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Abstract
We have proposed a method to obtain the tolerance ranges and a symmetric tolerance range for objective
functions coefficients of the multiobjective transportation problem in this paper. This method allows to change
objective functions coefficients simultaneously and independently preserving the same optimal basis. We
have also obtained symmetric tolerance percentage range within which objective functions coefficients of
each objective function can vary in either direction. We have obtained a compromise solution using additive
fuzzy programming approach as it is not possible to obtain the unique optimal solution of the multiobjective
transportation problem due to conflicting nature of objective functions. This compromise solution is used for
post-optimality tolerance analysis. The method is illustrated by a numerical example.
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1. Introduction
Multiobjective transportation problem is widely used nowa-

days in management sciences. But the objective functions in

the multiobjective transportation problem are non commen-
surable and conflicting in nature. In this case the study of
sensitivity analysis will help the decision maker in proper
decision making. Sensitivity analysis of single objective lin-
ear programming problem and the multiobjective linear pro-
gramming problem is studied by many researchers. Wendell
[13, 14] has presented tolerance approach for a single objec-
tive linear programming problem which allows simultaneous
and independent changes in objective functions coefficients
and right hand values without affecting the optimal basis. He
has given the method to obtain symmetric tolerance limits
of objective functions coefficients. Arsham and Oblak [2]
gave another approach to obtain tolerance ranges of objective
functions coefficients and right hand side values of a single
objective linear programming problem. Hansen et al [6] used
the concept of Wendell to obtain sensitivity and tolerance
analysis ranges of parameters in the multiple objective linear
problem. Deshpande [5] proposed the method of solving a
pair of problems of maximization and minimization to find
ranges for objective functions coefficients. Hladik and Sitarz
[8] computed maximal tolerance of the multiple objective lin-
ear programming. Sitarz [12] has given a different approach
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to obtain sensitivity and tolerance analysis of the multiple ob-
jective linear programming problem. Wendell and Chen [15]
have reviewed all approaches proposed by researchers and
extension in original results of tolerance analysis. Hladik [7]
has improved Wendell’s results and also applied his approach
to several sensitivity invariances.

Arsham [1] used the revised simplex method to obtain or-
dinary sensitivity and tolerance analysis in a single objective
transportation problem. He also obtained symmetric tolerance
range for right hand side values and objective functions coef-
ficients of a single objective transportation problem. Kavitha
and Pandian [9] discussed sensitivity analysis of cost coeffi-
cients of an interval single objective transportation problem.
King Ting Ma et al [10] has given sensitivity analysis of a
single objective transportation problem for change in one cost
coefficient at one time. Badra [? ] extended the approach
of Wendell to obtain tolerance analysis of the multiobjective
transportation problem. He used the weighted sum approach
to solve the multiobjective transportation problem. We have
derived the method to obtain the ranges for the supply and
demand values of the multiobjective transportation problem
in Paratane and Bit [11]. We have also obtained symmetric
tolerance limit for the supply and demand values.

In this paper, we are proposing a method to obtain ordinary
sensitivity analysis and tolerance analysis for objective func-
tions coefficients of the multiobjective transportation problem
using approach of Arsham and Oblak [2]. We have used the
additive fuzzy linear programming (Bit et al [4]) to obtain
a compromise solution of the multiobjective transportation
problem. The feasibility conditions of the multiobjective
transportation problem are also taken into consideration.

2. Mathematical model for the
multiobjective transportation problem

The mathematical model for the multiobjective transporta-
tion problem [P1] is given as follows:

Minimize Z(p)(x) =
m

∑
i=1

n

∑
j=1

c(p)
i j xi j, p = 1,2, · · · ,P

(2.1)

subject to,
n

∑
j=1

xi j = ai, i = 1,2, · · · ,m (2.2)

m

∑
i=1

xi j = b j, j = 1,2, · · · ,n (2.3)

xi j ≥ 0, (2.4)

where,

Z(p)(x) = pth objective function.

c(p)
i j = pth penalty criterion delivered per unit

from ith source to jthdestination.

xi j = number of units to be transported from ith

source to jthdestination.

ai = supply at ithsource,(i = 1,2, · · · ,m)

b j = demand at jthdestination,( j = 1,2, · · · ,n)

The penalty criterion could represent transportation cost, de-
livery time, under used capacity, quantity of goods etc. The
supply and demand values must satisfy the feasibility condi-

tion
m
∑

i=1
ai =

n
∑
j=1

b j. The unique optimal solution of the multi-

objective transportation problem [P1] can not be obtained due
to conflicting nature of objective functions. We are using the
additive fuzzy programming approach given by Bit et al [4]
using linear membership function to obtain the compromise
solution of the multiobjective transportation problem [P1]
which is near to the best compromise solution. The linear
membership function for each objective function Z(p)(x) is
given as,

µ(p)[Z(p)(x)] =


1 if Z(p)(x)≤ L(p)

U (p)−Z(p)(x)
U (p)−L(p)

if L(p) < Z(p)(x)<U (p)

0 if Z(p)(x)≥U (p)

The values of upper bound U (p) and lower bound L(p),
∀ p = 1, 2, · · · ,P can be obtained from the following payoff
matrix.

x(1)
∗

x(2)
∗ · · · x(P)

∗

Z(1)(x) Z(1)(x(1)
∗
) Z(1)(x(2)

∗
) · · · Z(1)(x(P)

∗
)

Z(2)(x) Z(2)(x(1)
∗
) Z(2)(x(2)

∗
) · · · Z(2)(x(P)

∗
)

...
...

...
. . .

...
Z(P)(x) Z(P)(x(1)

∗
) Z(P)(x(2)

∗
) · · · Z(P)(x(P)

∗
)

Then, Lower bound L(p) =
{

Z(p)
(

x(p)∗
)}

;

where x(p)∗ is the solution of Z(p)(x) obtained by considering
each Z(p)(x) one at a time (ignoring others) and
Upper bound
U (p) = Max

{
Z(p)

(
x(1)

∗
)
, Z(p)

(
x(2)

∗
)
, · · · , Z(p)

(
x(P)

∗
)}

∀ p = 1, 2, · · · ,P.

Then the single objective additive fuzzy programming model
[P2] of the multiobjective transportation problem [P1] is:

Maximize V (µ(x)) =
P

∑
p=1

µ
(p)[Z(p)(x)] =

m

∑
i=1

n

∑
j=1

di jxi j

subject to
constraints (2.2),(2.3),(2.4),

where, µ
(p)[Z(p)(x)] =

U (p)−Z(p)(x)
U (p)−L(p)

∀ p = 1,2, · · · ,P.
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The function V (µ(x)) is called the fuzzy achievement function
or the fuzzy decision function. The values di j are the objective
function coefficients of the objective function V (µ(x)). The
model [P2] is a single objective linear programming problem
and can be solved by simplex method. We solve it here by
LINGO software. Let the solution of [P2] be X . Then substi-
tute X in each Z(p)(x), p = 1,2, · · · ,P to get the compromise
value of each objective function. The solution report of linear
programming problem when solved by LINGO software does
not show the final optimal table values of the solution. But
we can get these values by computation using the data from
example. We consider the matrix form of model [P2] to get
final optimal table values. The matrix form is:

Maximize V (µ(x)) =
m

∑
i=1

n

∑
j=1

di jxi j,

subject to
AX = b,

X ≥ 0,b≥ 0
where A = coefficient matrix

b = [a1,a2, · · · ,am,b1,b2, · · · ,bn]
T

and C = [d11 d12 · · · dmn]

We use the following notations to represent the corresponding
matrices:

CN = objective function coefficients matrix of non-basic variables.

CB = objective function coefficients matrix of basic variables.

AB = coefficient matrix of basic variables

AN = coefficient matrix of non-basic variables

The coefficients of non-basic variables of objective function
in the final optimal table (i.e. the last row in the final table)
can be calculated using CN −CBA−1

B AN and the solution is given
by A−1

B b.
We will obtain here the post-optimality ranges for objective
function coefficients di j of [P2]. These ranges are applicable
to all corresponding objective functions coefficients of the
multiobjective transportation problem [P1]. We can also get
equal percentage symmetric range using symmetric tolerance
limits of di j. Now, we will consider the parametric model for
problem [P2] with perturbed objective function coefficients to
get the ranges in post-optimality analysis.

3. Post-optimality analysis of objective
functions coefficients

The parametric model [P3] of linear programming model
[P2] with perturbed objective function coefficients is given as:

Maximize V (µ(x)) =
m

∑
i=1

n

∑
j=1

[di j±δdi j]xi j,

subject to
constraints (2.2),(2.3),(2.4)

where δ is percentage deviation in objective function coeffi-
cients di j. Let d′i j = ±δdi j which represents the sensitivity
analysis parameters of the objective function coefficients di j.
Thus the perturbed objective function coefficients are di j +
d′i j. Note that here C =

[
d11 +d′11 d12 +d′12 · · · dmn +d′mn

]
.

This parametric model can not be solved directly by LINGO

software. But we can compute the final optimal table val-
ues as given in section (2). Let C∗N =CN −CBA−1

B AN denote the
coefficients of non basic variables with perturbed values of
objective function coefficients for [P3] in the final optimal
table. We have to obtain the post-optimality ranges such that
C∗N ≤ 0 to maintain the feasibility and optimality conditions.
We are using Arsham and Oblak [2] method to obtain ordinary
sensitivity ranges, tolerance ranges and symmetric tolerance
ranges. The ranges (limits) obtained for di j by this method
can be applied to the corresponding objective functions coeffi-
cients c(p)

i j of each objective function Z(p)(x), p = 1,2, · · · ,P.

3.1 Ordinary sensitivity analysis
In ordinary sensitivity analysis, only one objective function
coefficient can vary at one time, holding all else unchanged.
We can obtain the ordinary sensitivity ranges for objective
functions coefficients by solving C∗N ≤ 0 directly for each d′i j
substituting other d′i j = 0; i = 1,2, · · · ,m and j = 1,2, · · · ,n.
The lower limit d−i j and upper limit d+

i j for the objective func-
tion coefficient di j for d′i j 6= 0 can be determined as:

Lower limit = d−i j = max
{

d′i j | d′i j < 0
}

(3.1)

Upper limit = d+
i j = min

{
d′i j | d′i j > 0

}
(3.2)

If at least one d′i j = 0 and remaining all d′i j ≥ 0, then define
d−i j = −∞ and d+

i j is as per (3.2). Similarly if at least one
d′i j = 0 and remaining all d′i j ≤ 0, then define d+

i j =+∞ and
d−i j is as per (3.1).

3.2 Tolerance analysis
In tolerance analysis, the change in one or more than one
objective functions coefficients can be done simultaneously
and independently. We have to find the percentage deviation δ

such that the feasibility conditions C∗N ≤ 0 should be preserved.
As there may be variation in either direction in the sensitivity
analysis parameters d′i j, it takes two values for each d′i j viz.
d′i j = δdi j and d′i j = −δdi j. We have to consider here all
combinations of d′i j present in all components of C∗N . We
will obtain value of δ by substituting d′i j in equations C∗N = 0
for each combination. Then we get values of corresponding
d′i j. Now if coefficient of d′i j is positive in any C∗N = 0 and
value of d′i j is negative, then any decrease in corresponding
objective function coefficient will not affect the feasibility
and optimality condition C∗N ≤ 0 and vice versa. So we will
eliminate such values of d′i j. The rationale of eliminating ri
are as follows as per given by Arsham [1] and Arsham and
Oblak [2]:
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1. If d′i j 6= 0 and coefficient of d′i j 6= 0, then any d′i j such
that

(
d′i j

)
×
(

coefficient of d′i jin C∗N
)
≤ 0 does not affect fea-

sibility. Therefore we eliminate such d′i j.

2. If d′i j = 0 then product is zero and the boundary point
must be one of the limits for the right hand side range.
Thus, although we eliminate this point, we will replace
it by the allowable increase/decrease for the right hand
side range.

Then the lower and upper limit for di j is given by (3.1) and
(3.2) respectively.

3.3 Symmetric tolerance limit
We get different ranges for each objective function coefficient
in tolerance analysis. Wendell [13], Arsham and Oblak [2]
has given one common range as symmetric tolerance limit
ds

i j using tolerance ranges of di j by which we can vary each
di j without affecting current basis. We can also obtain the
equal percentage symmetric tolerance range (maximum al-
lowable percentage change) using ds

i j for each di j which is
applicable to the corresponding objective functions coeffi-
cients of Z(p)(x), p = 1,2, · · · ,P. Then variations in ob-
jective functions coefficients of each objective function of
[P1] can be done by equal percentage symmetric range. The
symmetric tolerance range ds

i j for each of di j is given as:

ds
i j = min

{
d+

i j , −d−i j

}
.

We illustrate our method in the following example.

4. Numerical Example

Consider the multiobjective transportation problem [E1] from
Badra[3]

Min Z(1)(x) = 4x11 + x12 +3x13 + x21 +4x22 +2x23

Min Z(2)(x) = 4x11 +6x12 +0.5x13 + x21 +1.5x22 +7x23

subject to
x11 + x12 + x13 = 90 (4.1)
x21 + x22 + x23 = 90 (4.2)
x11 + x21 = 60 (4.3)
x12 + x22 = 60 (4.4)
x13 + x23 = 60 (4.5)

xi j ≥ 0,i = 1,2; j = 1,2,3 (4.6)

4.1 Compromise solution
Solving [E1] for Z(1)(x) separately (ignoring Z(2)(x)), the
solution is: x(1)

∗
: x12 = 60, x13 = 30, x21 = 60, x23 = 30,

and Z(1)(x(1)
∗
) = 270, Z(2)(x(1)

∗
) = 645. Similarly, solving

[E1] for Z(2)(x) separately (ignoring Z(1)(x)), the solution
is: x(2)

∗
: x11 = 30, x13 = 60, x21 = 30, x22 = 60, and

Z(2)(x(2)
∗
) = 270, Z(1)(x(2)

∗
) = 570.

Then the pay off matrix is:

x(1)
∗

x(2)
∗

Z(1) 270 570
Z(2) 645 270

U (1) = 570, L(1) = 270; U (1)−L(1) = 300

U (2) = 645, L(2) = 270; U (2)−L(2) = 375

Then the single objective additive fuzzy programming model
[E2] for [E1] is given as:

Maximize Z(µ(x)) =
570−Z(1)(x)

300
+

645−Z(2)(x)
375

=
2

∑
i=1

3

∑
j=1

di jxi j

subject to

constraints (4.1),(4.2),(4.3),(4.4),(4.5),(4.6)

Solving [E2] by LINGO software, we get the compromise
solution of [E1] as X : x12 = 30, x13 = 60, x21 = 60, x22 = 30
and Z(1)(X) = 390, Z(2)(X) = 315.

4.2 Ranges of objective functions coefficients:
The perturbed objective function coefficients of [E2] will be:
C =

[
−0.024+d′11 −0.01933+d′12 −0.01133+d′13 −0.006+d′21
−0.01733+d′22 −0.02533+d′23

]
Here, the basic variables are (x12,x13,x21,x22) and non ba-
sic variables are (x11,x23) as per solution obtained for [E1].
The compromise solution of the multiobjective transportation
problem contains a set of 4 basic variables. One of the 5
constraints is redundant, due to the feasibility condition of
the transportation problem. We have considered here the con-
straint (4.5) as a redundant constraint.(verified). The coefficients
of non basic variables with perturbed values of objective func-
tion coefficients for [E2] in the final optimal table can be
obtained using C∗N =CN −CBA−1

B AN . Here
CB =

[
−0.01933+d′12 −0.01133+d′13 −0.006+d′21 −0.01733+d′22

]
and CN =

[
−0.024+d′11 −0.02533+d′23

]
. Also,

AB =


1 1 0 0
0 0 1 1
0 0 1 0
1 0 0 1

 and AN =


1 0
0 1
1 0
0 0

,

A−1
B =


0 −1 1 1
1 1 −1 −1
0 0 1 0
0 1 −1 0


Then the matrix C∗N for coefficients of non basic variables

x11 and x23 in the final table of solution of parametric model
of [E2] is given as:

C∗N = [−0.016+d′11−d′12−d′21 +d′22 −0.016+d′12−d′13−d′22 +d′23]

Thus, we have two expressions viz.

C∗N1
=−0.016+d′11−d′12−d′21 +d′22 (4.7)

C∗N2
=−0.016+d′12−d′13−d′22 +d′23 (4.8)

We will obtain the post-optimality ranges of objective func-
tion coefficients di j of problem [E2] such that C∗N1

≤ 0 and
C∗N2
≤ 0 to maintain the feasibility.

794



Tolerance sensitivity analysis of objective functions coefficients in multiobjective transportation problem — 795/796

4.2.1 Ordinary Sensitivity ranges
Ordinary sensitivity ranges for objective function coefficients
can be obtained by solving C∗N ≤ 0 for each d′i j, i= 1,2 and j =
1,2,3 substituting zero for rest of d′i j (Subsection(3.1)). For
example, we put d′12 = d′13 = d′21 = d′22 = d′23 = 0 in C∗N1

≤ 0
and C∗N2

≤ 0 to obtain limits for d′11. We obtain limits for
d′12, d′13, d′21, d′22 and d′23 by similar manner. Thus the ranges
for c(1)i j and c(2)i j , i = 1,2; j = 1,2,3 obtained are as follows:
(Table 1).

d′i j Lower
limit

Upper
limit

Range for c(1)i j in Z(1) Range for c(2)i j in Z(2)

d′11 −∞ 0.016 −∞≤ c(1)11 ≤ 4.016 −∞≤ c(2)11 ≤ 4.016
d′12 −0.016 0.016 0.984≤ c(1)12 ≤ 1.016 5.984≤ c(2)12 ≤ 6.016
d′13 −0.016 ∞ 2.984≤ c(1)13 ≤ ∞ 0.484≤ c(2)13 ≤ ∞

d′21 −0.016 ∞ 0.984≤ c(1)21 ≤ 1.016 0.984≤ c(2)21 ≤ 1.016
d′22 −0.016 0.016 3.984≤ c(1)22 ≤ 4.016 1.484≤ c(2)22 ≤ 1.516
d′23 −∞ 0.016 −∞≤ c(1)23 ≤ 2.016 −∞≤ c(2)23 ≤ 7.016

Table 1. Ordinary sensitivity ranges for c(1)i j and c(2)i j

4.2.2 Tolerance Ranges
We have to obtain the acceptable changes in objective function
coefficients of [E2] such that C∗N ≤ 0 viz. C∗N1

≤ 0 and C∗N2
≤ 0.

The components of C∗N contains sensitivity analysis param-
eters of all objective function coefficients and each d′i j =
±δdi j, i= 1,2; j = 1,2,3. Thus we have d′11 =±0.024δ , d′12 =

±0.01933δ , d′13 =±0.01133δ , d′21 =±0.006δ , d′22 =±0.01733δ

and d′23 = ±0.02533δ . We have total 26 vectors of values of
d′i j. However, two of these vectors are with opposite signs and
represents two lines in opposite directions along same line. So
we consider only 32 cases here only for calculation purpose.
We will get the same ranges although we consider all 26 com-
binations. It is difficult to obtain all 26 combinations manually
so we have obtained it by using python programming. Now
we will obtain values of d′i j as given in subsection (3.2). Some
of 32 combinations of values of d′i j are given in the table (2).

Case d′11 d′12 d′13 d′21 d′22 d′23
1 0.024δ 0.01933δ 0.01133δ 0.006δ 0.01733δ 0.02533δ

2 0.024δ 0.01933δ 0.01133δ 0.006δ 0.01733δ -0.02533δ

3 0.024δ 0.01933δ 0.01133δ 0.006δ -0.01733δ 0.02533δ

4 0.024δ 0.01933δ 0.01133δ 0.006δ -0.01733δ -0.02533δ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

31 -0.024δ 0.01933δ -0.01133δ -0.006δ -0.01733δ 0.02533δ

32 -0.024δ 0.01933δ -0.01133δ -0.006δ -0.01733δ -0.02533δ

Table 2. Values of d′i j

Now, we consider equations C∗N1
= 0 and C∗N2

= 0 to get value
of d′i j as given in subsection (3.2). The values of d′i j obtained
are as follows:(given in Table 3 and 4).

C∗N1
= 0

Coeff. of d′i j 1 −1 0 −1 1 0

Case value of δ ↓ d′11 d′12 d′13 d′21 d′22 d′23

1 1 0.024 0.019 0.011 0.006 0.017 0.025
2 1 0.024 0.019 0.011 0.006 0.017 -0.025
3 -0.88 -0.021 -0.017 -0.01 -0.005 0.015 -0.022

...
...

...
...

...
...

...
...

-0.29 0.007 -0.006 0.003 0.0018 0.005 -0.007
-0.29 0.007 -0.006 0.003 0.0018 0.005 0.007

Table 3. Values of d′i j using C∗N1
= 0

C∗N2
= 0

Coeff. of d′i j 0 1 −1 0 −1 1

Case value of δ ↓ d′11 d′12 d′13 d′21 d′22 d′23

1 1 0.024 0.019 0.011 0.006 0.017 0.025
2 -0.46 -0.01 -0.009 -0.005 -0.003 -0.008 0.012
3 0.32 0.008 0.006 0.004 0.002 -0.005 0.008

...
...

...
...

...
...

...
...

31 0.22 -0.005 0.004 -0.002 -0.001 -0.004 0.006
32 0.70 -0.02 0.01 -0.008 -0.004 -0.01 -0.02

Table 4. Values of d′i j using C∗N2
= 0

We will eliminate those values of d′i j for which

d′i j ∗
(

coefficient of d′i jin C∗N
)
≤ 0 for any i, j as they do

not affect the optimality and feasibility conditions. (refer
subsection (3.2)). After eliminating such d′i j’s, the lower and
upper limits for d′i j as well as symmetric tolerance limits
(obtained as given in subsection (3.3)) and equal symmetric
tolerance percentage is calculated in the following table (5):

d′i j Lower limit
d−i j

Upper limit
d+

i j

Symmetric
tolerance
limit ds

i j

Equal
Percentage
Symmetric
Tolerance

Range

d′11 -0.0052 0.0052 0.0052 21.82%
d′12 -0.0046 0.0042 0.0042 21.82%
d′13 -0.0025 0.0027 0.0025 21.82%
d′21 -0.0013 0.0013 0.0013 21.82%
d′22 -0.0039 0.0042 0.0038 21.82%
d′23 -0.0061 0.0055 0.0055 21.82%

Table 5. Equal Percentage Symmetric Tolerance range

We can see that the symmetric tolerance percentage range
for di j is 21.82%, i.e we can decrease or increase the objec-
tive functions coefficients of each objective Z(1) and Z(2) by
21.82% without affecting the current basis.
Then the ranges of objective function coefficients of objectives
Z(1) and Z(2) of the multiobjective transportation problem [E1]
are obtained as follows: (Table (6) and (7))

Objective Function Z(1)

Coefficients
c(1)i j

Lower limit
c(1)−i j

Upper limit c(1)+i j

c(1)11 =4 3.1272 4.8728

c(1)12 =1 0.7818 1.2182

c(1)13 =3 2.3454 3.6546

c(1)21 =1 0.7818 1.2182

c(1)22 =4 3.1272 4.8728

c(1)23 =2 1.5636 2.4364

Table 6. Ranges of objective functions coefficients of Z(1)
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Objective Function Z(2)

Coefficients
c(2)i j

Lower limit
c(2)−i j

Upper limit c(2)+i j

c(2)11 =4 3.1272 4.8728

c(2)12 =6 4.6908 7.3092

c(2)13 =0.5 0.3909 0.6091

c(2)21 =1 0.7818 1.2182

c(2)22 =1.5 1.1727 1.8273

c(2)23 =7 5.4726 8.5274

Table 7. Ranges of objective functions coefficients of Z(2)

5. Conclusion
In this paper, we have proposed a method to obtain the

symmetric tolerance ranges and also the equal percentage
symmetric range for objective functions coefficients of Z(1)

and Z(2) within which it can be changed without affecting
the current basis. The equal percentage symmetric range for
objective functions coefficients of Z(1) and Z(2) is 21.82% as
shown in table(5). Badra [3] has calculated it as 11.11% for
the same numerical example [E1]. He used weighted approach
to convert the multiobjective transportation problem into sin-
gle objective transportation problem in which the objective
function coefficients are not unit free.

Here, we have applied the additive fuzzy programming ap-
proach to obtain the compromise solution of the multiobjective
transportation problem. The objective function coefficients in
the corresponding single objective linear programming model
obtained by this approach are unit free. The compromise
solution is obtained by using LINGO software. All matrix
operations are performed using Scilab software for the post-
optimality analysis and Python programming is used to obtain
different cases of d′i j which are present in C∗N1

= 0 and C∗N2
= 0.

The tolerance ranges and symmetric tolerance ranges are cal-
culated using Excel Spreadsheet. The ranges of objective
functions coefficients of objectives Z(1) and Z(2) are shown in
table (6) and table (7) respectively. Thus our proposed method
is more suitable and easy to apply for medium size problems.
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