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Abstract

In this paper the concepts of upper and lower fuzzy completely contra e-irresolute fuzzy multifunctions are
introduced. Also the concepts of the upper and lower completely weakly e-irresolute fuzzy multifunctions are
being discussed. Some characterizations of these classes and some basic interesting properties of such fuzzy
multifunctions are obtained and the mutual relationship and with other existing fuzzy multifunctions are also

discussed.
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1. Introduction

In the year 1985, Papageorgiou[7] introduced the fuzzy
multifunction as a function from an ordinary topological
space X to a fuzzy topological space Y. Further a group of
researchers are engaged themselves and have studied different
types of fuzzy multifunctions. The upper and lower inverses of
a fuzzy multifunction are discussed and defined Papageorgiou.
Mukherjee and Malakar[6] have studied fuzzy multifunctions
with g-coincidence with the definition of upper inverse that
were discussed and defined in[5] and with the definition of
lower inverse which is defined by J. E. Joseph and M. H.
Kwack in [4], On the other hand, J. Dontchev[3] introduced
and discussed a lot about contracontinuous functions. Joseph

and Kwack[4] introduced another form of contra continuous
functions. In recent years, several authors have studied some
new forms of contra-continuity for functions and multifunc-
tions. Also, Seenivasan.V and Kamala.K, have defined and
studied about Fuzzy e-continuity and fuzzy e-open sets[9]
and studied about Fuzzy Ce-I(ec,eo0) functions and fuzzy com-
pletely Ce-I(rc,eo) functions via fuzzy e-open sets[10]. In this
paper we introduce fuzzy upper (lower) completely contra e-
irresolute multifunctions and fuzzy upper (lower) completely
weakly contra e-irresolute multifunctions and give some char-
acterizations and properties of such notions are discussed.
Throughout this paper let us use the abbreviations as fuzzy
topological space as fts, fuzzy multifunction as fmf, Regular
open set as Ro, regular closed as Rc, fuzzy open set as FOS,
fuzzy closed set as FCS, fuzzy e-closed set as fe-cs, fuzzy
e-open set as fe-os, e-irrsolute multifunction as e-irmf etc.

2. Preliminaries

In this section, we recall some definitions and basic results
which will be used. Through this paper, by (X, 7) or simply by
X we will mean a topological space in the classical sense, and
(Y,0) or simply Y will stand for a fuzzy topological space
as defined by Chang[2]. Fuzzy sets in Y will be denoted by
AU, p,M,Y etc., and although subsets of X will be denoted
by A,B, M, U, VW etc. A mapping F : X — Y is called
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a fuzzy multifunction[7] if for each, x € X, F(x) is a fuzzy
set in Y. For a fuzzy multifunction F : X — Y, the upper
inverse F* () and lower inverse F~ (1) of a fuzzy set g in
Y are defined as follows: F™(u) ={xe€ X,F(x) <pu} and

F~(p) = {x € X,F(x)qu}.

Definition 2.1. [9] A fuzzy set U of a fts X is called fe-os
if u <cl(intsu) Vint(clsp) anf Fe-os if u > cl(intsu) A
int(clglt). The intersection of all fe-cs’s containing [ is called
fe-closure of | and is denoted by fe-cl (1) and the union of
all fe-os’s contained in W is called fuzzy e-interior of U and is
denoted by fe-int (1) .

Definition 2.2. [9]A mapping f : X — Y is said to be a fuzzy
e-irresolute (briefly, f e-irresolute) if f~' (1)) is fuzzy e-open
set in X for every fuzzy e-open set A in Y.

Definition 2.3. [8] A fuzzy set U is quasi-coincidentwith a
Jfuzzy set A denoted by gl iff there exist x € X such that
1(x)+A(x) > 1. If u and Aare not quasi-coincident then we
write UgA and U < A & ugl — A.

Definition 2.4. [8] A fuzzy point x,, is quasi-coincident with
a fuzzy set Adenoted by x,qAiff there exist x € X such thatp +
A(x) > 1.

Lemma 2.5. [6]: For a fuzzy multifunction G: M — N, we
have G~ (N — u) =M — G (W), for any fuzzy set l in N.

3. Fuzzy CCY e- Irresolute and CC; e-
Irresolute Multifunctions

In this section, we define fuzzy upper and lower com-
pletely contra e-irresolute multifunctions and we discuss with
some properties.

Definition 3.1. A finf G : P — Q is called fuzzy lower com-
pletely contra e-irresolute (briefly, fuzzy CCy, e-irresolute) mul-
tifunction if for any fe-cs [ in Q with x € G~ () (i.e)G(x)qu,
there exists an Ro set M in P containing x such that M C

G ().

Definition 3.2. A finf G : P — Q is called fuzzy upper com-
pletely contra e-irresolute (briefly, fuzzy CCY e-irresolute)
multifunction if for any fe-cs |t in Q with x € G (W), there
exists an Ro set M in X containing x such that M C G*(u).

Theorem 3.3. For a fmf F : (X,7) — (Y,0) the following
statements are equivalent:

(i). Fis fuzzy CCY e-irresolute

(ii). For each fe-cs L and x € X such that F(x) < W, there
exists an Ro set V containing x such that if y € V, then F (y) <
U

(iii). FT (W) is Ro in X for any fe-cs w in Y.

(iv). F~(p) is Rc in X for any fe-os p in Y.

(v). For every FOS [ of Y, F~ (fe-int(1t)) is Rc in X.

(vi). For every FCS 1 of Y, F*(fe-cl(n)) is Ro in X.
(vii).intclF* () = F* (fe-cl(1)), for every fuzzy set lWin Y .
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Proof : (i) < (ii) : obvious.

(i) = (iii) : Let u be any fe-cs in Y and x € F*(u). By (i),
there exists a Ro set M containing x such that M C F*(u).
Thus, x € intcIF* (1) and hence F (1) is an Ro set in X.

(iii) = (i) : Let p be any fe-cs in Y and x € F™(p). By
(iii), F*(p) is a Ro set in X. Take V. = F*(p). Then V C
F*(p). Thus, Fis fuzzy CCY e-irresolute.

(iii) = (iv) : Let p be a fe-os in Y. Then 1y — p is a fe-cs in
Y. By (iii), F*(1y —p) is a Ro set in X. Since F*(1y —p) =
lx —F~(p), then F~(p) is a Rc set in X.

(iv) = (iii) : Let u be a fe-csin Y. Then Iy — i is a fe-os in
Y. By (iv), F(ly —u)isaRcsetin X. Since F~(ly —u) =
Ix —F*(u), then F*(u)isaRoin X.

(iv) = (v) : Let 4 be aFOS in Y. Since fe-int () is fuzzy
e-open, then by (iv), F~(fe-int(it)) is a Re set in X. Converse
is obvious.

(iii) = (vi) : Let n be a FCS of Y. Since fe —cl(n) is fe-
cs of Y, then by (iii), F*(fe-cl(n)) is a Ro set in X. Converse
is obvious.

(v) = (vi) : Let 1 be a FCS of Y. Then Iy — njis a FOS of
Y. Since fe-int(1y —n) is fe-os of Y. By (v), F~(fe-int(1y —
n))) is a Re set in X. This implies, F~ (fe-int(ly — 1)) =
F~(ly — fe-cln) = 1x — F*(fe-cIn). Then FT(fe-cl(N))
is Ro in X. Converse is obvious.

(vi) = (vii) : Let pbe any fuzzy setin Y. Since fe-cl(ut) is
fuzzy e-closed in Y then by (vii), F ™ (fe-cl(1)) is Roin X and
Ft(u) =F*(fe-cl(i)). Therefore, we obtain intclF*(p) =
intclF*(fe-clyt). Since F*(fe-cl(1)) is Ro in X and hence
intclFt () = Ft(fe-clp)).

(vii) = (vi) : obvious.

Theorem 3.4. For a fmf F : (X,7) — (Y,0) the following
statements are equivalent:

(i). F is fuzzy CCL- e-irresolute

(ii). For each fe-cs | and x € X such that F(x) < |, there
exists an Ro set V containing x such that if y € V, then F(y) <
W.

(iii). F~ () is Ro in X for any fe-cs u in Y.

(iv). F(p) is Rc in X for any fe-os p in Y.

(v). For every FOS U of Y, F*(fe-intit) is Rc in X.

(vi). For every FCS N of Y, F~(fe-cIn) is Ro in X.
(vii).intclF~— (1) = F~(fe-cl(1)), for every fuzzy set W in Y.
Proof :1t is similar to that of theorem 3.3

Remark 3.5. Every fuzzy CCY e- irresolute (fuzzy CCre- ir-
resolute) multifunction is fuzzy upper contra continuous. Con-
verse is not true.

Example 3.6. Ler X = {a,b,c}, t={X,¢,{a},{b},{a,b}}
andY =[0,1], 6 ={0,1,1, 4,6} where u(y) =0.4, A(y) =
0.1, 8(y) =0.7, v(y) = 0.3, y(y) = 0.5. Consider the finfF :
(X,7) = (Y,0) is defined as F(a) = v, F(b) = v, F(c) = 4.
Then F*(1—p)={a,b}, FT(1-1)=X,F*(1-6)={a}
and F~(1—p)={b,c}, F1-A)=X,F (1-6)=¢
which is open but not Ro in (X, 7). Then F is fuzzy upper
contra continuous but not fuzzy CCY e-irresolute (fuzzy CCy,
e-irresolute ) multifunction.
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Remark 3.7. Every fuzzy CCY e-irresolute (fuzzy CCy, e-
irresolute) multifunction is fuzzy upper(lower) almost con-
tinuous. Converse is not true.

Example 3.8. Let X = {a,b,c}, 1= {X,¢,{b},{b,c}} and

=[0,1], 0 ={0,1,1,A,m} where u(y) = 0.4, A(y) = 0.1,
n(y) =0.5, {(y) = 0.7, y(y) = 0.6. Consider the fmf F :
(X,7) = (Y,0) is defined as F(a) = u, F(b) =, F(c)=7.
Then F*(1—p)={a,c},FT(1-A)=X,Ft(1-n)={a}
which is closed but not Ro in (X, 7). Then F is fuzzy upper
almost continuous but not fuzzy CCY e-irmf.

Example 3.9. Let X = {a,b,c}, 1=1{X,0,{b},{a,b}} and
Y=[0,1],0={0,1,u,p,n} where u(y) =04, p(y) =0.2,
N(y) = 0.5. Consider the fmf F : (X,t) — (Y,0) is defined
asF(a)=u, F(b)=p,F(c)=n.Then F~(1—u) ={c},
F~(1-p)=A{a,c}, F~(1—n) = ¢ which is closed but not
Ro in (X, 7). Then F is fuzzy lower almost continuous but not
fuzzy CCy, e-irresolute multifunction.

Theorem 3.10. Let {Y; :i € I} be a family of product spaces.
Ifa function F : X — [1Y; is fuzzy CCY e-irresolute (fuzzy CCy
e-irresolute ), then P.o F : X — Y; is fuzzy CCY e-irresolute
(fuzzy CCy, e-irresolute ) for each i € I where P, is the projec-
tion of [1Y; onto Y.
i€l
Proof :Let ; be any fe-os in ¥;. Since P, is a fuzzy continuous
and fuzzy open set, it is a fe-os. NowP; : [1Y; = ¥;, P (§;)is a
i€l
fuzzy e-open in [] Y;. Therefore, P, is a fuzzy e-irresolute func-
i€l

tion. Now (PoF)™ (&)= F*(P"(&)) = (HY ><5>
i#]

since F is fuzzy CCV e -irresolute. Hence F (P (8;)) is aRe

set, since P (&;) is a fuzzy e-open set. Hence P, o F is fuzzy

CCY e -irresolute.
Theorem 3.11. [f the function F : [1 X; — [1Y;, defined by
il il
F(x;) = [1F(x:), is fuzzy CCY e-irresolute (fuzzy CCE e-
il

irresolute ) multifunction, thenF; : X; — Y; is fuzzy CCY e-
irresolute (fuzzy CCE e-irresolute ) multifunction for each
iel

Proof :Let v; be any fe-cs of ¥;, then []Y; x v; is fuzzy e-

i#]

closed in []Y;. Since F is fuzzy CCY e - irmf, then

iel
T I1Y; x v | = [1X; % F;"(v;) is Roin []X; and hence
i£j i£] icl
FiJr (v;) is Ro in X;. This implies, F; is fuzzy CCY e-irmf.

Theorem 3.12. For a fmf F : X — Y, if clint(F~(n)) <
F~(fe-Ky) for every fuzzy set 1 of Y, then F is fuzzy CCY
e-irresolute.

Proof :Suppose that clint(F~(n)) < F~(fe- Kn) for every
fuzzy set 1 in Y. By deﬁmtlo F~(fe-Ky) = F~(n). This
implies that, clint(F~(n)) = F (1) and F~ (1) is Rc in X.
Thus, by theorem 3.3, F is fuzzy CCY e-irresolute.
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Theorem 3.13. ForafmfF :X — Y, ifclint(F*(n)) <F*
(fe-Ky) for every fuzzy set  of Y, then F is fuzzy CCy e-
irresolute .

Proof :It is similar to that of theorem 3.12

Theorem 3.14. Let {V;:i € I} be a Ro cover of X and a fmf
F :X — Y isafuzzy CCY e-irresolute (fuzzy CCy, e-irresolute
) iff F|V; : Vi = Y is fuzzy CCY e-irresolute (fuzzy CCy e-
irresolute ) for each i € I.

Proof :Suppose that F is fuzzy CCY e-irmf. Let x € Xand
x €V, foreachiel. Let A be a fe-cs of Y containing F|V;(x).
Since F is fuzzy CCY e-irmf and F(x) = F|V;(x), there exists
an Ro set U containing x such that U C FT(A). Take W =
UNYV;. Then W is a Ro set V; containing x and F|V;(W) =
F(W) < A. This implies that W C F(A). Thus F|V; is fuzzy
CCY e-irresolute.

Conversely, Let x € X and A be fe-cs in Y with x € F(4).
Since {V; : i € I'}is a Ro cover for X, then x € V. Since F|V;
is fuzzy CCY e-irresolute and F (x) = F|V;(x), there exists a
Ro set W such that F|V;(W) < A. Then we have, W is Ro in
X and W C F* (). Therefore, F is fuzzy CCY e-irresolute.

Theorem 3.15. Fora fmfF : X — Y, if the fuzzy graph multi-
function Gp : X — X x Y is fuzzy CCY e-irresolute, then F is
fuzzy CCY e-irresolute.

Proof :Suppose that fuzzy graph multifunction Gr : X —
X x Y is fuzzy CCY e-irresolute and x € X. Let n be fe-
cs in Y with F(x) < 1. Then Gp(x) <X x1n . Since the
graph function Gy is fuzzy CCY e-irresolute , there exists an
Ro set M containing x such that Gg(M) < X x 1. For any
my € M and y € Y, we have F(mo)(y) =Gr(mo)(mo,y) <
(X x n)(mo,y) = n(y). Then we have F(mg)(y) = n(y) for
all y € Y. Thus, F(mo) < n for any my € M. Hence, F is
fuzzy CCY e-irresolute.

Theorem 3.16. Fora finf F : X — Y, if the fuzzy graph multi-
function Gg : X — X XY is fuzzy CCp e-irresolute, then F is
fuzzy CCy, e-irresolute.

Proof :Suppose that fuzzy graph multifunction Gr : X —
X xY is fuzzy CCy, e-irresolute and x € X. Let 1) be fe-cs
in Y such that F(x)gn. Then there exists y € Y such that
(F(x))(y) +n(y) > 1. Then we have Gr(x)(x,y) + (X X
n)(x,y) > 1 which implies Gr(x)g(X x n7). Since fuzzy
graph function Gr is fuzzy CCy, e-irresolute, there exists an
Ro set M in X such that x € M and G (mo)g(X x i) for all
mgy € M. Suppose that there exists a point ng in M such that
F(no)@n. Then forally € Y, (F(no))(y) +n(y) < 1 we have
Gr(m)(x.y) < F(no)(y) and (X x 1)(x.y) < n(y). Thus,
Gr(no)(x,y) + (X xn)(x,y) < 1. Thus, Gr(ng)g(X x n), for
any nog € M which is a contradiction. Hence F is fuzzy CC,
e-irresolute.

Theorem 3.17. IfF : (X,7) — (Y,0) is a fuzzy CCY e- irres-
olute (fuzzy CCy, e- irresolute ) injective fmf and F (x) be fuzzy
e-T space for every x € X, then X is Urysohn space.
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Proof :Let x; and x, be any two distinct points in X. Since F
is injective, F(x1) # F(xy) in Y. Since Y is fuzzy e-T5, there
exists fe-os 11 and p in Y such that F(x;) € n and F(x;) € p
and N A p = 0. This implies that fe-c/(1) and fe-cl(p) are
fe-cs in Y. Then, since F is fuzzy CCU e-irresolute, there
exists a Ro sets V and W in X containing x; and x; respec-
tively, such that F (V) < fe-cl(n)and F(W) < fe-cl(p). This
implies that V C F*(fe-cl(n)) and W C F*(fe-cl(p)), we
have F*(fe-cl(n)) and F*(fe-cl(p)) are disjoint and hence
cl(V)Necl(W) = ¢, and by definition, X is Urysohn.

Theorem 3.18. Let F : X — Y be a fuzzy CCY e-irresolute
surjective multifunction and F(x) is fuzzy e-closed for each
x € X. If X is nearly compact, then Y is fuzzy e-closed.

Proof :Let {vy : 0 € Q} be any cover of F(x) by fe-cs of

Y. Since F(x) is fuzzy e-closed for any x € X, there exists a

finite subset A of Q such that F(x) < v, fe-cl(vy). Take
oc

A= \/A fe-cl(vg). Since F is fuzzy CCY e-irresolute, there
ac

exists a Ro set A, of X containing x such that F(A,) < A. Then
{A,},x € X is a Ro cover of X. Since X is nearly compact,

there exists x;,i = 1,...,n in X such that X = 'L’_quAx,. we have
=
Y=FX)=F(UA,)=VFA,)< VA=V V fecl
i=1 i=1 i=1 i=1aea;

(V). Thus, Y is fuzzy e-closed.

Theorem 3.19. IfF : X — Y is a fuzzy CCY e-irresolute injec-
tion and Y is fuzzy e-normal then X is strongly normal.

Proof :Let V and W be a disjoint nonempty closed sets of
X. Since F is injective, F(V) and F(W) are disjoint FCSs.
Since Y is fuzzy e-normal, there exists fe-os p and A such
that F(V) < p and F(W) < A and p AA = 0. This implies
that fe-cl(pt) and fe-cl(A) are fe-cs in Y. Then, since F is
fuzzy CCY e-irresolute, F* (fe-cl(u)) and F*(fe-cl(A)) are
Ro sets. Then V C F*(fe-cl(u)) and W C F*(fe-cl(R)),
we have F ™ (fe-cl(1t)) and F*(fe-cl(A)) are disjoint, and by
definition, X is strongly normal.

4. Fuzzy CWCY e-irresolute and Fuzzy
CW(C,, e-irresolute Multifunctions

Definition 4.1. A finf F : X — Y is called fuzzy lower com-
pletely weakly contra e-irresolute(briefly, fuzzy CWCy, e -
irresolute) multifunction if for any fe-cs WL in Y withx € F~ ()
(i.e)F (x)qU, there exists an open set V in X containing x such
that V.C F~(u).

Definition 4.2. A finf F : X — Y is called fuzzy upper com-
pletely weakly contra e-irresolute(briefly, fuzzy CWCY e -
irresolute) multifunction if for any fe-cs L in Y withx € F+ (),
there exists an open set Vin X containing x such that V C
F* ().

Remark 4.3. Every fuzzy CWCY e-irresolute (fuzzy CWCy,
e-irresolute) multifunction is fuzzy CWCU e-irresolute (fuzzy
CWCy e-irresolute) multifunction.
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Example 44. Let X = {a,b,c}, 1= {X,¢,{b},{b,c}} and
Y =10,1],0 ={0,1,u,A,n} where u(y) =0.4, A(y) =0.2,
n(y) = 0.8, {(y) = 0.5, y(y) = 0.6. Consider the finf F :
(X,7) = (Y,0) is defined as F(a) = §, F(b) =1, F(c) =Y.
Then Ft*(1—p) ={a,c}, FF(1-A)=X,F*(1-n)={a}
which is open but not Ro in (X, 7). Then, F is fuzzy CWCY
e-irresolute but not fuzzy CCY e-irmf.

Example 4.5. Let X = {a,b,c}, t={X,¢,{a},{b},{a,b}}
andY =10,1], 0 ={0,1,&,n,p} where {(y) =0.1, p(y) =
0.6, n(y) =0.4. Consider the fimfF : (X,7) — (Y, 0) is defined
asF(a)=m,F(b)=p,F(c)=¢{.Then F~(1-{)={a,b},
F~(1—n)={b}, F~ (1 —p) = ¢ which is open but not Ro in
(X,7). Then F is fuzzy CWCy, e-irresolute but not fuzzy CCy,
e-irmf.

Theorem 4.6. For a fmf F : (X,7) — (Y,0) the following
Statements are equivalent:

(i). Fis fuzzy CWCY e-irresolute

(ii). For each fe-cs | and x € X such that F(x) < U, there
exists an open set V containing x such that if y € V, then
F(y)<p.

(iii). FT (W) is open in X for any fe-cs l in Y.

(iv). F~(p) is closed in X for any fe-os p in Y.

(v). For every FOS L of Y, F~ (fe-intpt) is closed in X.

(vi). For every FCS M of Y, F*(fe-cln) is open in X.

Proof :(i) < (ii): obvious.

i = (iii) : Let 4 be any fe-cs in Y and x € F*(u). By (i),
there exists an open set V containing x such that V. C F* ().
Thus, x € intF (1) and hence F* () is an open set in X.

(iii) = (i) : Let p be any fe-csin Y and x € F*(p). By
(iii), F™(p) is an open set in X. Take V = F*(p) . Then
V C F*(p). Thus, F is fuzzy CWCV e-irresolute.

(iif) = (iv) : Let p be a fe-os in Y. Then Iy — p is a fe-cs
in Y. By (iii), F*(1y — p) is an open set in X. Since F*(1y —
p)=1x—F (p), then F~(p) is a closed set in X.

(iv) = (iii) : Let 4 be a fe-cs in Y. Then 1y — u is a
fe-os in Y. By (iv), F~(1ly — ) is a closed set in X. Since
F~(ly —u) = 1x — F*(u), then F* (1) is a fuzzy open in
X.

(iv) = (v) : Let u be a FOS in Y. Since fe-int(u) is
fuzzy e-open, then by (iv), F~(fe-int(1)) is a closed set in X.
Converse is obvious.

(iiif) = (vi) : Let n be a FCS of Y. Since fe-cl(n) is fe-cs of
Y, then by (3), F*(fe-cl(n)) is a open set in X. Converse is
obvious.

(v) = (vi) : Let n be a FCS of Y. Then 1y —n is a FOS of Y.
Since fe-int(ly —n) is fe-os of Y. By (5), F~(fe-int(1ly —
7)) is a closed set in X. This implies, F~ (fe-int(ly — 1)) =
F~(ly — fe-cl(n)) = 1x — F*(fe-cl(n)).

Then F*(fe-cl(n)) is open in X. The converse is obvious.

Theorem 4.7. If F : X — Y is an upper almost continuous
multifunction where X and Y are topological spaces and G :
Y — Zis a fuzzy CCY e-irresolute multifunction where Z is a
fuzzy topological space, then GoF : X — Z is fuzzy CWCY
e-irresolute .
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Proof : Let x € X and p be a fuzzy e- closed set in Z we
have (GoF)*(p) = F*(G")(p). Since G is fuzzy CCY e-
irresolute, G™(p) is Ro in Y. Since F is upper almost continu-
ous, F*(GT)(p) = (GoF)"(p) is open in X. Thus, Go F is
fuzzy CWCVe-irresolute.

Theorem 4.8. IfF;: X — Y fori=1,2,...,n, are fuzzy CWCY
e-irmf, then V"'_ | F; is a fuzzy CWCY e-irmf.

Proof : Letnbeafecsof Yand F;: X — Y fori=1,2,...,n
, are fuzzy CWCV e-irmf. Let x € (Vi_,F;)"(n). Then, V/'_,
Fi(x) < n. Since F,,i = 1,2,...,n are fuzzy CWCY e-irmf’s,
then there exists an open set V, containing x such that F;(xo) <

n forevery xo € Vy . Let V =J{_, Vi,. Then V. C (VI_,)F,7 (7).

Thus (V}_,)F;" (1) is open in X and hence (V/i_,)F; is a fuzzy
CWCY e-irmf.

Theorem 4.9. If F;: X — Y fori=1,2,....n, is fuzzy CWCy,
e-irmf, then \V,_ | F; is a fuzzy CWCy, e-irmf.

Proof : Letnbeafe-csof Yand F;: X — Y fori=1,2,...,n,
are fuzzy CWCp, e-irresolute. Let x € (Vii_;F;)” (n). Then,
Vi_Fi(x)gn. Then, Vi_, F;(x)gn. Since F;,i = 1,2,...,n are
fuzzy CWCp, e-irmf’s, then there exists an open set V, contain-
ing x such that F;(xo)gn for every xo € V.. Let V = V4.
Then V C (V—)F; (n). Thus (V,_;)F,(n) is open in X

and hence (V},_,)F; is a fuzzy CWCy, e-irmf.

5. Conclusion

Thus in this paper the concepts of upper and lower fuzzy
completely contra e-irresolute fuzzy multifunctions were in-
troduced. Also the concepts of the upper and lower com-
pletely weakly e-irresolute fuzzy multifunctions were being
discussed. Some characterizations of these classes and some
basic interesting properties of such fuzzy multifunctions were
obtained and the mutual relationship with other existing fuzzy
multifunctions were also discussed.
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