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Marangoni convection in superposed fluid and
anisotropic porous layers with throughflow
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Abstract
Marangoni convective flow of fluid layer overlying a porous layer with anisotropic permeability and thermal
diffusivity is addressed. Flow analysis has been carried out in presence of throughflow. Beavers–Joseph’s slip
condition is applied to the fluid-porous layer interface. The boundaries are known to be rigid, but permeable,
and insulated to fluctuations in temperature. The problem of own value resulting from the stability analysis is
solved through regular perturbation technique. Flow pattern with the influence of pertinent parameters namely
the throughflow parameter, mechanical, thermal anisotropy parameters Prandtl number and depth ratio is
investigated. Expression of critical Marangoni number is computed and analyzed. It is found that the depth of the
relative layers, the direction of throughflow and mechanical and thermal anisotropy parameters deeply affect
system stability. Reducing the parameter of mechanical anisotropy and increasing the parameter of thermal
anisotropy contributes to process stabilization. In addition, the probability of regulating surface driven convection
is discussed in detail through the appropriate choice of physical parameters.

Keywords
Composite layer, Mechanical anisotropy, Thermal anisotropy, Throughflow.

AMS Subject Classification
35Q30.

1Department of Mathematics, Sir M. Visvesvaraya Institute of Technology, Bangalore-562157, India.
2Department of Mathematics, New Horizon College of Engineering, Bangalore-560 103, India.
3Department of Mathematics, Dr. Ambedkar Institute Of Technology, Bangalore-560056, India.
*Corresponding author: 1 gangu.honnappa@gmail.com
Article History: Received 02 March 2020; Accepted 19 May 2020 ©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846

3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 846

4 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 846

5 Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

6.1 Depth ratio ζ � 1 . . . . . . . . . . . . . . . . . . . . . 848
6.2 Depth ratio ζ = 0.1 . . . . . . . . . . . . . . . . . . . . 849
6.3 Depth ratio ζ = 0.2 . . . . . . . . . . . . . . . . . . . . 849
6.4 Depth ratio ζ = 0.5 . . . . . . . . . . . . . . . . . . . . 849
6.5 Depth ratio ζ = 1 . . . . . . . . . . . . . . . . . . . . . 849

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

1. Introduction

The problem of Convective flows heat and species trans-
port at the interface between a fluid and a porous region is
encountered in a wide range of industrial and geophysical
applications, such as cooling of electronic system, flows in
fuel cells, thermal hydraulics of nuclear reactor, chemical
processing equipment, filtration methods, the extraction of
oil from underground reservoirs, contamination of ground-
water, manufacture of composite materials and the flow of
biological materials and so on (Vafai [1]; Nield and Bejan [2];
Nield and Bejan [3]). Marangoni flows most frequently occur
when localized deposition of a surface tensioning agent such
as a surfactant allows a gradient of surface tension to build
(for examples, see references (Grotberg and Gaver [4–6] and
Afsar-Siddiqui et al. [7]. This gradient induces an outward
stream of convective Marangoni from the deposition area. In-
duced Marangoni flow can be used to enhance drug delivery
in patients with obstructive pulmonary conditions such as cys-
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tic fibrosis lung disease, where accumulation of dehydrated
mucus affects airway aerodynamics and subsequent patterns
of aerosol deposition in the lung (for examples, see references
Grotberg [8] Halpern et al. [9] and Bertram and Gaver [10].
Chen [11] has implemented a linear stability analysis of con-
vective instability in composite layers with a vertical through-
flow for isothermal boundaries. It is noticed that both stabi-
lizing and destabilizing influences due to vertical flow can be
improved in such a physical configuration, So, the driven insta-
bility is possible in either a fluid or a porous layer. Khalili et
al. [12] investigated the effect of throughflow in superimposed
fluid and porous layers on thermal convective instability with
temperature disturbance isolated boundaries and a theoretical
expression is obtained for the critical number of Rayleigh
Sums et al. [13] investigated the effects of the throughflow on
the porous layer over which over which lies a layer of fluid,
while Shivakumara et al. [14] considered the effect of internal
heating on the problem.
The problem that we want to look into is one of surface driven
convection in a system consisting of a anisotropic porous
layer underlying a fluid layer where there is throughflow in
the system. The effects of throughflow in a two layer system
is an potential method of regulating the onset of convection
may be essential for industrial application. In order to be able
to control convection, it is essential to determine when the
convection is set in. In addition, to regulate the convective
mechanisms in science, manufacturing, geophysics ,Medical
field etc. the theory of throughflow is essential. The study
of Marangoni convection with throughflow, however, is very
limited. Shivakumara et al. [15] found an effective solution
to the convection of Marangoni with throughflow and various
boundary conditions. The Prandtl number and temperature
boundary conditions have been found to play a major role
in the destabilization that a small amount of throughflow. S.
Saravanan and Sivakumar [16] have analyzed exact solution
of Marangoni convection in a binary fluid with throughflow
and Soret effect and shows that the Soret effect is seen only
when the throughflow is weak. A non-zero mass flux through
a liquid system is referred to as a throughflow through fluid
injection at one boundary and fluid suction at another bound-
ary. The possibility of controlling convective instability by
adjusting the throughflow is of interest. This finds its applica-
tion in the method of Czochralski, which is commonly used
to produce large quantities of crystals grown in pure space.
In this paper, therefore, we analyze the throughflow effects
on system consisting of a anisotropic porous layer underly-
ing a fluid layer by linear stability analysis and evaluated for
the parameter of the throughflow and the factor anisotropy
parameter discussed in detail.

2. Conceptual Model
The system under investigation consisting of an fluid layer
of thickness d (zone1) and saturating an underlying porous
layer of thickness dm (zone2) with throughflow of constant
vertical velocity W0. Thus the z indicating distances vertically

Figure 1. Physical configuration

upwards. The fluid-porous interface at z = 0.

3. Mathematical Formulation
The fluid-porous layers governing equations are:

Zone1: Governing model for the layer of fluid (0≤ z≤ d)

∇ ·~V =0

ρ0

[
∂~V
∂ t

+
(
~V ·∇

)
~V

]
=−∇p+µ∇

2~V

∂T
∂ t

(
~V ·∇

)
T =κ∇

2T

Zone2: Governing model for the porous layer (−dm ≤ z≤
0)

∇ · ~Vm =0

ρ0

φ

∂ ~Vm

∂ t
=−∇pm−µK˜−1 · ~Vm

A
∂Tm

∂ t

(
~Vm ·∇m

)
Tm =∇ · {κ˜m ·∇Tm}

In these equations, T is the temperature, ~V the velocity vec-
tor, p is the pressure, κ is the thermal diffusivity, ρ0 is the
reference fluid density, The subscript m refers to the value of
the parameter in the zone2, while K˜ and κ˜m are respectively
the tensors of permeability and effective thermal diffusivity
which are given by

K˜ =Kh(îî+ ĵ ĵ)+Kvk̂k̂

κ˜m =κmh(îî+ ĵ ĵ)+κmvk̂k̂

where the subscripts h and v refer to the quantities in the
horizontal and vertical directions respectively.

4. Linear Stability Analysis

The temperature distributions in the basic state is specified
by

Tb(z) = T0− (T0−Tu)

(
1− eW0z/κ

eW0d/κ −1

)
,0≤ z≤ d
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Tmb(zm) = T0 +(T1−T0)

(
1− eW0zm/κmv

e−W0dm/κmv −1

)
,−dm ≤ zm ≤ 0,

Where T0 is the interface temperature. The basic state is
quiescent and is of the following form

(u,v,w, p,T ) =[0,0,W0, pb(z),Tb(z)]

(um,vm,wm, pm,Tm) =[0,0,W0, pmb(z),Tmb(z)].

Infinitesimal disturbances are superimposed in the form of an
investigation into the stability of the basic state ~V =~V ′, T =

Tb(z)+θ , p = pb(z)+ p′, ~Vm = ~Vm
′

and Tm = Tmb(zm)+θm,
pm = pmb(zm)+ p′m.
Following the standard linear stability analysis procedure, we
arrive at the following stability equations (see Chen et al. [11]
and Shivakumara et al. [17] for details):

(D2−a2)(D2−ηD−a2)W =0 (4.1)

(D2−PeD−a2)�=

[
PeePea

1− ePe

]
W (4.2)(

1
ξ

D2
m−a2

m

)
Wm =0 (4.3)

(D2
m−PemDm−χa2

m)�m =

[
PemePemzm

1− ePem

]
Wm (4.4)

Here, Pr = v/κ is the Prandtl number and Pe =W0d/κ is the
Peclet number. The corresponding quantities for the porous re-
gion are Prm = v/κmv = PrεT , Pem =W0dm/κmv = Pe(εT/ζ ).
Further, Da = Kv/d2

m is the Darcy number, χ = κmh/κmv,
ξ = Kh/Kv are the thermal and mechanical anisotropy pa-
rameters, εT = κ/κmv is the ratio of thermal diffusivity and
η = Pe/Pr is a non dimensional group. The boundary condi-
tions are:

W =D�= D2W +Ma2
θ = 0 at z = 1 (4.5)

Wm =Dm�m = 0 at zm =−1. (4.6)

At the interface (i.e., z = 0) the continuity of velocity, tem-
perature, heat flux, normal stress and the Beavers and Joseph
[18] slip conditions are imposed. Accordingly, the conditions
are:

W =
ζ

εT
Wm,�=

εT

ζ
�m,D�= Dm�m (4.7)

[
D2−ηD−3a2]DW =

−ζ 4

εT Daξ
DmWm (4.8)[

D2− βζ√
Daξ

D

]
W =

−βζ 3

εT
√

Daξ
DmWm (4.9)

where, ζ = d/dm is the ratio of fluid layer to porous layer
thickness.

5. Analytical Solution
Equations (4.1)-(4.4) can be solved analytically using reg-

ular perturbation technique, subjected to boundary conditions,

(4.5)-(4.9). The variables are expressed in terms of the small
wave number to study the validity.

(W,�) =
N

∑
i=0

(a2)i(Wi,�m) (5.1)

(Wm,�m) =
N

∑
i=0

(
a2

ζ 2

)i

(Wmi,�mi) (5.2)

Substitution of equations (5.1) and (5.2) into equations (4.1)-
(4.4) and the boundary conditions (4.5)-(4.9) yields a se-
quence of equations for the unknown functions Wi(z), �i(z),
Wmi(zm) and �mi(zm) for i= 0,1,2,3, . . .. At the leading order
in a2 equations (4.1)-(4.4) become respectively,

D4W0−ηD3W0 =0 (5.3)

D2 �0−PeD�0 =W0 f (z) (5.4)

D2
mWm0 =0 (5.5)

D2
m �m0−PemDm�m0 =Wm0g(zm) (5.6)

where

f (z) =
Pe

1− ePe ePez

g(zm) =
Pem

ePem −1
ePemzm

and the equations (4.5)-(4.9) become

W0 =0, D�0 = 0, DW0 = 0 at z = 1
Wm0 =0, Dm�m0 = 0 at zm =−1.

And at the interface(i.e z = 0)

W0 =
ζ

εT
Wm0, �0 =

εT

ζ
�m0, D�0 = Dm�m0

D3W0−ηD2W0 =
−ζ 4

εT Daξ
DmWm0

D2W0−
βζ√
Daξ

DW0 =
−βζ 3

εT
√

Daξ
DmWm0

The solution to the zeroth order equations (5.3)-(5.6) is given
by

W0 = 0, �0 =
εT

ζ
, Wn0 = 0, �m0 = 1.

At the first order in a2 equations (4.1)-(4.4) then reduce to

D4W1−ηD3W1 =0 (5.7)

D2 �1−PeD�1 =W1 f (z)+
εT

ζ
(5.8)

D2
mWm1 =0 (5.9)

D2
m �m1−PemDm�m1 =Wm1g(zm)+χ (5.10)

and the equations (4.5)-(4.9) become

W1 =0, D�1 = 0, DW1 = 0 at z = 1
Wm1 =0, Dm�m1 = 0 at zm =−1.
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And at the interface(i.e z = 1)

W1 =
ζ

ζ εT
Wm1, �1 =

εT

ζ 3�m1, D�1 =
1

ζ 2 Dm�m1

D3W1−ηD2W1 =
−ζ 2

εT Daξ
DmWm1

D2W1−
βζ√
Daξ

DW1 =
−βζ

εT
√

Daξ
DmWm1

The general solutions of equations (5.7) and (5.9) are respec-
tively given by

W1 = [C1 +C2z+C3z2 +C4eηz]

Wm1 = [C5 +C6zm]

where

C1 =

(
C2

εT ξ
− ζ 2C4

εT ξ

)
, C2 =

(
2ξ εT

ζ 2 −
C1

2ξ
− eηC4

ζ 2

)
,

C3 =
b10 +b9C6

b4
, C4 =

b6εT ζ − εT ζC3 +C3

ξC1
,

C5 =
C1

2ζ (1+2ξ )
+C6, b1 =

(
2ζ 2
√

Da
2ξ

+βζ
3
)
,

b2 =
(

η
2
ζ

2
√

Daξ −βζ
3
η

)
−βζ

3
(√

Daξ − eη

)
,

b3 =

(
∆2
√

Daξ−βζ 3

εT ζ

)
,b4 =

(
εT βζ 3

6ηζ
−βζ 3

√
Daξ

εT ζ

)
,

b5 =(η−1)eη +
√

Daξ , b6 =

(
2εT

6ηζ
−
√

Daξ

εT ζ

)
,

b7 =

(
b1b3−

b2

εT ζ

)
, b8 =

(
b3b5−

b2

εT ζ

)
,

b9 =(b4b5 +2b7b6), b10 =
b1b7−b8b6

b1b7− b4
εT ζ

.

Equations (5.8) and (5.10) involving D2�1 and D2
m�m1 pro-

vides the condition

∫ 1

0
f (z)W1dz+

χ

ζ 2

∫ 0

−1
g(zm)Wm1dz =−εT

ζ
− χ

ζ 2

(5.11)

The expressions for W1 and Wm1 are back substituted into
equation (5.11) and integrated to yield an expression for the
critical Marngoni number Mc, which is given by

Mc=
−
(

εT
ζ
+ χ

ζ 2

)(
Daε2

T
ζ 4

)
(δ1C1+δ2C2+δ3C3+δ4C4+δ5)+

χ

ζ 2 (−C5+δ6C6−δ3δ7)

where

δ1 =

(
4Ns
Pe

+1
)
, δ2 =

(
4ζ

Pe
+

4ζ 3

Pe

)
,

δ3 =

[
2

3Pe
+

Pe+2
1− ePe

(
ePe

Pe
−

2
(
1− ePe

)
Pe3

)]
,

δ4 =

[
6

ηPe
+

χ +ζ

1−3ePe

]
, δ5 =−

εT

6ηζ

[
ePe

Pe
− 6(ePe−1)

Pe4

]
,

δ6 =

[
Pem +2

1− e−Pem

(
−e−Pem

Pem
− e−Pem −1

Pe2
m

)]
,

δ7 =

[
2

3Pem
+

e−Pem

Pem
+

2e−Pe

Pe2
m

+
2(e−Pem −1)

Pe3
m

]
.

6. Results and Discussion
The initiation of Marangoni convection in the presence of a
vertical through flow is considered in a process consisting of
a liquid surface overlaid by anisotropic porous layer.

6.1 Depth ratio ζ � 1
This is the case with a pure zone1 layer and the system’s
stability characteristic is measured by Marangoni number
when Pe = 0, the known exact value M = 48 (Nield [19])
is obtained. Figure 2 is a plot of M as a function Pe. The
following conclusions can be drawn from this figure:

(i) For upward throughflow (Pe > 0) an increase in Pe is
to increase M, and thus upward throughflow makes the
system more stable.

(ii) For downward throughflow (Pe > 0) an increase in
Pe is to decrease M initially, and a further increase in
Pe increases M. Thus a weak downward throughflow
destabilize.

Figure 2. M versus Pe for different values of Pr for a case of
single fluid layer (ζ ≫ 1)
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6.2 Depth ratio ζ = 0.1
The stability of the system is characterized by Mc. Figure
3 exhibit plots of Mc as a function of Pem respectively for
isotropic porous layer (χ = 1 = ξ ) and anisotropic porous
layer (χ = 0.5 = ξ ). The results are presented for three dif-
ferent values of Prandtl number Pr = 0.1,0.5 and 1.
From Figure 3 it is seen that for all values of Pr for the both
case of isotropic and anisotropic porous layer stabilizes the
system for upward throughflow and the system is destabilizing
for downward throughflow when−1.2≤ Pem ≤ 0 for all three
values of Pr for the isotropic case and for other values of Pem
the system is stabilizing. But in the case of anisotropic the
system is destabilizing −0.9≤ Pem ≤ 0 for Prandtl numbers
Pr = 0.1,0.2 and −5.2≤ Pem ≤ 0 for Pr = 0.6, respectively
and for higher values of Pem the system is stabilizing.

Figure 3. Mc versus Pe for different values of ζ = 0.1

6.3 Depth ratio ζ = 0.2

Figure 4. Mc versus Pe for different values of Pr with
ζ = 0.2

Figure 4 depicts plots of Mc as a function of Pem respec-
tively for isotropic porous layer χ = 1 = ξ and anisotropic
porous layer χ = 0.5 = ξ . The results are presented for three
values of Prandtl number Pr = 0.1,0.5 and 1. From Fig-
ure 4 it is seen that for all values of Pr for the both case of
isotropic and anisotropic porous layer stabilizes the system for
upward throughflow and the system is stabilizing for down-
ward throughflow when −2.5 ≤ Pem ≤ −0.5 for Pr = 0.1,
when −4 ≤ Pem ≤ −0.80 and −2.8 ≤ Pem ≤ 0 for Pr = 0.5
and when −5.8≤ Pem ≤−3.8 for Pr = 1 respectively for the
isotropic case. But the system is stabilizing for downward
throughflow when −2.5 ≤ Pem ≤ −0.5 for Pr = 0.1, when
−8≤ Pem ≤−5 and −2.8≤ Pem ≤ 0 for Pr = 0.5 and when
−4.5≤Pem≤−2.5 for Pr = 1 respectively for the anisotropic
case.

6.4 Depth ratio ζ = 0.5
Figure 5 depicts plots of Mc as a function of Pem respec-
tively for isotropic porous layer χ = 1 = ξ and anisotropic
porous layer χ = 0.5 = ξ . The results are presented for
three values of Prandtl number Pr = 0.1,0.5 and 1. From
Figure 5 it is seen that for all values of Pr for the both
case of isotropic and anisotropic porous layer stabilizes the
system for upward throughflow and the system is stabiliz-
ing for downward throughflow when −2.5 ≤ Pem ≤ −1.5
for Pr = 0.1, when −3.5 ≤ Pem ≤ −1.8 for Pr = 0.5 and
when −7.5 ≤ Pem ≤ −3.5 for Pr = 1 respectively for the
isotropic case. But the system is stabilizing for downward
throughflow when −2.5 ≤ Pem ≤ −0.5 for Pr = 0.1, when
−8≤ Pem ≤−5 and −2.8≤ Pem ≤ 0 for Pr = 0.5 and when
−5.5≤Pem≤−8.5 for Pr = 1 respectively for the anisotropic
case.

Figure 5. Critical Marangoni number versus Pe for different
values of Pr with ζ = 0.5

6.5 Depth ratio ζ = 1
Figure 6 depicts plots of Mc as a function of Pem respectively
for isotropic porous layer χ = 1 = ξ and anisotropic porous
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layer χ = 0.5 = ξ . The results are presented for three values
of Prandtl number Pr = 0.1,0.5 and 1. From Figure 6 it is
seen that for all values of Pr for the both case of isotropic
and anisotropic porous layer stabilizes the system for upward
throughflow and the system is destabilizing for downward
throughflow for Pr = 0.1, and the system is stabilizing when
−2.5≤ Pem ≤ 0 for Pr = 0.5 and when −6.5≤ Pem ≤−2.5
for Pr = 1 respectively for the isotropic case. But the sys-
tem is destabilizing for downward throughflow for Pr = 0.1
and system is stabilizing when −2.5≤ Pem ≤ 0 for Pr = 0.5
and when −8.5 ≤ Pem ≤−5 for Pr = 1 respectively for the
anisotropic case.

Figure 6. Critical Marangoni number versus Pe for different
values of Pr with ζ = 1

Figure 7. Mc versus ξ for different values of χ with Pr = 1
and ζ = 1

The effect of ξ and χ on the onset of convection is em-
phasized by depicting the variation of Mc and over a range
of ξ for different values of χ in Figure 7 for a fixed value
of Pr = 1, ζ = 1. It is observed that Mc increases with the
decreasing ξ . It mechanically means the conductive solution
becomes more stable in the porous medium.

7. Conclusions
In an anisotropic porous layer underlined by a fluid layer,

an exact analysis is made to study the influence of through-
flow on the onset of Marangoni convection. It is observed
from the above analysis that the stability characteristics of the
configuration are crucially dependent on

(i) throughflow direction

(ii) depth ratio ζ

(iii) mechanical anisotropy parameter ξ

(iv) thermal anisotropy parameter χ .

Therefore, convective instability resulting either in a porous
layer or in a fluid layer by adjusting the ζ or Pe or ξ or χ by
considering all the effects together, since both the stabilizing
and the destabilizing factors can be increased more in the
combined porous and fluid layer system than in the combined
porous and fluid layer system.
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