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1. Introduction

Concept of generalized topological spaces (GTS) has been
introduced by A. Csdszdr [4, 6, 8] in 2002. Since then, several
research works have been done to generalize the existing no-
tions of topological spaces to generalized topological spaces.
Recently, the concept of covering properties in generalized
topological spaces have been studied by some authors [15—
18]. On the other hand, 3-open sets [1] plays a significant
role in the theory of generalized form of open sets in topo-
logical spaces. Basu and Ghosh [2] introduced the concept
of B-closed spaces in topological spaces and gave several
characterizations of -closed spaces.

In this paper, we have introduced and studied a new kind of
covering properties in a generalized topological space (X, 1)
known as f3; -closed spaces via A-f-open sets [8].

2. Preliminaries

A collection A of subsets of X is called a generalized
topology (briefly GT) on X [6] if and only if @ € A and G; € A
fori € I # 0 implies G = {J;; G € A. A set X witha GT A

on X is called a generalized topological space (GTS) and is
denoted by (X,A). By a space X or (X,1), we will always
mean a GTS. A space (X,A) is called a A-space [14] if X € 1.
For a space (X, A7), the elements of A are called A-open sets
and the complements of A-open sets are called A-closed sets.
A GT A on X is said to be a quasi-topology [9] if and only if
A, B € A implies ANB € A. A set X with a quasi topology A
on X is called a quasi topological space.

For A C X, the A-closure of A, denoted by cA is the inter-
section of all A-closed sets containing A and the A-interior of
A, denoted by iA is the union of all A-open sets contained in
A. It was pointed out in [8] that each of the operations iA and
cA are monotonic [10] i.e. if A C B C X, then iA C iB and
cA C ¢B, idempotent [10], i.e. if A C X, then i(iA) = iA and
c(cA) = cA, iA is restricting [10], i.e. if A C X, then iA C A,
cA is enlarging [10], i.e., if A C X, then A C cA. In a space
(X,A), for A C X, x € iA if and only if there exists an A-open
set V containing x such that V C A and x € cA if and only if
VNA # 0 for every A-open set V containing x [5]. In a space
(X,A),A C X is A-open if and only if A = iA and is A-closed
if and only if A = cA [4] and cA = X \ i(X \ A).

A subset A of a topological space is called $-open [1] if
A Ccl(int(cl(A))). The complement of a B-open set is called
B-closed. For a subset A of a topological space (X,7), the
B-closure of A, denoted by Bcl(A) is the intersection of all
B-open sets containing A and the B-interior of A, denoted
by Bint(A) is the union of all B-open sets contained in A. A
topological space (X,7) is said to be B-closed [2] if every
cover of X by B-open sets has a finite subfamily whose 3-
closures cover X.



A set A C X is said to be A-semi-open (resp. A-preopen,
A-a-open, A-B-open) [8] if A C ciA (resp. A C icA, A C iciA,
A C cicA). We denote by o(A) (resp. w(A), a(A), B(A))
the class of all A-semi-open sets (resp. A-preopen sets, A-
a-open sets, A-f-open sets). From [8], it is clear that A C
a(A) co(A) Cc B(A), a(A) C m(A) C B(A) and each of
the collections 6(A), (), a(A), B(A) forms a GTS. The
complements of A-semi-open sets (resp. A-preopen sets, A-
o-open sets, A-B-open sets) are called A-semi-closed sets
(resp. A-preclosed sets, A-a-closed sets, A-f-closed sets).
For A C X, we denote by scA (resp. pcA, acA, BcA) the
intersection of all A-semi-closed sets (resp. A-preclosed sets,
A-o~closed sets, A-f-closed sets) containing A and by siA
(resp. piA, aiA, BiA) the union of all A-semi-open sets (resp.
A-preopen sets, A-¢t-open sets, A-f3-open sets) contained in
A. A subset A of a A-space (X, 1) is called A-compact [16] if
any cover of A by A-open subsets of X has a finite subcover. A
A-space (X,A) is weakly A-compact [17]if any cover of X by
A-open sets has finite subfamily, the union of the A-closures
of whose members covers X.

3. B, -closed spaces

We first state a lemma which will be used in the sequel.
Proofs can be checked easily and therefore omitted.

Lemma 3.1. The following hold for a subset A of GTS X :
(i) BiA = ANcicA

(ii) BeA = A UiciA

(iii) x € BcA if ANU # 0 for every A-B-open sets U of X
containing x

(iv) Be(X \ A) = X \ BiA

(v) A is A-B-closed if and only if A = BcA.

Definition 3.2. A subset A of a space X is said to be A-B-
regular if it is both A-B-open and A-B-closed. The family of
all A-B-regular sets of a space X is denoted by Br(X) and
that of containing a point x of X by Br(X,x).

Lemma 3.3. For a subset A of a space X, A € B(A) if and
only if BcA € Br(X).

Proof. First suppose, A € B(A). Then A C cicA and there-
fore, Bc(cA) C Be(cicA) = cicA C cic(BcA) ie. BcAis A-B-
open. Since BcA is A-B-open and A-B-closed, BcA € Br(X).
Next suppose, ScA € Br(X). Then A C BcA C cic(BcA) C
cic(cA) = cicA. Hence A € B(R). O

Definition 3.4. A point x € X is said to be in the A--0-
closure of A, denoted by B-0-cA, if AN BcV # 0 for every
A-B-open setV of X containing x.

If B-6-cA = A, then A is said to be A-B-0-closed. The
complement of a A-3-0-closed set is said to be A-B-0-open.

Lemma 3.5. For a subset A of a space X,
B-6-cA=n{V:ACVandV is A-B-0-closed } =N{V :A C
VandV € Br(X)}
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Proof. We give proof of the first equality. Other is quite
similar. Suppose that, x ¢ 3-6-cA. Then there exists, 1-f3-
open set V containing x such that ¢V NA = 0. Therefore by
Lemma 3.3, X \ B¢V is A-B-regular and so A-3-0-closed set
containing A such that x ¢ X \ BcV. Hence, x ¢ N{V:ACV
and V is A-B-6-closed set}. Conversely, suppose that, x ¢
N{V:A CV andV is A-B-0-closed set}. Then there exist, a
A-B-6-closed set V containing A and x ¢ V. Also, there exists
anU € B(A) such thatx € U C BcU C X\ V. Then we have,
BcUNA CBcUNV =0 and so x & B-0-cA. O

Lemma 3.6. Let A and B be any subset of a space X. Then
the following properties hold:

(i) x € B-0-cA if and only if ANV #£ @ for every V € Br(X,x).
(ii) If A C B then B-0-cA C B-0-cB.

(iii) B-0-c(B-6-cA) = B-6-cA.

(iv) intersection of an arbitrary family of A-B-0-closed sets
inX is A-B-0-closed in X.

(v) A is A-B-0-open if and only if for each x € A, there exists
V € Br(X,x), such thatx €V C A.

(vi) IfA € B(A) then BcA = B-0-cA.

(vii) IfA € Br(X) then A is A-B-0-closed.

(viii) A = Br(X) if and only if A is A-3-0-open and A-3-6-
closed.

Proof. We give only proof of (iv). Others proofs are obvious.
(iv) Let Ay be a A-f3-6-closed for each o € A. Then for each
o € A, we have A = 3-0-cA. Therefore, $-0-c(Ngeala) C
NaeaP-0-cAg=Ngerlq C B-0-c(Ngeala)- Hence,
B-0-c(Ngerla) = Ngeal. Therefore, NgepAy is A-S-6-
closed. O

Remark 3.7. If A be a A-B-regular set in a GTS (X,A), then
A is A-B-0-open and A-B-open.

We now introduce f3; -closed subset A of a A-space (X, ).
As a special case, we obtain 3, -closed spaces when A = X.
Several characterizations in terms of filter bases and general-
ized complete accumulation point are obtained.

Definition 3.8. A subset A of a A-space is called B, -closed
in X if any cover of A by A-B-open subsets of X has a finite
subfamily, the union of A-B-closures of whose members covers
A.

A A-space (X,A) is called B -closed if any cover of X
by A-B-open sets has a finite subfamily, the union of A-J3-
closures of whose members covers X.

Remark 3.9. We observe that the concept of 3 -closed subset
of a A-space generalizes the concept of B-closed subset [3]
of a topological space. Also, if A is a subset of a topological
space (X,7) and A = 1T, then the concepts of B -closedness
and B-closedness are equivalent.

Theorem 3.10. Every ) -closed space (X, 1) is weakly A-
compact [17].

Proof. Proof follows from the fact that every A-open set is
A-B-open in a space (X,1). O



Theorem 3.11. For a A-space X, the following are equiva-
lent:

(i) A is By, -closed ;

(ii) every cover of A by A-B-regular sets has a subcover;

(iii) for each family [{Uqy € Br(X) : o0 € I}]NA = 0, there exist
a finite subset Iy of I such that [{Uq € Br(X):a € h}|NA=
0;

(iv) every cover of A by A-B-0-open has a finite subcover.

Proof. Straightforward. O

Proposition 3.12. For a subset A of a A-space X, the follow-
ing are equivalent:

(i) A is B),-closed in X.

(i) for any family % = {Uy : o0 € A} of A-B-closed subsets of
X such that [{Uq : o0 € A}|NA = 0, there exist a finite subset
Ao of A such that [{BiUg : a0 € Ag}]NA = 0;

Proof. Straightforward. U

Definition 3.13. A filter base % on a A-space X is said to be
By -6-converge to a point x € X, if for each A-B-open subset
V of X containing x, there exists F € F such that F C BcV.

A filter base .F is said to be [3) -0-accumulate at x € X, if
FNBcV #0 for every F € F and for every A-B-open subset
V of X containing x.

Definition 3.14. A net {x) },cp on a A-space X, where D is
a directed set, is said to be B, -0-converge to a point x € X,
if for each A-B-open subset V of X containing x, there exists
ng € D such that ¥ n = ng, x, € BcV.

A net {x) },.ep on a A-space X, where D is a directed set,
is said to be B -0-accumulate at x € X, if for each A-B-open
subset V of X containing x and ¥ nog € D there exist n > ng
such that x, € BcV.

Definition 3.15. A point x in a space X is called 3, -0-complete
accumulation point (B, -0-c.a.p, for short) of a subset S of X,
if IS| =|SNV| for each V € Br(X,x), where |S| denotes the
cardinality of the subset S.

Theorem 3.16. The following conditions are equivalent for a
A-space X:

(i) X is By, -closed;

(ii) every infinite subset of X has a 3;-6-c.a.p in X;

(iii) each net with a well ordered directed set as its domain
By -0-accumulate to a point in X.

Proof. (i) =: Let I be an infinite subset in a 3, -closed space
and A ={x € X :xisnota f8;-6-c.a.p. of I'}. Then for each
x € A, there exists a By € Br(X,x) such that |B,N1| < |I].
If A is the whole space, then it follows from the Theorem
3.11, that the cover {By : x € A} has a finite subcover, say
{By,;Bx,,...,By }. Then, I C U{B,,NI:i=1,2,....k} and
|I| = max{|By,NI|:i=1,2,...,k} — a contradiction. Hence,
A has a §,-0-c.a.p. in X.

(ii) = (i): Suppose X is not f3) -closed. Then by the Theorem
3.11, there exists a cover % of X by A-f-regular sets having
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no finite subcover. We consider @ = min{|%*|: %* C %
and % * is a cover of X}, where |.| denotes the cardinality.
Let % C % be a cover of X for which |%| = . Clearly
§> X and then by the well ordering of %4, by some minimal
well ordering <, we have [{U : U € % and U < Up}| < |{U :
U € %}| for each Uy € %. Tt is clear that, X can not have
any subcover with cardinality less than g and hence for each
U € %, there exists a point xy € X \ U{Up U {xy, } : Up € %
and Uy < U}. This can be done always, otherwise one can
choose from % a cover of smaller cardinality. For any point
x€ X, suppose W = {xy : U € %}. Since % is a cover of X,
x € U* for some U* € %. But by the choice of xy, xy € Z*
implies U < U*. Therefore, Z = {U € % and xy € U*} C
{U € % : U < U*}. By the minimality of <, |Z| < & and so
|WNU*| < go. Now, since for Uy, U, € %y with U; # U,, we
have xy, # xy,, then |W| = @ > Xq. Therefore, the infinite
set W has no f8,-0-c.a.p. in X — a contradiction. Hence, X is
By -closed.

(iii) = (ii): Let I be an infinite subset of X. Then by Zorn’s
lemma, / can be assumed to be a net with a well ordered
directed set as its domain. So, it has a 3-0-adherent point say,
x and then clearly x is an 3 -60-c.a.p. of I.

(i) = (iii): Let {x; }1cp be a net with well ordered directed
set D and it has no f3-0-adherent point in X. Then, for
each x € X, there exists Uy € Br(X,x) and a A, € D such that
X3 € X\Uy V¥V A > A,. Now, since X is f; -closed, the cover
{U; : x € X} has a finite subcover {U,,,Uy,,...,Uy } (say).
Suppose {Ay,,Ax,, ..., Ay, } be the corresponding elements in
D and since it is finite, by the well orderedness of D, there
exists a largest element say, A, in D. Therefore, we have x; €
M (X\Uy,) =X\ U Uy, = 0 for A > A, —a contradiction.
Hence, the net {x; },<p has a ;-0-c.a.p. in X. O

The proof of the following proposition is straightforward
and thus omitted.

Proposition 3.17. Ler % be a filter base on a A-space X and
x€X. Then

(i) If F is By -0-converge to x, then F B, -0-accumulates at
X.

(ii) If F is a maximal filter base, then F [, -0-converges if
and only if B -0-accumulates at x.

Theorem 3.18. For a subset A of a A-space X, the following
are equivalent:

(i) A is By -closed in X ;

(ii) every maximal filter base on X, each of whose members
meet A, B -0-converges to some point of A;

(iii) every filter base on X, each of whose members meet A,
By -6-accumulate to a point of A.

Proof. (i) = (ii): Let % be a maximal filter base on X,
each of whose members meet A, such that % does not f3; -
0-converge to any point of A. Now, since .# is maximal,
by above Proposition 3.17, .% does not f3; -6-accumulates
at any point of A. So, for each x € A, there exists F, € .F
and A-fB-open set U, of X containing x and F, N BcU, = 0.



But, A being f3;-closed in X, there exists x1,x2,...,x, € X
such that A C U, BcUy,. Again, since .7 is filter base on X,
there exists F € .% such that F C N}, F,, but F;, N BcUy, =0
for each i € {1,2,...,n}. Therefore, F N BcUy, = 0 for each
ie{l,2,...,n}ie. 0= (U ,BcUy;)NF DANF - a contra-
diction.

(ii) = (iii): Let .% be a filter base on X, each of whose mem-
bers meet A. Then F4 = {FNA:F € F} is a filter base
on X. Therefore, %4 is contained in a maximal filter base
 on X, each of whose members meet A. Hence, 77 f3; -
0-converges to some y of A and so by Proposition 3.17 (ii),
I B, -0-accumulates at y. But since .F4 C 2, so .F4 By -
0-accumulates at y. Hence, .% 3, -0-accumulates at y.

(iii) = (i): If possible, suppose that, A is not f3) -closed. Then
by Proposition 3.12, there exist a cover % = {Ugy : 0@ € A}
of A by A--open subsets of X such that for any finite subset
A of A such that [Bi(X \ Uy) : @ € Ag}] NA # 0. For each
finite subset Ag of A, let Fa, = [N{Bi(X \Uq) : o0 € Ao }] NA.
Then .7 = {F, : Ao is a finite subset of A} is a filter base
on X, each of whose members meet A. Therefore by (iii),
Z Bj-0-accumulates at some point x of A. Since % is
a cover of A, there exists &y € A such that x € Ug,, but
F PBy-0-accumulates at x and Uy, being a A-fB-open set,
FNBcUq, # 0 for every F € F. Let F = Bi(X \ Ug,) NA,
then F € #. Thus Bi(X \ Uy ) NAN BcUq, = 0 — a contra-
diction. Hence, A is 3 -closed in X. O

Proposition 3.19. Let X be a A-space. If A is A-B-0-closed
subset of X and B is a B -closed in X, then ANB is B, -closed
inX.

Proof. Let % = {Uy : a € A} be a cover of ANB by A-
B-open subsets of X. Then % U{X \ A} is a cover of B.
Now, since X \ A is A-3-0-open, for each x ¢ A, there ex-
ists a A-B-open set Uy such that x € U, C BcU, C (X \ A).
Then % U{U, : x € X \ A} is a cover of B by A-B-open
subsets of X. Since B is f;-closed in X, so there exists
oy,0,...,0, € A and there exist x,x2,...,x%, € X \ A such
that B C [U!_, BcUq, | U[UM BcUy,]. But, BcU,, C X\ A and
so ANB C Ul BcUy,. Hence, ANB s fBj-closedin X. [

Theorem 3.20. For a A-space X, the following are equiva-
lent:

(i) X is By, -closed;

(ii) every proper A-B-0-closed set is B, -closed relative to X;
(iii) every proper A-B-regular set is 3 -closed relative to X.

Proof. (i) = (ii): Let {Uq : @ € I'} be a cover of proper A-f3-
0-closed set F by A-fB-regular sets of X. Then X \ F is A-f3-6-
open, so for each x € (X \ F), there exists a Vy € Br(X,x) such
that x € V, C (X \ F). Hence, the family {V, :x € X\ F} U
{Uq : o € I} is a cover of X by A-B-regular sets of X. Now,
since X is 3y -closed, there is a finite subset Iy of I such that
F CU{Uy : a € Ip}. Hence by Theorem 3.11, F is 3, -closed
relative to X.

(i) = (ii): Follow from Theorem 3.6 (vii).

(iii) = (i): Let F be a A-B-regular set. Then, X = F U (X \
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F) and since F and X \ F are both A-B-regular, X is f3;-
closed. O

4. Mapping Properties

Definition 4.1. A function f: (X,A) — (Y, A) is called (A, 1)-
continuous [6] if the inverse image of each A'-open set is
A-open.

Definition 4.2. A function f: (X, A) — (Y, ") is called B 31)-
irresolute if the inverse image of each A'-B-open set is A-3-
open.

Proof of the following lemma is quite straightforward and
thus omitted.

Lemmad4.3. Let f: (X,A) — (Y,A) be a function. Then the
following are equivalent:

(i) f is B ar)-irresolute ;

(ii) for every x € X and for every A’'-open set V contain-
ing f(x), there exists a A-open set U containing x such that
Ffo)cv;

(iii) f(BcjyA) C Bey f(A) for every subset A of X (where c; A
denotes A-closure of A in (X,1));

(iv) Bep f~1(B) C f~'(BcyB) for every subset B of Y.

Theorem 4.4. Let f: (X, 1) — (Y,1) be a B3 y-irresolute
function, where (X, ) is A-space and (Y,A') is a A'-space. If
Ais By -closed in X, then f(A) is By-closed in Y.

Proof. Let % = {Uqy : o € A} be a cover of f(A) by A'-f3-
open subsets of Y. Since f is B, 5/y-irresolute, ¥ = {fF Y Uy):
o € A} is a cover of A by A-f-open subsets of X. But, since A
is B -closed in X, there exists a;, @3, ..., &4, € A such that A C
U2 Ber £~ (Ugy). This implies £(A) © UL, £(Ber f~ (Us,)):
Again, since f is (3 /) -irresolute, by above Lemma 4.3, it
follows that f(Bcy £~ (Ug,)) C Bep f(f ' (Ug,)) C BepUg,.
Therefore, f(A) is By-closed in Y. O
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