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1. Introduction

In the area of analysis fixed point theorems contribute
major share in the development of the research.To mention a
few Banach contraction principle is one such result.After this
major result, fixed point theorems like [3],[7],[8] have been
developed.Pathak,khan and Tiwari[1] established a fixed point
theorem using the continuity and weakly compatible map-
pings on complete metric space. There are several theorems
are being generated on metric spaces using these conditions
like [2],[4],[5].[6],[9] and[10].Now the emphasis of this paper
is to prove a common fixed point theorem on Banach space
without using continuity condition and also adopting E.A like

property.

2. Preliminaries

Now, we begin with some definitions:

Definition 2.1. We define mappings G and H of a Banach
space X as weakly commuting on X if ||GHa — HGo|| <
|Goo— Ho|| for all a € X.

Definition 2.2. We define mappings G and H of a Banach
Sapace X as compatible if ||GHoy — HGoy|| = 0 as k— o
whenever {0y }is a sequence in X such that ||Goy, — Hoy || =0
as k — oo for some 1 € X.

Definition 2.3. We define the mappings G and H of a Ba-
nach space X in which if G = Hu for some | € X such
that GHY = HGU holds,then G and H are known as weakly
compatible mappings.

Definition 2.4. A Banach space X in which two self mappings
G and H are said to satisfy the property E.A if there is a
sequence {0y} in X with Gay = Hoy = UL as k — oo for some
ueX.

Definition 2.5. A Banach space X in which two self mappings
G and H are said to satisfy the E.A like property if there is a
sequence {0y} in X with Goy, = Hoy = 1L as k — oo for some
U eGX)UH(X).

Now we show one example for E.A property and then
show another example in which the mappings are satisfying
E.A like property.

Example 2.6. Suppose X = [0, 1] in Banach space with ||a —

Bl =|o—Bl| Ya,B € X. We define self maps G and J as
follows
2 : 1
_ > UCOSO‘§§§
o ={ £a J1Z050
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Take a sequence oy =

1.1
Then G(ag) = G(L — 1)=25 2k1>+1 =1
11
and J(og) = J(% - %)_Wzllo.
This gives Gog=J 0= 10 as k — o and % € X. Hence G and
J satisfies E.A property.
Example 2.7. Suppose X = [0, 1] in Banach space with ||o. —
Bll =
follows
1+2a 1.
_J 5 f0<ac<g;
ow={ o IIoIT

- 1
_ 6 fO<a<g;
/(@) {105 ifl<a<l

Here G(X)=[3,5]U ({5, ]whzleJ(X) (3, 51U(0,2].
Take a sequence o = 5 fork>0
1
6

Then G(ay) = G 1= B Ll 2
l) 3— 42( ) _4
k 6 =9

This gives Gakzj(xkzg as k — o and % € GX)UJ(X).
Hence G and J satisfies E.A like property.

andJ(Ock) :J(%—

The following Theorem was proved in metric space [1].

Theorem 2.8. Suppose X is a comlete metic space G,H,I and
J are mappings defined X holding the conditions
(C1)G(X)CH(X)and I(X) CJ(X)
(C2) d(Ga,IB)*! < [ago(d(Ja,HB)?P)
+(1—a)max{¢1(d(Ja, HB)?P),
¢2(d(1a,ca)Qd(Hp,1ﬁ)q’), ¢3(d(Ja,I[3)’d(HB,Ga)/’/),
0(d(Jo, Ga)d(HB,Gay ), 9s(d(Ja, IB)'d(HB,I1B)")}]
forallaﬁeX where q)ke¢k 0,1,2,3,4,5, O<a<1
O<pp q,q rr ss ll <1 such that 2p = p—l—p =q+
q +r+r+i+1.
(C3) Any one of the mappings A or B is continuous.
(C4) the pair of mappings (G,J) and (I,H) are weakly com-
patible. Then the above mappings have a unique common
fixed point.

Now we give the statement of important lemmas which
plays vital role in our main result.

Lemma 2.9. [5]If ¢y € ¢ and k € {0,1,2,3,4,5} where ¢ is
upper semi continuous and contractive modulus such that
max{@y(t)} < ¢(¢) forallt > 0 and ¢(t) < t fort > 0.

Lemma 2.10. [1] Let ¢; € ¢ and B; be a sequence of non-
negative real numbers.If Bjy1 < ¢(B;) for j € N ,then the
sequence PB; converges to 0.

3. Main Result

Now we prove the existence of fixed point theorem (2.8)
in Banach Space under some modified conditions.

Theorem 3.1. Suppose in a Banach Space (X, ||.||) ,there are
four mappings G,H,I and J holding the conditions
(C1)G(X)CH(X)and I(X) CJ(X)
(€2) (G —1B)||* < [ago(||(Jor — HPB)|*P)

+ (1 —a)max{¢(|[Jo— HB|]*),

02|V~ Gal|*|| HB ~ 1B,
(IIJOt IB|'|HB —Gar|"),
0a(3|l e — Garl||[HB — IB|"),

9s(31l7o—1B||'|HB —1B]|")}]
for all aﬁEX where Ok € 0,k=0,1,2,3,45,0 < a<l,

0<pp q,q rr .S, s .1, ! <1 such that 2p = erp =q-+
qg+r+r+I1+1.

(C3) The pairs (G,J) and (I,H) satisfy the E.A like property
(C4) the pair of mappings (G,J) and (I,H) are weakly com-
patible.

Then the above mappings have a unique common fixed point.

Proof. Begin with using the condition (C1), there is a point
0 € X such that Gay = H o .For this point o) € X there ex-
ists a point @ in X such that Ia; = Jap and so on.
Continuing this process it is possible to construct a sequence
{Bj} for j=1,2,3...... € X such that Gopj = Hopjy1 = P
(say),

lopj1 =J 12 = Pajy1 (say) for j > 0.

We now prove {f;} is a cauchy sequence.

Putting ot = 0j and 241 in (C2), we get

1B2j = Bajr1 1% < lago([|B2j—1 — BajII*P)

+ (1 —a)max{¢:(||B2j-1 *ﬁszz”,),
92(I1B2j—1 = BojllllBj = Baj1 1)
93(1B2j—1 = Bajet 1| B2 = Bajll" ) 94
Bojll*) 95 (511 B2j1 = 1Bajs1[I']| Boj —

Denote p; = ||B; — Bj+1]l
(p2j)? < [ago(p2j—1)*") /
+ (1 —a)max{ 91 (p2j-1)*, $2((p2j-1)1(p27)? ),
$3(0),04(0), ¢ (3 [(p2j—1)" + (p2))")](P2))))}]-

(3 HﬁZj—,l = BajlI*l| B2 —
Bajr1ll")}].

(p2j)? < [ago(p2j-1)*
+(1—a) max{¢; (p2j—1)*

?)
,02((p2j-1)(p2)7 ), 93(0), 9u(0),
95(3[(p2j-1)"(p27)! + (p5,) (2

DD

If p2; > p2j—1 then we have

(p2))*" < [ago(p2)*")

+ (1 —a) max{¢1 (p2;)*, ¢2(P2/)"+”/ $3(0), 94(0),
9s(3[(p2)*" (o))" + (Pé,” )} (p2))*)].
< [ago(p2j)*") + (1 — a)max{@1 (p2j)*", 92(p2j)*,

93(0),94(0), ¢5(p2;)")].
Using Lemma(2.9)

(P2))*" < ¢(p2,)*" < (p2j)*" which is a contradiction. Thus

904
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we must have py; < py;_; then using this inequality the con-
dition (C2) yields
P2 < ¢(p2j1)- 3.1

Similarly taking & = 0,2 and B = 041 in (C2), we get

1B2j+1 = Baj2ll?” < [ado([|B2j — Bajs11*)
+ (1 —a)max{¢:(||B; —sz+1||2”),,
& ([1B2j+1 — ﬁzj+2||q||ﬁz/—ﬁzj+1||‘1),
¢3(||ﬁ2;+1 Boj1l711B2j — Bojr|l”),
(5 ||l32/+11—ﬁ2j+2||SHﬁ2j—l32j+2Hs)
0s(L11Bojiz — IBojir I Boj — Bajr 1) }.

(p2j+1)*" < [ago(p2,)*") y
+(1—a)max{¢1(P2j)2” 92((p2j+1)*(p27)*), #3(0),
04 (1 (p2j11)°(P2))" + (P2j+1)° ], 85(0)}].

(P2j11)% < [ado(p2j)") /
+(1 *a)max{d’l (Pzi)2p,¢/2((sz+1)q(lpzj)q ), /
93(0), 04 (5 [(P2j+1) (p2))* + (P2j1)° (P2j+1)* 1), 95(0)}].
If p2j41 > p2j, then we have
(P2j+1)% < [ao(p2j+1)*)
+ (1 —a) max{¢1(p2j+1)*",

$3(0),94(p25+1),95(0)}].
Using Lemma(2.9)

(P2j+1)% < ¢(p2j+1)*" < (p2j4+1)*F which is a contradiction.
Thus we must have p2 1 < p2;. Again applying (C2) to the
above inequality, we obtain

02 ((p2j1)777),

(P2j+1) < 9 (p2)) (3.2)
From (3.1) and (3.2), in general p; 1 < ¢(p;), for j=0,1,2,3....
by Lemma (2.10) we get p; — 0 as j — oo,

This shows that pj = ||B; — Bj4+1]| — 0 as j — co.

Hence {;} is a cauchy sequence.

Now, X being Banach space, there exists a point ¢ € X such
that B; — p as j — oo,

Consequently, the subsequences Goyj,J 00,1011 and Hopj1 1

of {B;} also converges to the same point u € X.
Now on using E.A like property of the pair (G,J) there exists

a sequence {a;} in X such that Ga; = Ja; = p for some
HEGX)UJ(X)as j— oo
Since G(X) C H(X) then there exists a sequence {f;} in X

such that Gaj = Hf3;.

Therefore Gaj = Jaj = HBj = p as for some pu € G(X) U
J(X).
Now we prove that If3; = f1 as j — oo.

Now in (C2) on putting & = «; , B = f;,we get
1(Ga —1B) 11?7 < [9o(|(Jo; — HB;)|I*P) +
(1~ aymax{61 (/o ~ HB; ).

92(|Jaj — Goy|[*l|HB; — 1B, ]|,

93(Il e —1B; "1 B; — Goy ™),

94 (5 — Goy|*||HB; —1B;1°),

905

0s(3 170 — 1B, 11 B; — 1B;11")}]-

Letting j — oo, which gives
e = 1B; 1177 < [ago(ll — pl|*) +
(1= a)ymax{¢y (|l — ul|*"),
Ol — pel[ | = 1B;11),
O3 (Il — 181"k — w1, 04
05 (3l1ee — 18,11l — BilI")}]

1187 < [aty(0)+ (1
$4(0), 95 (31l —IB;11°7) }].
Since by Lemma(2.9)

I =151 < o (|l —1B;11)*" < [l —IB;||*
which is a contradiction.

(L=l llp = ul),

—a)max{$1(0),2(0), ¢3(0),

Hence If; =
Therefore Gaj =Jo;=HB; =1B; = u as j — oo for some
neGX)UIX).

Let us assume that for Gotj = y as j — oo for some pu € J(X)
then we can find u € X such that Ju = .
Now in the inequality (C2) substitute @ = u and

B = Baj+1.we get
1Gu—1B2j1 | < [ago([lJu — HPaj1 ||

+ (1= a)max{ gy (|[Ju—Hpzj+1*"),

92 (1 — Gul[9]|H Boji1 — IB2js1 |4,
<P3(||JM 1B |I"[[HBaj1 — GulH'J)’
94 (3[lu— Gul*||HB2j1 — Gul|*),
95 (311w —1B2jt | | HB2j1 = IBajir |1)}).

Letting j — oo, which gives

[Gu—p* < [a%(llu —ul*)
+ (1 —a)max{¢; (||u - uH ?),

¢ (|| — Gul|7||p — ull")
3(||u ull"|u = Gul”),

04(% 11— Gul* || — Gul|),

(3

95 (3o — pell'll e = p£1")3)

1Gu— [P < ago(0) +
(1 —a)max{¢:(0),2(0), 95(0),
94(3ll1 — Gul"*), ¢5(0)}]
|Gu — p[|*? < [ago(0) + (1 —a) max{¢1(0),$2(0), 93(0),
94 (5l — Gul|*?), 95(0)}].
Since by Lemma(2.9)
1Gu = pl?? < ¢ (| Gu— p[|)* < || Guu — [ |*?
which is a contradiction,and hence Gu = L.
Therefore

Since the pair (G,J) weakly compatible, G and J commute at
a point of coincedence.
This gives GJu = JGu and hence G =Ju

Now the pair (H,I) satisfies the E.A like property, there
exists a sequence {f3;} in X such that HB; =If; = for some
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LEHX)UI(X)as j—oo.
Since Ifj = p as j — oo for some p € H(X) there exists a
point v € X such that Hy =
Now we prove that [v = lL.
Again in the inequality (C2) substitute & = 0, =v
|Gan; — V[ < [ago([[Jorn; — HY|[*P)
+ (1 —a)max{¢: ([Jaa; — Hv[*),
(|l o) — Gon;|[9||Hv - 1v]|7),
93([[V oy — Iv||" || Hv = Gany|”),
01 (3T 0nj — Gan)||* | Hv — Gonjl|),
05 (31100 — 1v[|'|[Hv —1v]|")}].
Letting j — oo, which gives

[l — 1|1 < [ago(||u — HV[*P)
+ (1 —a)ymax{¢:(||p —,Hszf’)»
Ol = pl?ll e = 1I|),
s ([l — 1wl — "),
Pa(5 1l — pf*fl —HHS,),
s (3l — 1)l —1v]|") }).

1
2
1
2

I = 1| < [ago (| — I [*P) +
(1—a)max{@1(]|0]|*), 92(0),
¢3(0),94(0),
95 (3l —1v]P)}].
Since by Lemma(2.9)
I =[PP < ¢ ([l —1v]))*P < [l — Iv]|*P
which is a contradiction. Therefore Iv = p. This implies that
Iv=Hv=U. 34
Again the pair (I,H) is weakly compatible, I and H commute
at point of coincidence.
This gives IHv; = HIv and this implies Iy = HpL.
Now we prove that Gu = p. Again in the inequality (C2)
substitute oo = u, B =v
1Gu —1v][?" < [ago ([l p — HY||*P)
+ (1= a)max{9y (| — Hv|[ ),
OV — G| Hy —Iv[|1),
o[V ="\ Hv = Gu"),
9u(3/1 — Gu|*|Hy — Gu||*),
05 (37— v |1 Hv = Iv]| ") }].

1GH — *” < [ago(|Gp — p]7) +
(1= a)max{¢ (| Gu — u[*"),
o2([IGu = Gu[ |l = p)|7),
93(I|p — "l = Gul"),
04(511Gu — Gu ||l = Gul|”),
95 (311G — uill'll e = )}

|G — p||*? < [ago(||Gu — p||*P) +
(1 —a)max{¢) (|G — ),
$:(0),03(lu — Gul*),
04(5/1Gu —Gul[*7), 95(0)}].

906

Since by Lemma(2.9)
G — ul?P < 9 (|G — pl)* < |G — p][*
which is a contradiction. Therefore Gu = .
Hence

Gu=Ju=u. 3.5

Now we prove that Iy = pt. For this substitute o« = u and
B = u in the inequality (C2)

|Gu—Iu||*P < [ago([[Ju— Hp [*?)

+ (1~ a)max{oy (|~ Hp|7),

o2 ([lJu — Gul[ || Hp — T [|),

O3([Ju—1In|"||Hp = Gul|"),

¢4(3 | Ju — Gul|*|Hu — Gul|*),

95 (31w —Tu||' | Hp — I ||")}]

=T [? < [ago([|p —Ip]?) +
(1 —a)max{¢:(|[u —Iﬂ/||2p),
¢2(||#—I~L||4H1H—1H||q,)7
¢3(||#—1#||r||lli—ﬂ||r),
03l = w1 = ),
s (5l — Tl [T — 1 )|")}]
letting j — oo, which gives
I —1Tu)* < [ago(||w —1u||*P)
+ (1 —a)max{¢; (||u —Iu||*"),
¢2(0)7
3|l —Ip*?),
¢4(0),5(0)}]

I = Tu][*? < (| — u)*P) < |u—Iu||* which is a
contradiction. Therefore Iy = .

Iu=Hu=yu. 3.6)
Therefore from (3.5) and (3.6)

wegetGU=Ju=Iu=Hu=u.

Hence this shows u is a common fixed point for the four map-

pings.

For uniqueness

Suppose pt and u* (i # p*) are common fixed points of G,J,H
and I and then substitute o = ¢ and § = u* in the inequality
(C2)

G — 10?7 < [ago([lJp — Hu*|?P) +

(1= a)max{¢: (|[Ju— Hu*|*"),

G2 ([l — Gu ||| Hu —Tu=|[7),

O3 ([[Ju —Tp*||"[|Hu* — G#II”)/7
Ga (|| Tp — Gu|* || Hu* — Gull*),
Os(5[1Tp — I ||" | Hp — T ||")}]

I = p* (1?7 < [ago (|| — p¥[12)
+ (1 —a)max{o: (|| — u*|*"), $2(0),
O3 ([l — w1l — p)l™), 64(0), 95(0) }]
Since by Lemma(2.9)

[ — (2P < (|l — p*)|?P) < |l — pr||?
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which is a contradiction. Therefore u = u*
uniqueness.
Now we justify our main result with an example

, this proves the

4. Example

Suppose X = [0,1] in Banach space with ||a — || =
|a—B|, Va, B € X. We define self maps G,J,H and I as fol-
lows

B |
q lf§<06§l

24+« f0<a<l
H(a)=J(a) = 2 L= %=w
() () {30{2—1 lf%<a<1

GX)=I(X)=[3, 2] U (3, 3] while HX)=J(X)=[3, 3] U (5, 1]
G(X) CH(X),I(X) C J(X) so that the condition(C — 1) is
satiesfied.

Take a sequence oy = % — %

Then G(y) = G(% —
113220611

and](ak):.](j—z)= 3 =§.

This gives Goy=Joy=1 as k — e and 1 € G(X)UJ(X).

Similarly Hoy=Ioy=1 ask — wand,,€ G(X) UJ(X).
Hence the pairs (G,J) and (H,I) satisfy E.A like property.

k> 0.
)

Now GJ(oy) =GJ(5— 1)
2+4-1
=G(“5)=G(} - )
_4 3(5-4) _1
N 1 4-303—p)\_ 43+ _ 1, 3
and JG (o) =JG(5 — 1 )=0(—=2—5)=/—LL=J(5+ %)
_3Gtg-D
=
:Z+170k:7

limg — oo (Gt — JGetg)|| 0,
similarly limy, — oo||(HIoy — IH 0 )|| # 0 which implies the
pairs (G,J)and(H,I) are not compatible.
But G(3)=J(3)=(3).

245 | l) |

This gives GJ 1 ) ( =%)=G(3) G =3
and JG(})=/(*5* 1)ej(ly = Haol
So that GJ () = JG( ).
Hence the pairs (G,)) and (H,I) are weakly compatiable.

Now we establish the condition (C-2)
Case I
Ifa,B € [ 4], then we have ||(Ga —1If)|| = |Ga— Hf|

pllt o= 6 ) B -3
Then the 1nequahty(C-2) 1mphes

1G(5) —1(3 )||2”<[a¢o(||J( )~
+ (1 —aymax{$1(|V(5) - (g)IIZP)
02(19(5) = G(IIH () —1()II),

H())I?)

907

o3IV (5) —1()IIIH () G(é)ll)
0GIVGE) —GEIIH ) —1(5)I° ),
os(31(5) —1()I'I1H (5) —1(3)II")}]

fora:%andp:p’:q:q’:r:r’:s:s’:l:l’:f
10.025(" < [ao(0.0025) | + (1 — a)max{61 (1(0.008)

04(0.133), 65(0.14)}]

|0.025| < |0.1425| Hence the condition (C2) is satisfied.
Case II

If o, B € (,1],then we have [|(Ga,IB)| = |Ga — IB] put
a=3pB=1

Then the inequality(C-2) implies

IIG(%)
—aymax{91(|lJ(3)

—GlH D)~
I)|"|H (1) —
~G(IIH(1)
—I()|']|H (1)~

1) < ago(1(3) — H(D) )
H(1)|)

1),
a3,
~1([).
1))

fora:%andp:p/:q:q/:r:r/:s:s/:l:l/:%
10.25]| < [69(0.375)]| + (1 — Lymax{01(0.375],

$2(0.175) [, 93(0.024) |,
4(0.1237), ¢50.0875)}]

+
Q

|0.25| < [0.1875+ (1 —
0.175,0.024,
0.1237,0.0875}]
[0.25] < ]0.375|
Hence the inequality(C-2) holds.

1)max{0.375,

Also we observe that % is the
unique common fixed point for the four self mappings.

5. Corollary

As a particular case on letting p = 1, we get a corollary
from Theorem 3.1.

Corollary 5.1. Suppose in a Banach Space (X,||.||) ,there
are four mappings G,H,I and J holding the conditions
(C1)G(X)CH(X)and I(X) CJ(X)
(C2) (Ga—1B)|> < [ago([|(Jo— HB) 1)
+(1—a)max{¢: (|Jo— HB|?),
¢2(|[J oo — Gal|[|[HB —1B]]),
03|/~ IBIHHB — Gal)),
os(4|Va— Gar|[[HB — 1B,

9s(zlVa—IB|||[HB —1BI)}
for all (XﬁGX where O € ¢,k=0,1,2,3,45,0 <a< 1
0<p,p q,q rr .S s,l,l <1 such that 2p = p+p =q+

q+r+r+1410.
(C3) The pairs (G,J) and (I,H) satisfy the E.A like property
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(C4) the pair of mappings (G,J) and (I,H) are weakly com-
patible.
Then the above mappings have a unique common fixed point.

Similarly taking p = % we get another corollary from
Theorem 3.1.

Corollary 5.2. Suppose in a Banach Space (X,||.||) ,there
are four mappings G,H,I and J holding the conditions
(C1HGX)CH(X)andI(X) CJ(X)
(C2)[(Go—1IB)| < [ago(l|(Ja—HPB)I)
+ (1 —aymax{¢y(||Vo — HBJ)),
$a(|lJ o — Gall 1B —IBI1),
03 (la — 1B 1HB — Ga 2 )7
91(3 ||JOC*GO¢||2HHﬁ*IﬁHl )

0s(3|\Jo— 1|2 HB ~ 1B 2)}
forallocﬁeX where ¢ke¢k 0,1,2,3,4,5, O<a< 1,
0<pp qq rr ss,l,l <1 such that 2p = p—|—p =q+
qd+r+r+1+10.
(C3) The pairs (G,J) and (I,H) satisfy the E.A like property

(C4) the pair of mappings (G,J) and (I,H) are weakly com-
patible.
Then the above mappings have a unique common fixed point.

6. Conclusion

This paper aimed on a Banach space to establish a com-
mon fixed point theorem without using the continuity condi-
tion and also adopting E.A like property. Also two corollaries
are obtained at the end of the paper from the main result.
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