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Abstract
In this paper the concepts of upper and lower fuzzy completely contra e-irresolute fuzzy multifunctions are
introduced. Also the concepts of the upper and lower completely weakly e-irresolute fuzzy multifunctions are
being discussed. Some characterizations of these classes and some basic interesting properties of such fuzzy
multifunctions are obtained and the mutual relationship and with other existing fuzzy multifunctions are also
discussed.

Keywords
Upper and lower fuzzy completely contra e-irresolute fuzzy multifunctions, upper and lower completely weakly
e-irresolute fuzzy multifunctions.

AMS Subject Classification
54A40.

1,2Department of Mathematics, University College of Engineering Panruti, Panruti-607106, TamilNadu, India.
*Corresponding author: 1 krsaut@gmail.com; 2seenujsc@yahoo.co.in
Article History: Received 09 January 2020; Accepted 19 May 2020 ©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

3 Fuzzy CCU e- Irresolute and CCL e- Irresolute Multi-
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828

4 Fuzzy CWCU e-irresolute and Fuzzy CWCL e-irresolute
Multifunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

1. Introduction
In the year 1985, Papageorgiou[7] introduced the fuzzy

multifunction as a function from an ordinary topological
space X to a fuzzy topological space Y. Further a group of
researchers are engaged themselves and have studied different
types of fuzzy multifunctions. The upper and lower inverses of
a fuzzy multifunction are discussed and defined Papageorgiou.
Mukherjee and Malakar[6] have studied fuzzy multifunctions
with q-coincidence with the definition of upper inverse that
were discussed and defined in[5] and with the definition of
lower inverse which is defined by J. E. Joseph and M. H.
Kwack in [4], On the other hand, J. Dontchev[3] introduced
and discussed a lot about contracontinuous functions. Joseph

and Kwack[4] introduced another form of contra continuous
functions. In recent years, several authors have studied some
new forms of contra-continuity for functions and multifunc-
tions. Also, Seenivasan.V and Kamala.K, have defined and
studied about Fuzzy e-continuity and fuzzy e-open sets[9]
and studied about Fuzzy Ce-I(ec,eo) functions and fuzzy com-
pletely Ce-I(rc,eo) functions via fuzzy e-open sets[10]. In this
paper we introduce fuzzy upper (lower) completely contra e-
irresolute multifunctions and fuzzy upper (lower) completely
weakly contra e-irresolute multifunctions and give some char-
acterizations and properties of such notions are discussed.
Throughout this paper let us use the abbreviations as fuzzy
topological space as fts, fuzzy multifunction as fmf, Regular
open set as Ro, regular closed as Rc, fuzzy open set as FOS,
fuzzy closed set as FCS, fuzzy e-closed set as fe-cs, fuzzy
e-open set as fe-os, e-irrsolute multifunction as e-irmf etc.

2. Preliminaries
In this section, we recall some definitions and basic results

which will be used. Through this paper, by (X ,τ) or simply by
X we will mean a topological space in the classical sense, and
(Y,σ) or simply Y will stand for a fuzzy topological space
as defined by Chang[2]. Fuzzy sets in Y will be denoted by
λ ,µ,ρ,η ,γ etc., and although subsets of X will be denoted
by A,B, M, U, V,W etc. A mapping F : X → Y is called
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a fuzzy multifunction[7] if for each, x ∈ X , F(x) is a fuzzy
set in Y. For a fuzzy multifunction F : X → Y , the upper
inverse F+(µ) and lower inverse F−(µ) of a fuzzy set µ in
Y are defined as follows: F+(µ) = {x ∈ X ,F(x) ≤ µ} and
F−(µ) = {x ∈ X ,F(x)qµ}.

Definition 2.1. [9] A fuzzy set µ of a fts X is called fe-os
if µ ≤ cl(intδ µ) ∨ int(clδ µ) anf Fe-os if µ ≥ cl(intδ µ) ∧
int(clδ µ). The intersection of all fe-cs’s containing µ is called
fe-closure of µ and is denoted by fe-cl (µ) and the union of
all fe-os’s contained in µ is called fuzzy e-interior of µ and is
denoted by fe- int(µ) .

Definition 2.2. [9]A mapping f : X → Y is said to be a fuzzy
e-irresolute (briefly, f e-irresolute) if f−1(λ )) is fuzzy e-open
set in X for every fuzzy e-open set λ in Y.

Definition 2.3. [8] A fuzzy set µ is quasi-coincidentwith a
fuzzy set λ denoted by µqλ iff there exist x ∈ X such that
µ(x)+λ (x)> 1 . If µ and λare not quasi-coincident then we
write µqλ and µ ≤ λ ⇔ µq1−λ .

Definition 2.4. [8] A fuzzy point xp is quasi-coincident with
a fuzzy set λdenoted by xpqλ iff there exist x ∈ X such thatp+
λ (x)> 1.

Lemma 2.5. [6]: For a fuzzy multifunction G : M→ N , we
have G−(N−µ) = M−G+(µ), for any fuzzy set µ in N.

3. Fuzzy CCU e- Irresolute and CCL e-
Irresolute Multifunctions

In this section, we define fuzzy upper and lower com-
pletely contra e-irresolute multifunctions and we discuss with
some properties.

Definition 3.1. A fmf G : P→ Q is called fuzzy lower com-
pletely contra e-irresolute (briefly, fuzzy CCL e-irresolute) mul-
tifunction if for any fe-cs µ in Q with x ∈ G−(µ) (i.e)G(x)qµ ,
there exists an Ro set M in P containing x such that M ⊂
G−(µ).

Definition 3.2. A fmf G : P→ Q is called fuzzy upper com-
pletely contra e-irresolute (briefly, fuzzy CCU e-irresolute)
multifunction if for any fe-cs µ in Q with x ∈ G+(µ), there
exists an Ro set M in X containing x such that M ⊂ G+(µ).

Theorem 3.3. For a fmf F : (X ,τ)→ (Y,σ) the following
statements are equivalent:
(i). F is fuzzy CCU e-irresolute
(ii). For each fe-cs µ and x ∈ X such that F(x) ≤ µ , there
exists an Ro set V containing x such that if y ∈V , then F(y)≤
µ .
(iii). F+(µ) is Ro in X for any fe-cs µ in Y.
(iv). F−(ρ) is Rc in X for any fe-os ρ in Y.
(v). For every FOS µ of Y, F−(fe-int(µ)) is Rc in X.
(vi). For every FCS η of Y, F+(fe-cl(η)) is Ro in X.
(vii).intclF+(µ) = F+(fe-cl(µ)), for every fuzzy set µ in Y .

Proof : (i)⇔ (ii) : obvious.
(i)⇒ (iii) : Let µ be any fe-cs in Y and x ∈ F+(µ). By (i),
there exists a Ro set M containing x such that M ⊂ F+(µ).
Thus, x ∈ intclF+(µ) and hence F+(µ) is an Ro set in X.

(iii)⇒ (i) : Let ρ be any fe-cs in Y and x ∈ F+(ρ). By
(iii), F+(ρ) is a Ro set in X. Take V = F+(ρ). Then V ⊂
F+(ρ). Thus, F is fuzzy CCU e-irresolute.

(iii)⇒ (iv) : Let ρ be a fe-os in Y. Then 1Y −ρ is a fe-cs in
Y. By (iii), F+(1Y −ρ) is a Ro set in X. Since F+(1Y −ρ) =
1X −F−(ρ), then F−(ρ) is a Rc set in X.

(iv)⇒ (iii) : Let µ be a fe-cs in Y. Then IY −µ is a fe-os in
Y. By (iv), F−(1Y −µ) is a Rc set in X. Since F−(1Y −µ) =
1X −F+(µ), then F+(µ) is a Ro in X.

(iv)⇒ (v) : Let µ be a FOS in Y. Since f e-int(µ) is fuzzy
e-open, then by (iv), F−( f e-int(µ)) is a Rc set in X. Converse
is obvious.

(iii)⇒ (vi) : Let η be a FCS of Y. Since f e− cl(η) is fe-
cs of Y, then by (iii), F+( f e-cl(η)) is a Ro set in X. Converse
is obvious.

(v)⇒ (vi) : Let η be a FCS of Y. Then IY −η is a FOS of
Y. Since f e-int(1Y −η) is fe-os of Y. By (v), F−( f e-int(1Y −
η))) is a Rc set in X. This implies, F−( f e-int(1Y −η)) =
F−(1Y − f e-clη) = 1X −F+( f e-clη). Then F+( f e-cl(η))
is Ro in X. Converse is obvious.

(vi)⇒ (vii) : Let µbe any fuzzy set in Y. Since f e-cl(µ) is
fuzzy e-closed in Y then by (vii), F+( f e-cl(µ)) is Ro in X and
F+(µ) = F+( f e-cl(µ)). Therefore, we obtain intclF+(µ) =
intclF+( f e-clµ). Since F+( f e-cl(µ)) is Ro in X and hence
intclF+(µ) = F+( f e-clµ)).

(vii)⇒ (vi) : obvious.

Theorem 3.4. For a fmf F : (X ,τ)→ (Y,σ) the following
statements are equivalent:
(i). F is fuzzy CCL- e-irresolute
(ii). For each fe-cs µ and x ∈ X such that F(x) ≤ µ , there
exists an Ro set V containing x such that if y ∈V , then F(y)≤
µ .
(iii). F−(µ) is Ro in X for any fe-cs µ in Y.
(iv). F+(ρ) is Rc in X for any fe-os ρ in Y.
(v). For every FOS µ of Y, F+( f e-intµ) is Rc in X.
(vi). For every FCS η of Y, F−( f e-clη) is Ro in X.
(vii).intclF−(µ) = F−( f e-cl(µ)), for every fuzzy set µ in Y.

Proof :It is similar to that of theorem 3.3

Remark 3.5. Every fuzzy CCU e- irresolute (fuzzy CCLe- ir-
resolute) multifunction is fuzzy upper contra continuous. Con-
verse is not true.

Example 3.6. Let X = {a,b,c} , τ = {X ,φ ,{a},{b},{a,b}}
and Y = [0,1], σ = {0,1,µ,λ ,δ} where µ(y) = 0.4, λ (y) =
0.1, δ (y) = 0.7, ν(y) = 0.3, γ(y) = 0.5. Consider the fmfF :
(X ,τ)→ (Y,σ) is defined as F(a) = ν , F(b) = γ, F(c) = δ .
Then F+(1−µ) = {a,b} , F+(1−λ ) = X , F+(1−δ ) = {a}
and F−(1− µ) = {b,c} , F−(1− λ ) = X , F−(1− δ ) = φ

which is open but not Ro in (X ,τ). Then F is fuzzy upper
contra continuous but not fuzzy CCU e-irresolute (fuzzy CCL
e-irresolute ) multifunction.
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Remark 3.7. Every fuzzy CCU e-irresolute (fuzzy CCL e-
irresolute) multifunction is fuzzy upper(lower) almost con-
tinuous. Converse is not true.

Example 3.8. Let X = {a,b,c} , τ = {X ,φ ,{b},{b,c}} and
Y = [0,1], σ = {0,1,µ,λ ,η} where µ(y) = 0.4, λ (y) = 0.1,
η(y) = 0.5, ζ (y) = 0.7, γ(y) = 0.6. Consider the fmf F :
(X ,τ)→ (Y,σ) is defined as F(a) = µ, F(b) = ζ , F(c) = γ.
Then F+(1−µ) = {a,c} , F+(1−λ ) = X , F+(1−η) = {a}
which is closed but not Ro in (X ,τ). Then F is fuzzy upper
almost continuous but not fuzzy CCU e-irmf.

Example 3.9. Let X = {a,b,c} , τ = {X ,φ ,{b},{a,b}} and
Y = [0,1], σ = {0,1,µ,ρ,η} where µ(y) = 0.4, ρ(y) = 0.2,
η(y) = 0.5. Consider the fmf F : (X ,τ)→ (Y,σ) is defined
as F(a) = µ, F(b) = ρ, F(c) = η . Then F−(1− µ) = {c} ,
F−(1−ρ) = {a,c}, F−(1−η) = φ which is closed but not
Ro in (X ,τ). Then F is fuzzy lower almost continuous but not
fuzzy CCL e-irresolute multifunction.

Theorem 3.10. Let {Yi : i ∈ I} be a family of product spaces.
If a function F : X→∏Yi is fuzzy CCU e-irresolute (fuzzy CCL
e-irresolute ), then Pi ◦F : X → Yi is fuzzy CCU e-irresolute
(fuzzy CCL e-irresolute ) for each i ∈ I where Pi is the projec-
tion of ∏

i∈I
Yi onto Yi.

Proof :Let δi be any fe-os in Yi. Since Pi is a fuzzy continuous
and fuzzy open set, it is a fe-os. NowPi : ∏

i∈I
Yi→Yi, P+

i (δi)is a

fuzzy e-open in ∏
i∈I

Yi. Therefore, Pi is a fuzzy e-irresolute func-

tion. Now (Pi ◦F)+(δi) = F+(P+
i (δi)) = F+

(
∏
i 6= j

Yj×δi

)
since F is fuzzy CCU e -irresolute. Hence F+(P+

i (δi)) is a Rc
set, since P+

i (δi) is a fuzzy e-open set. Hence Pi ◦F is fuzzy
CCU e -irresolute.

Theorem 3.11. If the function F : ∏
i∈I

Xi→ ∏
i∈I

Yi, defined by

F(xi) = ∏
i∈I

Fi(xi), is fuzzy CCU e-irresolute (fuzzy CCL e-

irresolute ) multifunction, thenFi : Xi → Yi is fuzzy CCU e-
irresolute (fuzzy CCL e-irresolute ) multifunction for each
i ∈ I.

Proof :Let υi be any fe-cs of Yi, then ∏
i6= j

Yj×υi is fuzzy e-

closed in ∏
i∈I

Yi. Since F is fuzzy CCU e - irmf, then

F+

(
∏
i6= j

Yj×υi

)
= ∏

i6= j
X j×F+

i (υi) is Ro in ∏
i∈I

Xi and hence

F+
i (υi) is Ro in Xi. This implies, Fi is fuzzy CCU e-irmf.

Theorem 3.12. For a fmf F : X → Y , if clint(F−(η)) ≤
F−( f e-Kη) for every fuzzy set η of Y, then F is fuzzy CCU

e-irresolute.

Proof :Suppose that clint(F−(η)) ≤ F−( f e-Kη), for every
fuzzy set η in Y. By definition, F−( f e-Kη) = F−(η). This
implies that, clint(F−(η)) = F−(η) and F−(η) is Rc in X.
Thus, by theorem 3.3, F is fuzzy CCU e-irresolute.

Theorem 3.13. For a fmf F : X → Y , if clint(F+(η)) ≤ F+

( f e-Kη) for every fuzzy set η of Y, then F is fuzzy CCL e-
irresolute .

Proof :It is similar to that of theorem 3.12

Theorem 3.14. Let {Vi : i ∈ I} be a Ro cover of X and a fmf
F : X → Y is a fuzzy CCU e-irresolute (fuzzy CCL e-irresolute
) iff F |Vi : Vi → Y is fuzzy CCU e-irresolute (fuzzy CCL e-
irresolute ) for each i ∈ I.

Proof :Suppose that F is fuzzy CCU e-irmf. Let x ∈ Xand
x ∈Vi for each i ∈ I. Let λ be a fe-cs of Y containing F |Vi(x).
Since F is fuzzy CCU e-irmf and F(x) = F |Vi(x), there exists
an Ro set U containing x such that U ⊂ F+(λ ). Take W =
U ∩Vi. Then W is a Ro set Vi containing x and F |Vi(W ) =
F(W )≤ λ . This implies that W ⊂ F+(λ ). Thus F |Vi is fuzzy
CCU e-irresolute.
Conversely, Let x ∈ X and λ be fe-cs in Y with x ∈ F+(λ ).
Since {Vi : i ∈ I}is a Ro cover for X, then x ∈Vi. Since F |Vi
is fuzzy CCU e-irresolute and F(x) = F |Vi(x), there exists a
Ro set W such that F |Vi(W )≤ λ . Then we have, W is Ro in
X and W ⊂ F+(λ ). Therefore, F is fuzzy CCU e-irresolute.

Theorem 3.15. For a fmf F : X →Y , if the fuzzy graph multi-
function GF : X → X×Y is fuzzy CCU e-irresolute, then F is
fuzzy CCU e-irresolute.

Proof :Suppose that fuzzy graph multifunction GF : X →
X ×Y is fuzzy CCU e-irresolute and x ∈ X . Let η be fe-
cs in Y with F(x) ≤ η . Then GF(x) ≤ X ×η . Since the
graph function GF is fuzzy CCU e-irresolute , there exists an
Ro set M containing x such that GF(M) ≤ X ×η . For any
m0 ∈ M and y ∈ Y , we have F(m0)(y) =GF(m0)(m0,y) ≤
(X ×η)(m0,y) = η(y). Then we have F(m0)(y) = η(y) for
all y ∈ Y . Thus, F(m0) ≤ η for any m0 ∈ M. Hence, F is
fuzzy CCU e-irresolute.

Theorem 3.16. For a fmf F : X →Y , if the fuzzy graph multi-
function GF : X → X×Y is fuzzy CCL e-irresolute, then F is
fuzzy CCL e-irresolute.

Proof :Suppose that fuzzy graph multifunction GF : X →
X ×Y is fuzzy CCL e-irresolute and x ∈ X . Let η be fe-cs
in Y such that F(x)qη . Then there exists y ∈ Y such that
(F(x))(y) + η(y) > 1. Then we have GF(x)(x,y) + (X ×
η)(x,y) > 1 which implies GF(x)q(X × η). Since fuzzy
graph function GF is fuzzy CCL e-irresolute, there exists an
Ro set M in X such that x ∈M and GF(m0)q(X ×η) for all
m0 ∈M. Suppose that there exists a point n0 in M such that
F(n0)q̄η . Then for all y ∈ Y , (F(n0))(y)+η(y)≤ 1 we have
GF(n0)(x,y) ≤ F(n0)(y) and (X × η)(x,y) ≤ η(y). Thus,
GF(n0)(x,y)+(X×η)(x,y)≤ 1. Thus, GF(n0)q̄(X×η), for
any n0 ∈M which is a contradiction. Hence F is fuzzy CCL
e-irresolute.

Theorem 3.17. If F : (X ,τ)→ (Y,σ) is a fuzzy CCU e- irres-
olute (fuzzy CCL e- irresolute ) injective fmf and F(x) be fuzzy
e-T2 space for every x ∈ X, then X is Urysohn space.
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Proof :Let x1 and x2 be any two distinct points in X. Since F
is injective, F(x1) 6= F(x2) in Y. Since Y is fuzzy e-T2, there
exists fe-os η and ρ in Y such that F(x1) ∈ η and F(x2) ∈ ρ

and η ∧ρ = 0. This implies that fe-cl(η) and fe-cl(ρ) are
fe-cs in Y. Then, since F is fuzzy CCU e-irresolute, there
exists a Ro sets V and W in X containing x1 and x2 respec-
tively, such that F(V )≤ f e-cl(η)and F(W )≤ f e-cl(ρ). This
implies that V ⊂ F+( f e-cl(η)) and W ⊂ F+( f e-cl(ρ)), we
have F+( f e-cl(η)) and F+( f e-cl(ρ)) are disjoint and hence
cl(V )∩ cl(W ) = φ , and by definition, X is Urysohn.

Theorem 3.18. Let F : X → Y be a fuzzy CCU e-irresolute
surjective multifunction and F(x) is fuzzy e-closed for each
x ∈ X. If X is nearly compact, then Y is fuzzy e-closed.

Proof :Let {υα : α ∈ Ω} be any cover of F(x) by fe-cs of
Y. Since F(x) is fuzzy e-closed for any x ∈ X , there exists a
finite subset ∆ of Ω such that F(x) ≤ ∨

α∈∆
f e-cl(υα). Take

λ = ∨
α∈∆

f e-cl(υα). Since F is fuzzy CCU e-irresolute, there

exists a Ro set Ax of X containing x such that F(Ax)≤ λ . Then
{Ax},x ∈ X is a Ro cover of X. Since X is nearly compact,

there exists xi, i = 1, ...,n in X such that X =
n
∪

i=1
Axi we have

Y = F(X) = F(
n
∪

i=1
Axi) =

n
∨

i=1
F(Axi) ≤

n
∨

i=1
λi =

n
∨

i=1
∨

α∈∆i
fe-cl

(υα). Thus, Y is fuzzy e-closed.

Theorem 3.19. If F : X→Y is a fuzzy CCU e-irresolute injec-
tion and Y is fuzzy e-normal then X is strongly normal.

Proof :Let V and W be a disjoint nonempty closed sets of
X. Since F is injective, F(V ) and F(W ) are disjoint FCSs.
Since Y is fuzzy e-normal, there exists fe-os µ and λ such
that F(V ) ≤ µ and F(W ) ≤ λ and µ ∧λ = 0. This implies
that f e-cl(µ) and f e-cl(λ ) are fe-cs in Y. Then, since F is
fuzzy CCU e-irresolute, F+( f e-cl(µ)) and F+( f e-cl(λ )) are
Ro sets. Then V ⊂ F+( f e-cl(µ)) and W ⊂ F+( f e-cl(λ )),
we have F+( f e-cl(µ)) and F+( f e-cl(λ )) are disjoint, and by
definition, X is strongly normal.

4. Fuzzy CWCU e-irresolute and Fuzzy
CWCL e-irresolute Multifunctions

Definition 4.1. A fmf F : X → Y is called fuzzy lower com-
pletely weakly contra e-irresolute(briefly, fuzzy CWCL e -
irresolute) multifunction if for any fe-cs µ in Y with x∈ F−(µ)
(i.e)F(x)qµ , there exists an open set V in X containing x such
that V ⊂ F−(µ).

Definition 4.2. A fmf F : X → Y is called fuzzy upper com-
pletely weakly contra e-irresolute(briefly, fuzzy CWCU e -
irresolute) multifunction if for any fe-cs µ in Y with x∈F+(µ),
there exists an open set V in X containing x such that V ⊂
F+(µ).

Remark 4.3. Every fuzzy CWCU e-irresolute (fuzzy CWCL
e-irresolute) multifunction is fuzzy CWCU e-irresolute (fuzzy
CWCL e-irresolute) multifunction.

Example 4.4. Let X = {a,b,c} , τ = {X ,φ ,{b},{b,c}} and
Y = [0,1], σ = {0,1,µ,λ ,η} where µ(y) = 0.4, λ (y) = 0.2,
η(y) = 0.8, ζ (y) = 0.5, γ(y) = 0.6. Consider the fmf F :
(X ,τ)→ (Y,σ) is defined as F(a) = ζ , F(b) = η , F(c) = γ.
Then F+(1−µ) = {a,c} , F+(1−λ ) = X , F+(1−η) = {a}
which is open but not Ro in (X ,τ). Then, F is fuzzy CWCU

e-irresolute but not fuzzy CCU e-irmf.

Example 4.5. Let X = {a,b,c} , τ = {X ,φ ,{a},{b},{a,b}}
and Y = [0,1], σ = {0,1,ζ ,η ,ρ} where ζ (y) = 0.1, ρ(y) =
0.6, η(y)= 0.4. Consider the fmfF : (X ,τ)→ (Y,σ) is defined
as F(a) = η , F(b) = ρ, F(c) = ζ . Then F−(1−ζ ) = {a,b} ,
F−(1−η) = {b}, F−(1−ρ) = φ which is open but not Ro in
(X ,τ). Then F is fuzzy CWCL e-irresolute but not fuzzy CCL
e-irmf.

Theorem 4.6. For a fmf F : (X ,τ)→ (Y,σ) the following
statements are equivalent:
(i). F is fuzzy CWCU e-irresolute
(ii). For each fe-cs µ and x ∈ X such that F(x) ≤ µ, there
exists an open set V containing x such that if y ∈ V, then
F(y)≤ µ .
(iii). F+(µ) is open in X for any fe-cs µ in Y.
(iv). F−(ρ) is closed in X for any fe-os ρ in Y.
(v). For every FOS µ of Y, F−( f e-intµ) is closed in X.
(vi). For every FCS η of Y, F+( f e-clη) is open in X.

Proof :(i)⇔ (ii): obvious.
i⇒ (iii) : Let µ be any fe-cs in Y and x ∈ F+(µ). By (i),

there exists an open set V containing x such that V ⊂ F+(µ).
Thus, x ∈ intF+(µ) and hence F+(µ) is an open set in X.

(iii)⇒ (i) : Let ρ be any fe-cs in Y and x ∈ F+(ρ). By
(iii), F+(ρ) is an open set in X. Take V = F+(ρ) . Then
V ⊂ F+(ρ). Thus, F is fuzzy CWCU e-irresolute.

(iii)⇒ (iv) : Let ρ be a fe-os in Y. Then IY −ρ is a fe-cs
in Y. By (iii), F+(1Y −ρ) is an open set in X. Since F+(1Y −
ρ) = 1X −F−(ρ), then F−(ρ) is a closed set in X.

(iv)⇒ (iii) : Let µ be a fe-cs in Y. Then 1Y − µ is a
fe-os in Y. By (iv), F−(1Y − µ) is a closed set in X. Since
F−(1Y − µ) = 1X −F+(µ), then F+(µ) is a fuzzy open in
X.

(iv) ⇒ (v) : Let µ be a FOS in Y. Since f e-int(µ) is
fuzzy e-open, then by (iv), F−( f e-int(µ)) is a closed set in X.
Converse is obvious.
(iii)⇒ (vi) : Let η be a FCS of Y. Since f e-cl(η) is fe-cs of
Y, then by (3), F+( f e-cl(η)) is a open set in X. Converse is
obvious.
(v)⇒ (vi) : Let η be a FCS of Y. Then 1Y −η is a FOS of Y.
Since f e-int(1Y −η) is fe-os of Y. By (5), F−( f e-int(1Y −
η)) is a closed set in X. This implies, F−( f e-int(1Y −η)) =
F−(1Y − f e-cl(η)) = 1X −F+( f e-cl(η)).
Then F+( f e-cl(η)) is open in X. The converse is obvious.

Theorem 4.7. If F : X → Y is an upper almost continuous
multifunction where X and Y are topological spaces and G :
Y → Z is a fuzzy CCU e-irresolute multifunction where Z is a
fuzzy topological space, then G◦F : X → Z is fuzzy CWCU

e-irresolute .
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Proof : Let x ∈ X and ρ be a fuzzy e- closed set in Z we
have (G◦F)+(ρ) = F+(G+)(ρ). Since G is fuzzy CCU e-
irresolute, G+(ρ) is Ro in Y. Since F is upper almost continu-
ous, F+(G+)(ρ) = (G◦F)+(ρ) is open in X. Thus, G◦F is
fuzzy CWCU e-irresolute.

Theorem 4.8. If Fi : X→Y for i= 1,2, ...,n, are fuzzy CWCU

e-irmf, then ∨n
n=1Fi is a fuzzy CWCU e-irmf.

Proof : Let η be a fe-cs of Y and Fi : X →Y for i = 1,2, ...,n
, are fuzzy CWCU e-irmf. Let x ∈ (∨n

n=1Fi)
+(η). Then, ∨n

n=1
Fi(x) ≤ η . Since Fi, i = 1,2, ...,n are fuzzy CWCU e-irmf’s,
then there exists an open set Vx containing x such that Fi(x0)≤
η for every x0 ∈Vx . Let V =

⋃n
i=1 Vxi . Then V ⊂ (∨n

n=1)F
+
i (η).

Thus (∨n
n=1)F

+
i (η) is open in X and hence (∨n

n=1)Fi is a fuzzy
CWCU e-irmf.

Theorem 4.9. If Fi : X → Y for i = 1,2, ...,n, is fuzzy CWCL
e-irmf, then ∨n

n=1Fi is a fuzzy CWCL e-irmf.

Proof : Let η be a fe-cs of Y and Fi : X →Y for i = 1,2, ...,n,
are fuzzy CWCL e-irresolute. Let x ∈ (∨n

n=1Fi)
−(η). Then,

∨n
n=1Fi(x)qη . Then, ∨n

n=1Fi(x)qη . Since Fi, i = 1,2, ...,n are
fuzzy CWCL e-irmf’s, then there exists an open set Vx contain-
ing x such that Fi(x0)qη for every x0 ∈Vx. Let V =

⋃n
i=1 Vxi .

Then V ⊂ (∨n
n=1)F

−
i (η). Thus (∨n

n=1)F
−
i (η) is open in X

and hence (∨n
n=1)Fi is a fuzzy CWCL e-irmf.

5. Conclusion
Thus in this paper the concepts of upper and lower fuzzy

completely contra e-irresolute fuzzy multifunctions were in-
troduced. Also the concepts of the upper and lower com-
pletely weakly e-irresolute fuzzy multifunctions were being
discussed. Some characterizations of these classes and some
basic interesting properties of such fuzzy multifunctions were
obtained and the mutual relationship with other existing fuzzy
multifunctions were also discussed.
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