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Abstract
In the present paper, we establish some combinatorial properties of the (a,b)-hyper-Fibonacci numbers in order
to extend the Cassini determinant.
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1. Introduction
Let (bk)k≥0 and (ck)k≥0 be two sequences satisfying the

following recurrence relation an+2 = αan+1 +βan, where α

and β are integers. According to [1], we have the identity

bncn−1−bn−1cn = (−β)n−1(b1c0−b0c1). (1.1)

If we take bn = Fn+2 and cn = Fn+1, then identity (1.1) reduces
to

FnFn+2−F2
n+1 = (−1)n+1, (1.2)

where (Fn) denote the well known Fibonacci numbers. Iden-
tity (1.2) is called the Cassini identity [2–4], we can write it
as a 2×2 determinant

∣ Fn Fn+1
Fn+1 Fn+2

∣ = (−1)n+1. (1.3)

Martinjak and Urbiha [5] extend the Cassini determinant
(1.3) to the hyper-Fibonacci numbers defined by

F(r+1)
n =

n

∑
k=0

F(r)
k , F(0)

n =Fn, F(r)
0 = 0, F(r)

1 = 1, (1.4)

where r is a nonnegative integer. The number F(r)
n is called

the nth hyper-Fibonacci number of the rth generation. Hyper-
Fibonacci numbers were introduced by Dil and Mező [6], they
satisfy many interesting number-theoretical and combinatorial
properties, e.g. [7]. Martinjak and Urbiha [5] define the matrix

Ar,n =
⎛
⎜⎜⎜⎜
⎝

F(r)
n F(r)

n+1 ⋯ F(r)
n+r+1

F(r)
n+1 F(r)

n+2 ⋯ F(r)
n+r+2

⋮ ⋮ ⋱ ⋮
F(r)

n+r+1 F(r)
n+r+2 ⋯ F(r)

n+2r+2

⎞
⎟⎟⎟⎟
⎠

and prove that det(Ar,n) = (−1)n+⌊(r+3)/2⌋, where n ≥ 0 and
r ≥ 0 are integers. It is clear that for r = 0 we find (1.3).

In this paper we consider the (a,b)-Fibonacci numbers
(Gn)n≥0 defined by

{ G0 = a, G1 = b,
Gn+2 =Gn+1+Gn, (n ≥ 0) (1.5)

where a and b are any integers. If we take bn = Gn+2 and
cn =Gn+1, then identity (1.1) reduces to

GnGn+2−G2
n+1 = (−1)n−1(b2−ab−a2). (1.6)
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In Section 2 we define the (a,b)-hyper-Fibonacci num-
bers associated to the sequence (Gn)n≥0 and we give some
properties. In Section 3 we extend identity (1.6) to these
generalized hyper-Fibonacci numbers.

Throughout this paper we denote by Ck
n the binomial co-

efficient which is defined for a nonnegative integer n and an
integer k by

Ck
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n!
k!(n−k)!

if 0 ≤ k ≤ n

0 othewise
(1.7)

For a negative integer n and an integer k we have

Ck
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)kCk
−n+k−1 if k ≥ 0

(−1)n−kCn−k
−k−1 if k ≤ n

0 othewise
(1.8)

2. The (a,b)-hyper-Fibonacci numbers

The (a,b)-hyper-Fibonacci numbers associated to the se-
quence (Gn)n≥0 are defined by

G(r+1)
n =

n

∑
k=0

G(r)
k , G(0)

n =Gn, G(r)
0 = a, G(r)

1 = ar+b,

(2.1)

where r be a nonnegative integer. The number G(r)
n is called

the nth (a,b)-hyper-Fibonacci number of the rth generation.
In this section we give some properties satisfied by the

(a,b)-hyper-Fibonacci numbers.

Lemma 2.1. Let n ≥ 0 be an integer, then

G(1)
n =Gn+2−b. (2.2)

Proof. By induction on n. For n = 0, identity (2.2) is trivially
checked. Now assume that (2.2) is true for an integer n ≥ 0,
then

G(1)
n+1 =

n+1

∑
k=0

Gk

=
n

∑
k=0

Gk +Gn+1

= G(1)
n +Gn+1

= Gn+2−b+Gn+1
= Gn+3−b.

We conclude that (2.2) is true for all n ≥ 0.

The following proposition expresses an (a,b)-hyper-Fibonacci
number of any generation r ≥ 1 in terms of (a,b)-Fibonacci
numbers.

Proposition 2.2. Let r ≥ 1 be an integer, then

G(r)
n =Gn+2r −

r−1

∑
l=0

Cr−l−1
n+r−l−1G2l+1, n ≥ 0. (2.3)

Proof. We deduce from Lemma 2.1 that (2.3) is true for r = 1.
Now assume that (2.3) is true for an integer r ≥ 1, then

G(r+1)
n =

n

∑
k=0

G(r)
k

=
n

∑
k=0

(Gk+2r −
r−1

∑
l=0

Cr−l−1
k+r−l−1G2l+1)

=
n

∑
k=0

Gk+2r −
n

∑
k=0

r−1

∑
l=0

Cr−l−1
k+r−l−1G2l+1

=
n+2r

∑
l=0

Gl −
2r−1

∑
l=0

Gl −
r−1

∑
l=0

G2l+1

n

∑
k=0

Cr−l−1
k+r−l−1

= G(1)
n+2r −G(1)

2r−1−
r−1

∑
l=0

Cr−l
n+r−lG2l+1

= Gn+2r+2−G2r+1−
r−1

∑
l=0

Cr−l
n+r−lG2l+1

= Gn+2r+2−
r

∑
l=0

Cr−l
n+r−lG2l+1.

We deduce that (2.3) is true for all r ≥ 1.

The next proposition expresses an (a,b)-hyper-Fibonacci
number of any positive generation in terms of an (a,b)-hyper-
Fibonacci number of the preceding generation.

Proposition 2.3. Let r ≥ 0 be an integer, then

G(r+1)
n =G(r)

n+2−aCr−1
n+r+1−bCr

n+r+1, n ≥ 0. (2.4)

Proof. We deduce from Lemma 2.1 that (2.4) is true for r = 0.
Now assume that (2.4) is true for an integer r ≥ 0, then

G(r+2)
n =

n

∑
k=0

G(r+1)
k

=
n

∑
k=0

(G(r)
k+2−aCr−1

k+r+1−bCr
k+r+1)

=
n

∑
k=0

G(r)
k+2−a

n

∑
k=0

bCr−1
k+r+1−b

n

∑
k=0

bCr
k+r+1

=
n+2

∑
l=2

G(r)
l −a

n+2

∑
l=2

Cr−1
l+r−1−b

n+2

∑
l=2

Cr
l+r−1

=
n+2

∑
l=0

G(r)
l −a−ar−b−a

n+2

∑
l=2

Cr−1
l+r−1−b

n+2

∑
l=2

Cr
l+r−1

=
n+2

∑
l=0

G(r)
l −a

n+2

∑
l=0

Cr−1
l+r−1−b

n+2

∑
l=1

Cr
l+r−1

= G(r+1)
n+2 −aCr

n+r+2−bCr+1
n+r+2.

We deduce that (2.4) is true for all r ≥ 0.

We get the following corollary as a simple and immediate
consequence, it allows us to define the (a,b)-hyper-Fibonacci
numbers of negative subscripts.

Corollary 2.4. Let r ≥ 0 and n ≥ 0 be integers, then

G(r+1)
n =G(r+1)

n+2 −G(r+1)
n+1 −aCr−1

n+r+1−bCr
n+r+1. (2.5)
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Proof. According to definition (2.1), we have

G(r)
n+2 =G(r+1)

n+2 −G(r+1)
n+1 . (2.6)

Replacing in (2.4) we obtain

G(r+1)
n =G(r+1)

n+2 −G(r+1)
n+1 −aCr−1

n+r+1−bCr
n+r+1.

Remark 2.5. For r ≥ 1, the the (a,b)-hyper-Fibonacci num-
bers for negative subscripts are defined as

G(r+1)
−n =G(r+1)

−n+2 −G(r+1)
−n+1 −aCr−1

−n+r+1−bCr
−n+r+1, n > 0.

It is easy to see that

G(r)
−n = 0 for 1 ≤ n ≤ r and G(r)

−r−1 = (−1)r−1(a−b).

The following proposition is the key assertion behind the
computation of Cassini determinant.

Proposition 2.6. Let r ≥ 0 be an integer, then

G(r)
n+r+2 =

r+1

∑
k=0

(−1)r−k (Ck
r −Ck−1

r+1)G(r)
n+k, n ≥ −r. (2.7)

Proof. Let us show identity (2.7) by induction on r ≥ 0. For r =
0 we get Gn+2 =Gn+1+Gn for n ≥ 0 which is true by definition
of the sequence (Gn)n. Now assume that (2.7) is true for an
integer r ≥ 0, since n+1 ≥ n ≥ −r, we have

G(r)
n+r+3 =

r+1

∑
k=0

(−1)r−k (Ck
r −Ck−1

r+1)G(r)
n+k+1. (2.8)

Since n+r+3≥ n+r+2≥ 0, we have G(r)
n+r+3 =G(r+1)

n+r+3−G(r+1)
n+r+2.

For k = 0,1 . . . ,r + 1, we have G(r)
n+k+1 = G(r+1)

n+k+1 −G(r+1)
n+k be-

cause

• If n+k+1 < 0 then we obtain 0 = 0−0.

• If n+ k+1 ≥ 0 and n+ k < 0 then n+ k = −1, we obtain
a = a−0.

• If n+ k ≥ 0 then n+ k+ 1 > 0 and we obtain G(r)
n+k+1 =

G(r+1)
n+k+1−G(r+1)

n+k .

Thus, we get from (2.8) that

G(r+1)
n+r+3−G(r+1)

n+r+2 =
r+1

∑
k=0

(−1)r−k (Ck
r −Ck−1

r+1)(G(r+1)
n+k+1−G(r+1)

n+k ) .

We deduce that

G(r+1)
n+r+3

= G(r+1)
n+r+2+

r+1

∑
k=0

(−1)r−k (Ck
r −Ck−1

r+1)G(r+1)
n+k+1

+
r+1

∑
k=0

(−1)r+1−k (Ck
r −Ck−1

r+1)G(r+1)
n+k

= (r+2)G(r+1)
n+r+2+

r

∑
k=0

(−1)r−k (Ck
r −Ck−1

r+1)G(r+1)
n+k+1

+(−1)r+1G(r+1)
n +

r+1

∑
k=1

(−1)r+1−k (Ck
r −Ck−1

r+1)G(r+1)
n+k

= (r+2)G(r+1)
n+r+2+

r+1

∑
l=1

(−1)r+1−l (Cl−1
r −Cl−2

r+1)G(r+1)
n+l

+(−1)r+1G(r+1)
n +

r+1

∑
k=1

(−1)r+1−k (Ck
r −Ck−1

r+1)G(r+1)
n+k

=
r+2

∑
k=0

(−1)r+1−k (Ck−1
r +Ck

r −Ck−2
r+1 −Ck−1

r+1)G(r+1)
n+k

=
r+2

∑
k=0

(−1)r+1−k (Ck
r+1−Ck−1

r+2)G(r+1)
n+k .

We conclude that (2.7) is true for all r ≥ 0.

3. Cassini determinant for
(a,b)-hyper-Fibonacci numbers

Cassini identity (1.6) can be expressed as a determinant
in the following way

∣ Gn Gn+1
Gn+1 Gn+2

∣ = (−1)n−1(b2−ab−a2).

For n,r ∈ Z such that n ≥ 0 and r ≥ 0, let’s define the (r+
2)×(r+2) matrix

Cr,n =
⎛
⎜⎜⎜⎜
⎝

G(r)
n G(r)

n+1 ⋯ G(r)
n+r+1

G(r)
n+1 G(r)

n+2 ⋯ G(r)
n+r+2

⋮ ⋮ ⋱ ⋮
G(r)

n+r+1 G(r)
n+r+2 ⋯ G(r)

n+2r+2

⎞
⎟⎟⎟⎟
⎠
.

Note that

C0,n = ( Gn Gn+1
Gn+1 Gn+2

) .

Our aim is to evaluate the determinant of the matrix Cr,n.
From Proposition 2.6, we can write

G(r)
n+r+2 =

r+1

∑
k=0

qkG(r)
n+k, n ≥ −r,

where

qk = (−1)r−k (Ck
r −Ck−1

r+1) , 0 ≤ k ≤ r+1.
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Let

Vr+2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0
0 0 0 ⋯ 0 1
q0 q1 q2 ⋯ qr qr+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Thus, we deduce from Proposition 2.6 that the (a,b)-hyper-
Fibonacci numbers (G(r)

n )
n

can be defined by the vector re-
currence relation

⎛
⎜⎜⎜⎜
⎝

G(r)
n+1

G(r)
n+2
⋮

G(r)
n+r+2

⎞
⎟⎟⎟⎟
⎠
=Vr+2

⎛
⎜⎜⎜⎜
⎝

G(r)
n

G(r)
n+1
⋮

G(r)
n+r+1

⎞
⎟⎟⎟⎟
⎠
, (3.1)

where n+ r ≥ 0.

Lemma 3.1. Let n and r be nonnegative integers, then

Cr,n =V n
r+2Cr,0.

Proof. From relation (3.1) we can write Cr,n =Vr+2Cr,n−1. It
follows that

Cr,n =Vr+2Cr,n−1 =V 2
r+2Cr,n−2 =⋯ =V n

r+2Cr,0.

Lemma 3.2. Let r be a nonnegative integer, then

det(Vr+2) = −1.

Proof. It is clear that

det(Vr+2) = (−1)r+3q0 = (−1)r+3(−1)r+2 = −1.

Theorem 3.3. Let n and r be nonnegative integers, then

det(Cr,n) = (−1)n+⌊(r+3)/2⌋(b2−ab−a2)br. (3.2)

Proof. For r = 0 the result follows from identity (1.6). Thus,
assume that r ≥ 1. We deduce from (3.1) that multiplication
by V−1

r+2 decreases by 1 the subscript of each component, i.e.,

V−1
r+2Cr,0 =

⎛
⎜⎜⎜⎜
⎝

G(r)
−1 G(r)

0 ⋯ G(r)
r

G(r)
0 G(r)

1 ⋯ G(r)
r+1

⋮ ⋮ ⋱ ⋮
G(r)

r G(r)
r+1 ⋯ G(r)

2r+1

⎞
⎟⎟⎟⎟
⎠
.

Thus,

V−r
r+2Cr,0 =

⎛
⎜⎜⎜⎜
⎝

G(r)
−r G(r)

1−r ⋯ G(r)
1

G(r)
1−r G(r)

2−r ⋯ G(r)
2

⋮ ⋮ ⋱ ⋮
G(r)

1 G(r)
2 ⋯ G(r)

r+2

⎞
⎟⎟⎟⎟
⎠
.

Since G(r)
−n = 0 for 1 ≤ n ≤ r, then

V−r
r+2Cr,0 =

⎛
⎜⎜⎜⎜
⎝

0 ⋯ G(r)
0 G(r)

1
⋮ ⋮ ⋰ ⋮

G(r)
0 G(r)

1 ⋯ G(r)
r+1

G(r)
1 G(r)

2 ⋯ G(r)
r+2

⎞
⎟⎟⎟⎟
⎠
.

Thus,

det(Cr,0) = det(Vr+2)r ⋅∆, (3.3)

where

∆ =

RRRRRRRRRRRRRRRRRRRRR

0 ⋯ G(r)
0 G(r)

1
⋮ ⋮ ⋰ ⋮

G(r)
0 G(r)

1 ⋯ G(r)
r+1

G(r)
1 G(r)

2 ⋯ G(r)
r+2

RRRRRRRRRRRRRRRRRRRRR

.

Let L j denotes the jth Line of ∆ where j = 1,2, . . . ,r+2. First,
we replace Li+1 by Li+1−Li for i= r+1,r, . . . ,1. Since G(r−1)

i+1 =
G(r)

i+1−G(r)
i , we get

∆ =

RRRRRRRRRRRRRRRRRRRRRRRRRR

0 0 ⋯ G(r−1)
0 G(r−1)

1 +a
0 0 ⋯ G(r−1)

1 G(r−1)
2

⋮ ⋮ ⋰ ⋮ ⋮
G(r−1)

0 G(r−1)
1 ⋯ G(r−1)

r G(r−1)
r+1

G(r−1)
1 G(r−1)

2 ⋯ G(r−1)
r+1 G(r−1)

r+2

RRRRRRRRRRRRRRRRRRRRRRRRRR

.

Using the same method (r−1) times again, we obtain

∆ =

RRRRRRRRRRRRRRRRRRRRRRRRRRR

0 0 ⋯ 0 G0 G1+d1
0 0 ⋯ G0 G1 G2+d2
⋮ ⋮ ⋮ ⋰ ⋮ ⋮
0 G0 ⋯ Gr−2 Gr−1 Gr +dr

G0 G1 ⋯ Gr−1 Gr Gr+1
G1 G2 ⋯ Gr Gr+1 Gr+2

RRRRRRRRRRRRRRRRRRRRRRRRRRR

,

where di = a(−1)i−1Ci
r for 1 ≤ i ≤ r. Now let C j denotes the

jth column of this last determinant, where j = 1, . . . ,r + 2.
Replacing the column Ci by Ci −Ci−1 −Ci−2 for i = r+2,r+
1, . . . ,3 and using the fact that Gi =Gi−1+Gi−2 gives

∆=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

0 0 0 ⋯ 0 G0 G1−G0+d1
0 0 0 ⋯ G0 G1−G0 d2
0 0 0 ⋯ G1−G0 0 d3
⋮ ⋮ ⋮ ⋰ ⋮ ⋮ ⋮

0 G0 G1−G0 ⋯ 0 0 dr
G0 G1 0 ⋯ 0 0 0
G1 G2 0 ⋯ 0 0 0

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Now we permute the column Ci with column Cr+3−i for 1 ≤
i ≤ ⌊(r+2)/2⌋, we obtain

∆ = (−1)⌊ r+2
2 ⌋

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

G1 −G0 +d1 G0 0 ⋯ 0 0 0
G2 G1 −G0 G0 ⋯ 0 0 0
G3 0 G1 −G0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

dr 0 0 ⋯ G1 −G0 G0 0
0 0 0 ⋯ 0 G1 G0
0 0 0 ⋯ 0 G2 G1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.
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We deduce that

∆ = (−1)⌊ r+2
2 ⌋

∆
′ ∣G1 G0

G2 G1
∣ , (3.4)

where

∆
′ =

RRRRRRRRRRRRRRRRRRRRRRRRRRR

d1+b−a a 0 ⋯ 0 0
d2 b−a a ⋯ 0 0
d3 0 b−a ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

dr−1 0 0 ⋯ b−a a
dr 0 0 ⋯ 0 b−a

RRRRRRRRRRRRRRRRRRRRRRRRRRR

.

We distinguish two cases for the compute of ∆
′.

- If a = b ≠ 0, let C j denotes the jth column of ∆
′ where

j = 1, . . . ,r. Replacing C1 by C1−
r

∑
k=2

dk−1

a
Ck gives

∆
′ =

RRRRRRRRRRRRRRRRRRRRRRRRRRR

0 a 0 ⋯ 0 0
0 0 a ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 a
dr 0 0 ⋯ 0 0

RRRRRRRRRRRRRRRRRRRRRRRRRRR

= (−1)r+1drar−1 = ar.

- If a ≠ b, let L j denotes the jth line of ∆
′ where j = 1, . . . ,r.

Replacing the line Li by Li+
a

a−b
Li+1 for i = r−1, . . . ,1 gives

∆
′ =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(b−a)+
r

∑
i=1

( a
a−b

)
i−1

di 0 ⋯ 0 0

b−a ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

dr−1+
a

a−b
dr 0 ⋯ b−a 0

dr 0 ⋯ 0 b−a

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

We deduce that

∆
′ = (b−a)r−1 [(b−a)+

r

∑
i=1

( a
a−b

)
i−1

di]

= (b−a)r−1 [(b−a)+a
r

∑
i=1

( a
b−a

)
i−1

Ci
r]

= (b−a)r−1 [(b−a)+(b−a)
r

∑
i=1

( a
b−a

)
i
Ci

r]

= (b−a)r−1 [(b−a)
r

∑
i=0

( a
b−a

)
i
Ci

r]

= (b−a)r ( a
b−a

+1)
r

= br,

which coincides with the case a= b≠ 0. Since ∣G1 G0
G2 G1

∣ = b2−

ab−a2, we deduce from Identities (3.3), (3.4) and Lemmas
3.1, 3.2 that

det(Cr,n) = (−1)n+⌊(3r+2)/2⌋(b2−ab−a2)br.

It is easy to see that (−1)⌊(3r+2)/2⌋ = (−1)⌊(r+3)/2⌋, thus

det(Cr,n) = (−1)n+⌊(r+3)/2⌋(b2−ab−a2)br.

Corollary 3.4. Let n and r be nonnegative integers, then

RRRRRRRRRRRRRRRRRRRRR

F(r)
n F(r)

n+1 ⋯ F(r)
n+r+1

F(r)
n+1 F(r)

n+2 ⋯ F(r)
n+r+2

⋮ ⋮ ⋱ ⋮
F(r)

n+r+1 F(r)
n+r+2 ⋯ F(r)

n+2r+2

RRRRRRRRRRRRRRRRRRRRR

= (−1)n+⌊(r+3)/2⌋.

Proof. Follows from identity (3.2) for a = 0 and b = 1.

The hyper-Lucas numbers associated to the well-known
Lucas numbers (Ln)n are given by [6]

L(r+1)
n =

n

∑
k=0

L(r)
k , L(0)

n =Ln, L(r)
0 =2, L(r)

1 =2r+1, (3.5)

where r is a nonnegative integer. The following corollary
extends the Cassini identity [1]

LnLn+2−L2
n+1 = 5(−1)n. (3.6)

Corollary 3.5. Let n and r be nonnegative integers, then

RRRRRRRRRRRRRRRRRRRRR

L(r)
n L(r)

n+1 ⋯ L(r)
n+r+1

L(r)
n+1 L(r)

n+2 ⋯ L(r)
n+r+2

⋮ ⋮ ⋱ ⋮
L(r)

n+r+1 L(r)
n+r+2 ⋯ L(r)

n+2r+2

RRRRRRRRRRRRRRRRRRRRR

= 5(−1)n+⌊(r+1)/2⌋.

Proof. Follows from identity (3.2) for a = 2 and b = 1.
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