustering, this
process also includes water company expert opinions, from
the individuals who best know network details. Moreover,
this approach helps opt the supply time for each sector based
on their hydraulic characteristics.

Thamirabarani river is flowing continuously for 120 km.It
passes via many villages, town and Trinelveli corporation. It
is a perennial river and monsoon based catchment. Many toxic
waste are added to this river at all points. It has solid, liquid
and gaseous toxics such as BOD, COD, TSS and deliquesces
oxygen [5, 12]. Many moat water and night soil toxics are
also added to this point. Textile toxic waste and paper indus-
trial waste are also added to this point.These are the main
sources of poison of Thamirabarani river. Thamirabarani is
a main source of water supply to many towns which include
Tirunelveli corporation. In Tirunelveli municipal area the
drinking water is not treated properly. Entire flow on the river
on the river has turbidity. The main aim of this paper is to
analyze the copious hazardous waste and its removal process.

For more details on this theory, we suggest the reader to
refer [3, 6, 8, 11, 13].

2. Preliminaries

In this section, we recall some basic definitions, notations
and results which are very useful to our work.
Results: Denote

Cn =
1
n! ∑

σ∈Sn

xai(σ)
i .

Then we defined

C(t) =
∞

∑
n=0

tnCn

= e∑
∞
n=0 xi

ti
i .

This has a lot of information in it.

Example 2.1. Suppose C(σ) is the number of cycle of σ .
Then,

C(σ) =
n

∑
i=1

ai(σ).

Setting all xi = x, we have

Cn(x) =
1
n! ∑

σ∈sn

xC(σ)
0 .

Then

C(t) =
1

(1− t)x

=
∞

∑
j=0

(
x
j

)
(−t) j

= ∑
j

t j

j!
x(x+1) . . . .(x+ j−1).

Since ∑i
t i

i is the power series expansion for –log(1− t).
Therefore,

Cn =
1
n!

x(x+1) . . . .(x+n−1)

= x
(

x+1
2

)(
x+2

3

)
. . . .

(
x+n−1

n

)
= E(xSn) = πExi

x .

Here Sn denotes the sum, not the symmetric group. Here
P(xi = 0) = i−1

i and P(xi = 1) = 1
i . Thus, we have

E(xSn) =
n

∑
j=0

x jP(xn = j)

E( f Sn) = ∑ f ( j)P(Sn = j).

We took f ( j) = x j, we have

AV (Sn) = 1+
1
2
+ · · ·+ 1

n
∼ logn.

VAR(Sn) =
∞

∑
n=1

1
i

(
1− 1

i

)
∼ logn.

That is

P
{

C(σ)− logn√
logn

≤ x
}
→ ϕ(x).

The coefficient of x j is the number of permutations with j
cycles. These happen to be called sterling numbers of the first
kind.

2.1 Quizzing
Who cares about all this stuff with fixed points?

There was a fixture where someone took duo decks of
cards up to n. People take part in this fixture and you get a
dollar if the same number comes up. The canvass is a question
of the number of fixed points Monmort in 1708 evince the
number of fixed points has a poisson distribution as we evince
last time. Note that we may as well call the cards on the mono
deck 1,2, . . . ,n. So the number of matches is just the number
of fixed points in a random permutation.

We also have a metric,

D(π,σ) = {i : π(i) 6= σ(i)}.

See, Persi Diaconis et al. [9] on fixed points of permuta-
tions for a classification of possible fixed points of transitive
primitive actions of the symmetric group.

726



A rivers basic edge weight connectivity of steam network based on fixed point diffusion graph theory — 727/729

Definition 2.1. The Cayley distance between duo permuta-
tions

dc(σ ,π) = minimum number of transpositions needed to express πσ
−1.

i.e., this is the distance in the Cayley graph where the vertices
are permutations and the edges affix duo elements differing
by a permutations.

2.2 Perceive
The above two distance measures are the only duo bi-invariant
distances that Persi knows of.

Definition 2.2. Graph diffusion, which is equivalent to linear
weighting for nodes by mega-scale random walk on graph.
However, graph diffusion has a center of attention on node-
level transformations rather than content-level transforma-
tions. To reveal the relationship between node features, we
consider looking for a function f (A) = σ(AC+ x) to non lin-
early map A from the input space to the representation space,
where A = A0 is original node features and C ∈ R(dh) is the
transformation matrix. Combined with graph diffusion, single
diffusion can be expressed as follows:

f (B) = σ(BC+ x)

= σ((I−δS)−1AC+ x).

2.3 Diffusion
A specific important issue in harmonic analysis is to connect
the smoothness of a function with the speed of convergence of
its diffused version to itself, in the limit as time goes to zero.
In order to consider the smoothness of diffusing functions
in more general settings, a distance defined in terms of the
diffusion itself seems particularly appropriate.

Defining diffusion distances is of interest in applications
as well. As we already mooted in [3, 4, 7, 8], dimension-
ality reduction of data and the concomitant issue of finding
structures in data are highly prime objectives in the fields
of information theory, statistics, machine learning, sampling
theory, etc. It is often useful to organize the given data as
nodes in a weighted graph, where the weights reflect local
interaction between data points. Random walks, or diffusion,
on graphs may then help understand the interactions among
the data points at expanding distance scales. To even con-
sider different distance scales, it is mandatory to define an
appropriate diffusion distance on the constructed data graph.

3. Main Results
We consider a general symmetric diffusion semigroup

Tt f (t≥0) on a topological space X with a efficacious σ− finite
measure (i.e., X is a countable union of measurable sets with
finite measure), given, for t > 0, by an integral kernel opera-
tor: Tf f (x),

∫
x ρt(x,y) f (y)dy. Coifman and Leeb initiated a

family of multi scale diffusion distances and manifest quan-
titative results about the equivalence of a bounded function
f being Lipschitz, and the rate of convergence of Tt f to f as

t→ 0+ (we are discussing some of their results using a con-
tinuous time for t convenience; most of Coifman’s and Leeb’s
derivations are done for radically discretized times. Moreover,
most of the authors’ results are in fact manifested without the
assumption of symmetry and under the weaker condition than
positivity of the kernel, namely, an appropriate L1 integrability
statement. To prove the implication that Lipschitz implies an
appropriate estimate on the rate of convergence, Coifman and
Leeb make a quantitative assumption about the decay of

sup
∫

x
|ρt(x,y)|d(x,y)dy, as t→ 0+ (3.1)

for their distances d, namely, that

sup
∫

x
|ρt(x,y)|d(x,y)dy≤Ctα . (3.2)

for some α > 0. Coifman and Leeb also manifest that (3.2)
above, in the case of efficacious diffusion kernels, is in fact
equivalent to their termination about the rate of convergence
of Tt f to f as t → 0+, for a Lipschitz function f . Addition-
ally, Coifman and Leeb show that, in some of the settings
they consider (with decay and continuity conjectures on the
diffusion kernels relative to an intrinsic metric), their multi
scale diffusion distance is equivalent to (localized)D(x,y)α

where D(x,y) is the intrinsic metric of the underlying space
and α is a efficacious number strictly less than 1. The authors
emphasize that α cannot be taken to equal 1.

The focal reason is that we wish to avoid making any
gauges about the decay of (3.1) and still manifest a correspon-
dence between some version of smoothness of a function f
and convergence of Tt f to f as t→ 0+. Our foremost contri-
bution is to manifest, under almost no presumes, that local
equi-continuity (in t) is equivalent to local convergence; i.e.,
local control of the differences Tt f (x)−Tt f (y) for all t small
is equivalent to local control of the differences Tt f (x)− f (x)
for all small t. Here “local” is defined relative to a representa-
tive of our family of proffer diffusion distances.

Theorem 3.1. For A > 0,Ax = δmaxx are strictly positive.

Proof. The key idea is to look at all number t such that Ax≥ tx
for some non negative vector x (other than x = 0). We are
allowing inequality in Ax≥ tx in order to have many positive
candidates t. For the immense value tmax (which attained), we
will show that equality holds Ax = tmaxx.

Otherwise if Ax ≥ tmaxx is not a equality, multiply by
A. Because A is positive that produces a strict inequality
A2x > tmaxAx. Therefore the positive vector y = Ax satisfies
Ay > tmaxy and tmax could be increased. This contradiction
forces the equality Ax = tmaxx and we have an eigen value.
Its eigen vector x is positive because on the left side of that
quality, Ax is sure to be positive.

To see that no eigen value can be larger than tmax, suppose
Az = δ z. Since δ and z may involve negative or complex
number, we take absolute values |δ ||z| = |Az| ≤ A|z| by the
triangle inequality. This |z| is a non negative vector, so |δ | is
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one of the possible candidate t. Therefore |δ | cannot exceed
tmax which must be δmax.

Theorem 3.2. Let ∑A be topologically mixing ϕ ∈ γA∩C(∑+
A )

and µ = µϕ as above. There are δ > 0,h ∈C(∑+
A ) with h > 0

and ν ∈M(∑+
A ) for which µh = δh,µ∗ν = δν ,νh = 1 and

limm→∞ ‖δ (−m)µmg−ν(g)h‖= 0 for all g ∈C(∑+
A ).

4. Study area and future work

4.1 Thamirabarani
The Thamirabarani River is a river in India. It starts seeping
from the peak Agastyarkoodam in the western Ghats hills in
Papanasam of Tirunelveli district, Tamil Nadu. The river had
the name of porunai in ancient Tamil history. The name of
Thamirabarani is presumed from the high content of copper in
this river [12, 13]. This copper content also makes the water
of this river honeyed or luscious.

5. Location

5.1 Physical Characteristics

5.2 Basin Features

The Thamirabarani River originates from the peak of the
Pothigai hills on the eastern slopes of the western Ghats at an
elevation of 1,725 meters (5659 ft) above sea-level.

5.3 List of dams across Thamirabarani river
1 Kodaimelaalagain anicut, 1,281.67 hectares (3,167.1

acres)

2 Nathiyunni anicut, 1,049.37 hectares (2,593.0 acres)

3 Kannadian anicut, 2,266.69 hectares (5,601.1 acres)

4 Ariyanayagipuram anicut, 4,767.30 hectares (11,780.3
acres)

5 Palavur anicut, 3,557.26 hectares (8,790.2 acres)

6 Suthamalli anicut, 2,559.69 hectares, (6,325.1 acres)

5.4 List of Major Tributaries

5.5 List of Channels
1 South kodaimelalagain channel

2 North kodaimelalagain channel

3 Nathiyunni channel

4 Kannadian channel

5 Kodagan channel

6 Palayam channel

7 Trinelveli channel

8 Marudur Melakkal

5.6 List of Major Tributaries
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5.7 Line value connected of steam structure
The sum of the river flow section areas that are linked with
lake α is called the Total River Flow lake α , which is denoted
by xα . Lakes with larger xα have greater water exchange
capacity and self cleaning ability. A lake with more water
commonly requires larger xα . Thus, to analyze whether xα

satisfies the lake connectivity requirement, the total river flow
is created and denoted by xα . It’s relationship with the water
volumes is given in the following formula:

xβα = τVα ,

where xβα is the total river flow linked with lake α(m2);τ is
the total river flow section coefficient (m2/m3);Vα is the water
volume of lake α(m3), calculated by the ordinary water level;
xβα is the minimum xα that the lakes require. When xα is
greater than xβα the basic connectivity of the lake satisfies the
demand. When xα is less than xβα the system cannot satisfy
the basic connected demand and must be improved. Coeffi-
cient τ must be adjusted according to the specific situation of
the study area.

The line value is the minimum flow area that the rivers
must have to satisfy the connected demand is yβγ . Lakes
connect with other lakes through rivers or channels; because
of different water transmission quantities, the connection be-
tween large river flow. The river flow and size of lakes joined
with the river have a strong positive correlation. Thus, their
relationship can be built to find the line value as follows:

yβ1 =
xβ1V2

∑Vt1
;yβ12 =

xβ2V2

∑Vt2
;yβγ = max(yβ1,yβ2),

where 1,2 are the numbers of lakes connected by rivers γ;yβ1

is the line value of river γ calculated from lake 1(m2);yβ2 is
the line value of river γ evaluated from lake 2(m2);xβ1 is the
basic total river flow section of lake 1(m2);xβ2 is the total river
flow section lake 2(m2);V1 is the volume of lake 1(m3);V2 is
the volume of lake 2(m3);∑Vt1 is the total volume of all lakes
connected with lake 1(m3);∑Vt2 is the total volume of all
lakes connected with lake 2(m3);yβγ is the basic edge weight
of river γ(m2). The formula is calculated, respectively, from
two lakes linked by river γ . Firstly, we design xβ1 and xβ2 to
river γ to obtain yβ1 and yβ2 then we take the maximum of
those two as yβγ . Also
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