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Vk-Super vertex magic graceful labeling of graphs
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Abstract
Let G be a finite and simple (p,q) graph. An one-one onto function f : V (G)∪E(G)→{1,2,3, . . . , p+q} is called V -
super vertex magic graceful labeling if f (V (G)) = {1,2,3, . . . , p} and for any vertex v∈V (G), ∑

u∈N(v)
f (uv)− f (v) =M,

where M is a whole number. For an integer k≥ 1, let Ek(v) = {e∈ E(G) : the distance between e from v is less than
or equal to k}. For v ∈V (G), we define wk(v) = ∑

e∈Ek(v)
f (e). A Vk-super vertex magic graceful labeling (Vk-SVMGL)

is a one-one function f from V (G)∪E(G) onto the set {1,2,3, . . . , p+q} such that f (V (G)) = {1,2,3, . . . , p} and
for any element v ∈ V (G), we have wk(v)− f (v) = M, where M is a whole number. In this paper, we study
several properties of Vk-SVMGL and we identify an equivalent condition for the Ek-regular graphs which admits
Vk-SVMGL. At last we identify some families of graphs which admit V2-SVMGL.
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1. Introduction
A graph labeling is a function which has domain as graph

elements such as vertices and/or edges with co-domain as a set
of numbers. Usually the co-domain has been taken as integers.
Many of graph labelings are introduced and discussed by
various authors. To know more about graph labeling, refer [1].

In 1967, Rosa [5] introduced a labeling called β -valuation.
Golomb [2] called such labeling as graceful. An injection
f from the vertices of G to { 0, 1, 2, . . . , q } is called a
graceful labeling of G if when we assign each edge uv the
label | f (u)− f (v)|, the resulting edge labels are distinct.

In 1966 and 1976, Stewart [12] and Sedlacek [6] intro-
duced magic type labelings. Magic labeling is a one to one

map on to the appropriate set of consecutive integers starting
from 1, with some kind of ‘constant sum’ property.

A vertex magic total labeling (VMTL) of G is a one-one
function f from V (G)∪E(G) onto the set {1,2,3, . . . , p+q}
such that for any vertex v∈V (G), the sum f (v)+ ∑

u∈N(v)
f (uv)=

M, where M is a whole number. The whole number M is said
to be the magic constant [1].

In 2004, the concept ’super vertex-magic total labeling
(SVMTL)’ in simple graphs has been defined by MacDougall
et al.[3]. They name the VMTL as super if f (V (G)) =
{1,2,3, . . . , p}. For their labeling, the vertices receive the
least integers.

In 2003, Swaminathan and Jeyanthi [10] introduced an-
other labeling called super vertex magic labeling (SVML).
They call a VMTL is super if f (E(G)) = {1,2, . . . ,q}. Here,
the smallest labels are assigned to the edges. To avoid con-
fusion, Marimuthu and Balakrishnan [4] called a VMTL is
E-super if f (E(G)) = {1,2, . . . ,q}. A graph G is called E-
super vertex magic (E-SVM) if it admits an E-super vertex
magic labeling (E-SVML).

An Ek-SVML of G is an one-one function f from V (G)∪
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E(G) onto the set {1,2,3, . . . , p+ q} such that f (E(G)) =
{1,2,3, . . . ,q} and for any vertex v ∈ V (G), the sum f (v)+
wk(v) = M, where M is a whole number.

In 2018, Sivagnanam Mutharasu and Duraisamy Kumar [8]
introduced Vk-super vertex magic labeling(VK-SVML) in
graphs. A Vk-SVML of G is a one-one function f from V (G)∪
E(G) onto the set {1,2,3, . . . , p+ q} such that f (V (G)) =
{1,2,3, . . . , p} and for any vertex v ∈ V (G), the sum f (v)+
wk(v) = M, where M is a whole number.

In this paper, by using the natural meaning of both the
concepts ’Graceful’ and ’V -SVML’, a new labeling is in-
troduced in the name ’Vk-super vertex magic graceful label-
ing’. Let k be a whole number and 1 ≤ k ≤ diam(G). For
each edge e ∈ E(G), let Ek(e) = {v ∈ V (G) : the distance
between e from v is less than or equal to k}. If |Ek(e)| = r
for some whole number r ≥ 1 and for each edge e ∈ E(G),
then we call G as Ek-regular. All the connected graphs with at
least one edge, are E1-regular. Consider the following graph
G(V,E), with V (G) = {a1,a2,a3,a4,a5,a6,a7} and E(G) =
{b1,b2,b3,b4,b5,b6,b7,b8}.
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The following table give the values of Ek(a) and Ek(b) for
k = 2.

E2(a) E2(b)

E2(a1) = {b1,b2,b3,b4} E2(b1) = {a1,a2,a3,a4}

E2(a2) = {b1,b2,b3,b4,b5} E2(b2) = {a1,a2,a3,a4,a5}

E2(a3) = {b1,b2,b3,b4,b5} E2(b3) = {a1,a2,a3,a4}

E2(a4) = {b1,b2,b3,b4,b5,b6,b8} E2(b4) = {a1,a2,a3,a4,a5}

E2(a5) = {b2,b4,b5,b6,b7,b8} E2(b5) = {a2,a3,a4,a5,a6,a7}

E2(a6) = {b5,b6,b7,b8} E2(b6) = {a4,a5,a6,a7}

E2(a7) = {b5,b6,b7,b8} E2(b7) = {a5,a6,a7},

E2(b8) = {a4,a5,a6,a7}

A Vk-super vertex magic graceful labeling (Vk-SVMGL) is
a one-one function f from V (G)∪E(G) onto the set {1,2,3,
. . . , p+ q} such that f (V (G)) = {1,2,3, . . . , p} and for any
vertex v ∈ V (G), the difference wk(v)− f (v) = M for some
whole number M. This whole number M is said to be the
magic constant of Vk-SVMGL of G.

If a graph admits a Vk-SVMGL, then we say it is a Vk-
super vertex magic graceful(Vk-SVMG) graph. In this paper,
we study several properties of Vk-SVMGL and we identify an
equivalent condition for the Ek-regular graphs which admits
Vk-SVMGL. At last we identify some families of graphs which
admit V2-SVMGL.

2. Main Results
Here, we collect some of the basic properties of Vk-SVMGL.
In a connected graph G with more than one vertex, if

Ek(u) = Ek(v) for some vertices u,v ∈V (G) and u 6= v, then
the differences wk(u)− f (u) and wk(v)− f (v) are not equal
for any Vk-SVMGL f of G(because the function f is one-
one). It means that G is not Vk-SVMG and so the next Lemma
follows.

Lemma 2.1. For a connected graph G with more than one
vertex, if Ek(u) =Ek(v) for two vertices u,v∈V (G) and u 6= v,
then G is not Vk-SVMG.

If G is Vk-SVMG, then the integer k must be lies between
1 and diam(G) (If not, then for any two vertices u,v ∈V (G)
and u 6= v, we have Ek(u) = Ek(v)). Since diam(Sn) = 2 for
the star graph Sn, we have the following result.

Corollary 2.2. For each integer k ≥ 2, the star graph is not
Vk-SVMG.

Lemma 2.3. Let G(p,q) be a connected Ek-regular graph.
If G admits Vk-SVMGL, then M = rq+ rq(q+1)

2p − p+1
2 , where

M is the magic constant and r is the regularity.

Proof. Since G is Vk-SVMG, there exists a Vk-SVMGL in G,
say f . Then we must have f (V (G)) is equal to {1,2,3, . . . , p}
and f (E(G)) is equal to {p+1, p+2, p+3, . . . , p+q}. Also,
the magic constant M is equal to wk(v)− f (v) for any element
v ∈V (G). Hence, pM = ∑

v∈V (G)
wk(v)− ∑

v∈V (G)
f (v)

= ∑
v∈V (G)

∑
e∈Vk(v)

f (e)− ∑
v∈V (G)

f (v)

= r ∑
e∈E(G)

f (e)− [1+2+ . . .+ p] (since each edge is counted

exactly r times in the sum ∑
v∈V (G)

∑
e∈Vk(v)

f (e))

= rpq+ rq(q+1)
2 − p(p+1)

2 and so M = rq+ rq(q+1)
2p − p+1

2 .

For k ≥ 1, Lemma 2.3 gives the magic constant for Ek-
regular graphs which are Vk-SVMG. We found the next result
which is the particular case of above statement [9].

Lemma 2.4. [9] If a nontrivial graph G( p, q) is V-SVMG,
then the magic number M is given by M = 2q+ q(q+1)

p − p+1
2 .

For any nontrivial graph G, we have r = 2 when k = 1. By
taking k = 1 in Lemma 2.3, we can prove Lemma 2.4.

Theorem 2.5. For an Ek-regular connected graph G, we
have
(a). M ≥ (p−1)( 3r−1

2 )−1
(b). M = (p+1)( 3r−1

2 )− r if q = p.

Proof. (a) Since G is a connected graph, q is equal to p−
1. By Lemma 2.3, we have the magice constant M = rq+
rq(q+1)

2p − p+1
2 ≥ r(p−1)+ r(p−1)(p)

2p − p+1
2 =(p−1) 3r−1

2 −1.
(b) Since q = p, it follows from Lemma 2.3 that M = rq+
rq(q+1)

2p − p+1
2 = rp+ rp(p+1)

2p − p+1
2 = (p+1) 3r−1

2 − r.
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Remark 1. In Theorem 2.5(b), we obtained a lower bound for
M, where M is the magic constant. In the following example,
we prove that the lower bound sharp when k = 2. Consider
the V2-SVMGL of the graph C5 as given below.
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Figure 2: V2-SVMGL of C5

The graph C5 is E2-regular and the regularity is 4. Also the
magic constant M is equal to 29.

Lemma 2.6. For an integer k ≥ 2, no tree is Ek-regular and
Vk-SVMG.

Proof. Suppose diam(G) = d(≥ 3) for a tree G. Let P =
a0a1 . . .ad−1ad be a path of length d. In this case, the edges
a0a1 and ad−1ad must be pendent. For k = d, we must have
Ek(a0)=Ek(ad) and so G must not be Vk-SVMG. On the other
hand, for k ≤ d−1, we must have Ek(a1a2) is strictly greater
than Ek(a0a1) and so the tree G is not Ek-regular. Hence,
diam(G) must be less than or equal to 2. If diam(G) = 2, then
G is a star. Thus G is not Vk-SVMG(by Corollary 2.2).

Theorem 2.7. Let G(p,q) be a graph and g be an one-
one onto function from the edge set E(G) onto the q suc-
cessive integers {p+1, p+2, . . . , p+q}. Then the function
g is extendeble as a Vk-SVMGL of G if and only if the set
{wk(u)/u ∈V (G)} is a set of p successive integers.

Proof. Suppose {wk(u)/u ∈V (G)} is a set of p successive
integers. Take t as the least integer in the set {wk(u)/u ∈
V (G)}. Now define a function f from V (G)∪E(G) onto
{1,2, . . . , p+ q} defined by f (e) = g(e) for e ∈ E(G) and
f (u) =wk(u)−t+1 for u∈V (G). In this case, the set of edge
labelings f (E(G)) is equal to {p+1, p+2, . . . , p+q} and the
set of vertex labelings f (V (G)) is equal to {1,2, . . . , p} (since
{wk(x)− t : x ∈V (G)} contain successive integers). Thus f
is Vk-SVMGL and the magic constant M = t−1.
On the other hand, suppose g is extendeble as a Vk-SVMGL
of G, say f . Let M be the magic constant. Note that wk(u)−
f (u) = M for each vertex u ∈V (G). Thus wk(u) = M+ f (u)
and so {wk(u)/u ∈ V (G)} must be equal to {M + 1,M +
2, . . . ,M+ p}, which is a set of p successive integers.

3. V2-SVMGL of cycles and prisms
This section provides some collection of graphs which are

V2-SVMG. For any vertex u ∈V (C3), we have E2(u) = E(G).
Thus by Lemma 2.1, the cycle C3 is not V2-SVMG.

Lemma 3.1. [11] For any integers a and b, we have
gcd(a,b) = gcd(b,a) = gcd(±a,±b) = gcd(a,b−a) =
gcd(a,b+a).

Theorem 3.2. Let s(≥ 5) be an integer. Then the cycle Cs
admits V2-SVMGL if and only if s is an odd integer.

Proof. Assume that Cs is V2-SVMG and let f be a V2-
SVMGL of Cs. Note that |E2(e)| = r = 4 for any edge e ∈
E(Cs). Thus by letting r = 4, p= q= s and k= 2 in Lemma 2.3,
we can have M = 11s+3

2 . Thus s must be odd(since M is an
integer).
Conversely, suppose s is odd. Let V (Cs) = {vi/1≤ i≤ s} and
E(Cs) = {vivi⊕s1/1≤ i≤ s}. Here the operation ⊕s denotes
addition modulo s.
Case A: When s = 4t +1 and t ≥ 1.
Define f : V (Cs)∪E(Cs)→ {1,2,3, . . . ,2s} as given below:
f (vi) = s + 4− i when 4 ≤ i ≤ s and f (vi) = 4− i when
1≤ i≤ 3; f (vivi⊕s1) = [(i−1)t⊕s 1]+ s, where (i−1)t⊕s 1
is the positive residue when (i−1)t +1 divides s.
Here we are going to prove that f (E(Cs)) = {s+1,s+2,s+
3, . . . ,2s}. Take a = ` and b = s in Lemma 3.1, then we
get gcd(t,s) = gcd(t,4t + 1) = gcd(t,3t + 1) = gcd(t,2t +
1) = gcd(t, t +1) = gcd(t,1) = 1. It means that t is a genera-
tor of the cyclic group (Zs,⊕s) and so f (E(Cs)) = {s+1,s+
2, . . . ,2s}.
Claim 1: w2(vi) = 26t +12− i for integer i with 4≤ i≤ s.
Case i: If i = 4x for some integer 1 ≤ x ≤ t. Now w2(vi) =
f (vi−2vi−1)+ f (vi−1vi)+ f (vivi+1)+ f (vi+1vi+2).
Since f (vi−2vi−1) = [(i−3) s−1

4 ⊕s 1]+s= [sx−x− 3s
4 + 3

4⊕s

1]+s = [−x− 3s
4 + 3

4⊕s 1]+s = [−x−3t⊕s 1]+s, by the def-
inition of f , we have w2(vi) = [−x− 3t⊕s 1] + [−x− 2t⊕s
1]+ [−x− t⊕s 1]+ [−x⊕s 1]+4s.
Since 1≤ x≤ t, the first four terms of above equation are not
positive. Thus we have w2(vi) = 4s+[s− x− 3t + 1]+ [s−
x−2t+1]+[s−x− t+1]+[s−x+1]. Take s = 4t+1. Then
we get w2(vi) = 26t +12− i.
Case ii: Suppose i = 4x+1 and 1≤ x≤ t.
Since f (vi−2vi−1) = [−x− 2t ⊕s 1] + s, we have w2(vi) =
[−x−2t⊕s 1]+ [−x− t⊕s 1]+ [−x⊕s 1]+ [−x+ t⊕s 1]+4s.
Since 1≤ x≤ t, the first three terms are not positive, we have
w2(vi) = [s−x−2t +1]+ [s−x− t +1]+ [s−x+1]+ [−x+
t + 1] + 4s = 26t + 12− i. In similar way, we can see that
w2(vi) = 26t +12− i when i = 4x+2 and i = 4x+3.
Claim 2: w2(vi) = (2t+1)11− i for integers i with 1≤ i≤ 3.
Consider v1. The weight w2(v1)= f (vs−1vs)+ f (vsv1)+ f (v1v2)

+ f (v2v3). Since f (vs−1vs) = [(s−2) (s−1)
4 ⊕s 1)]+s = [(4t−

1) (s−1)
4 ⊕s 1]+ s = [−2t⊕s 1]+ s, we have w2(v1) = [−2t⊕s

1]+ [−t⊕s 1]+1+[t⊕s 1]+4s. Here, the first two terms are
negative or zero. Thus w2(v1) = [s−2t +1]+ [s− t +1]+1+
[t⊕s 1]+4s = (2t +1)11−1. In similar way, we can prove
that w2(v2) = (2t +1)11−2 and w2(v3) = (2t +1)11−3.
Note that t = s−1

4 . Then by Claim 1, w2(vi)− f (vi) = 26t +
12− i− (s+ 4− i) = 11s+3

2 = M for 4 ≤ i ≤ s. Also from
Claim 2, we have w2(vi)− f (vi) = 11(2t +1)− i− (4− i) =
11s+3

2 = M for i = 1,2,3.
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Case B: If s = 4t +3 and t ≥ 1.
Define f : V (Cs)∪E(Cs)→{1,2, . . . ,2s} as follows:
f (vi) = i+1 when 1≤ i≤ s−1 and f (vs) = 1; f (vivi⊕s1) =
[(i−1)(t +1)⊕s 1]+ s, where [(i−1)(t +1)⊕s 1]+ s is the
positive residue (i−1)(t +1)+1 divides s. From Lemma 3.1,
gcd(t+1,s)= gcd(t+1,4t+3)= gcd(t+1,3t+2)= gcd(t+
1,2t+1)= gcd(t+1, t)= gcd(t, t+1)= gcd(t,1)= 1. Hence
t + 1 is a generator for the cyclic group (Zs,⊕s) and hence
f (E(Cs)) = {s+ 1,s+ 2, . . . ,2s}. As proved in Case A, we
can prove that the above labeling is a V2-SVMGL with magic
constant M = 11s+3

2 .

Theorem 3.3. Let s(≥ 5) is an integer. The graph G =Cs,
the complement of Cs, is V2-SVMG and the magic constant is
given by s4−2s3−s2−22s−8

8 .

Proof. Define f : V (Cs)∪E(Cs)→{1,2, . . . , s2−s
2 } as given

below: First the s edges {a1a3,a2a4, . . . ,ana2} are labeled by
f (ai⊕s−1,ai⊕1) = s+ i for 1≤ i≤ s.
The remaining s2−3s

2 − s edges are randomly labeled onto

{2s + 1,2s + 2, . . . , s2−s
2 }. Then we label The vertices by

f (ai) = s− (i−1). Remark that for each vertex ai, the only
edge with label s+ i, is not in E2(ai). Thus for each ai with
1 ≤ i ≤ s, we have w2(ai)− f (ai) = ∑

e∈E(Cs)

f (e)− (s+ i)−

f (ai)=
s4−2s3−s2−6s

8 −(s+ i)− [s−(i−1)] = s4−2s3−s2−22s−8
8 .

Theorem 3.4. Let s(≥ 3) be an integer. Then the prism graph
Ds admits V2-SVMGL if and only if s is an even integer.

Proof. Assume that Ds admits V2-SVMGL, say f . Let M be
the corresponding magic constant. Note that |E2(e)|= r = 6
for any edge e ∈ E(Ds). By letting k = 2, r = 6, q = 3s and
p = 2s in Lemma 2.3, we can have M = 61s+8

2 . Then s must
be an even integer(since M is an integer).
Conversely suppose s is an even integer. Let V (Ds) = {ai,bi :
1≤ i≤ s} and E(Ds) = {aibi,aiai⊕s1,bibi⊕s1/1≤ i≤ s}.
Define f : V (Ds)∪E(Ds)→{1,2, . . . ,5s} as follows:
f (ai) =

i
2 − 1 if i ≥ 4 and i is even; The range is given by

{1,2, . . . , s
2 −1},

f (a2) =
s
2 ; { s

2},
f (ai) =

s
2 +

i+1
2 if i is odd; { s

2 +1, s
2 +2, . . . ,s},

f (b2) = s+1; {s+1},
f (bi) = s+ s

2 +2− i
2 if i≥ 4 and i is even; {s+2, . . . ,s+ s

2},
f (bi) = 2s− i−1

2 if i is odd; {s+ s
2 +1,s+ s

2 +2, . . . ,2s},
f (aibi) = 2s+ i+1

2 if i is odd; {2s+1,2s+2, . . . ,2s+ s
2},

f (aibi)= 2s+ s
2 +

i
2 if i is even; {2s+ s

2 +1,2s+ s
2 +2, . . . ,3s},

f (aiai⊕s1) = 3s+ s
2 −

i−1
2 if i is odd; {3s+1,3s+2, . . . ,3s+

s
2},
f (bibi⊕s1) = 4s− ( i

2 − 1) if i is even; {3s+ s
2 + 1,3s+ s

2 +
2, . . . ,4s},
f (aiai⊕s1) = 4s+ i

2 if i is even; {4s+1,4s+2, . . . ,4s+ s
2},

f (bibi⊕s1)= 5s− i−1
2 if i is odd; {4s+ s

2 +1,4s+ s
2 +2, . . . ,5s}.

It is easily seen that f is a V2-SVMGL with the magic constant
M = 61s+8

2 .

Let Γ be a group and e be the identity element of Γ. Let
X be a generating set of Γ such that e /∈ X and X = X−1 =
{x−1/x ∈ X}. A Cayley graph G =Cay(Γ,X) is a graph with
V (G) = Γ and E(G) = {(x,xa)/x ∈V (G),a ∈ X}. Since X is
a generating set of Γ , Cay(Γ,X) is a connected regular graph
of degree |X |. When Γ = Zn, the corresponding Cayley graph
is a circulant graph, denoted by Cir(n,A).

Lemma 2.3 give the magic constant for Ek-regular graphs
which are Vk-SVM. For A = {1,2,s− 1,s− 2}, the corre-
sponding circulant graph Cir(s,A) is not E2-regular. In the
following result, we obtain the magic constant for this family
of graphs.

Theorem 3.5. For an integer s ≥ 7. G = Cir(s,{1,2,s−
1,s−2}) is V2-SVMG with the magic constant M = 26s+6.

Proof. Let V (G) = {a1,a2, . . . ,as} and
E(G) = {aiai⊕s1,aiai⊕s2 : 1 ≤ i ≤ s}. Define f : V (G) ∪
E(G)→{1,2, . . . ,3s} as follows:
f (ai) = s+5− i for 5≤ i≤ s; f (ai) = 5− i for 1≤ i≤ 4;
f (aiai⊕s1) = s+ i for 1≤ i≤ s and f (aiai⊕s2) = 3s+1− i for
1≤ i≤ s.
Let v ∈V (G). If v = ai for i with 5≤ i≤ s.
Then w2(ai)− f (ai) = f (ai⊕ss−3ai⊕ss−2)+ f (ai⊕ss−2ai⊕ss−1)
+ f (ai⊕ss−1ai)+ f (aiai⊕s1)+ f (ai⊕s1ai⊕s2)+ f (ai⊕s2ai⊕s3)+
f (ai⊕ss−4ai⊕ss−2)+ f (ai⊕ss−3ai⊕ss−1)+ f (ai⊕ss−2ai)+
f (ai⊕ss−1ai⊕s1)+ f (aiai⊕s2)+ f (ai⊕s1ai⊕s3)+ f (ai⊕s2ai⊕s4)−
f (ai)
= [s+ i⊕s s−3]+[s+ i⊕s s−2]+[s+ i⊕s s−1]+[s+ i]+[s+
i+1]+ [s+ i+2]+ [3s+1− (i⊕s s−4)]+[3s+1− (i⊕s s−
3)] + [3s + 1 − (i ⊕s s − 2)]
+[3s+1−(i⊕s s−1)]+[3s+1− i]+[3s+1−(i+1)]+[3s+
1−(i+2)]− [s+5− i] = [s+ i−3]+[s+ i−2]+[s+ i−1]+
[s+ i]+ [s+ i+1]+ [s+ i+2]+ [3s+1− (i−4)]+ [3s+1−
(i−3)]+ [3s+1− (i−2)]+ [3s+1− (i−1)]+ [3s+1− i]+
[3s+1−(i+1)]+[3s+1−(i+2)]− [s+5− i] = 26s+6=M.
Similarly, we can prove that f (ai) + w2(ai) = 26s + 6 for
i = 1,2,3,4.
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