

https://doi.org/10.26637/MJM0803/0037

*Vk***-Super vertex magic graceful labeling of graphs**

Sivagnanam Mutharasu¹ Mary Bernard ^{2*} and Duraisamy Kumar³

Abstract

Let *G* be a finite and simple (p,q) graph. An one-one onto function $f: V(G) \cup E(G) \rightarrow \{1,2,3,\ldots,p+q\}$ is called *V* $f(V(G)) = \{1,2,3,\ldots,p\}$ and for any vertex $v \in V(G),$ $\sum f(uv)-f(v)=M,$ $u \in \overline{N}(v)$

where *M* is a whole number. For an integer $k \geq 1$, let $E_k(v) = \{e \in E(G) : \text{the distance between } e \text{ from } v \text{ is less than } \}$ or equal to k }. For $v \in V(G)$, we define $w_k(v) = \sum_{v \in V(G)}$ $\sum\limits_{e \in E_k(v)} f(e)$. A *V_k*-super vertex magic graceful labeling (*V_k*-SVMGL)

is a one-one function *f* from $V(G) \cup E(G)$ onto the set $\{1,2,3,\ldots,p+q\}$ such that $f(V(G)) = \{1,2,3,\ldots,p\}$ and for any element $v \in V(G)$, we have $w_k(v) - f(v) = M$, where M is a whole number. In this paper, we study several properties of *Vk*-SVMGL and we identify an equivalent condition for the *Ek*-regular graphs which admits V_k -SVMGL. At last we identify some families of graphs which admit V_2 -SVMGL.

Keywords

V-super vertex magic graceful labeling, *Vk*-super vertex magic graceful labeling, *Ek*-regular graphs, circulant graphs.

AMS Subject Classification

05C78.

¹*Department of Mathematics, C. B. M. College, Coimbatore-641042, Tamil Nadu, India.*

²*Department of Mathematics, TDMNS College, T. Kallikulam-627113, Tamil Nadu, India.*

³*Department of Science and Humanities, RVS Technical Campus, Coimbatore-641402, Tamil Nadu, India.*

***Corresponding author**: ² nmarybernard@gmail.com

Article History: Received **24** November **2019**; Accepted **14** April **2020** ©2020 MJM.

Contents

1. Introduction

A graph labeling is a function which has domain as graph elements such as vertices and/or edges with co-domain as a set of numbers. Usually the co-domain has been taken as integers. Many of graph labelings are introduced and discussed by various authors. To know more about graph labeling, refer [\[1\]](#page-3-1).

In 1967, Rosa [\[5\]](#page-3-2) introduced a labeling called $β$ -valuation. Golomb [\[2\]](#page-3-3) called such labeling as graceful. An injection *f* from the vertices of *G* to $\{0, 1, 2, \ldots, q\}$ is called a graceful labeling of *G* if when we assign each edge *uv* the label $|f(u) - f(v)|$, the resulting edge labels are distinct.

In 1966 and 1976, Stewart [\[12\]](#page-4-0) and Sedlacek [\[6\]](#page-4-1) introduced magic type labelings. Magic labeling is a one to one

map on to the appropriate set of consecutive integers starting from 1, with some kind of 'constant sum' property.

A vertex magic total labeling (VMTL) of *G* is a one-one function *f* from $V(G) \cup E(G)$ onto the set $\{1, 2, 3, \ldots, p+q\}$ such that for any vertex $v \in V(G)$, the sum $f(v) + \sum f(uv) =$ *u*∈*N*(*v*) *M*, where *M* is a whole number. The whole number *M* is said

to be the magic constant [\[1\]](#page-3-1).

In 2004, the concept 'super vertex-magic total labeling (SVMTL)' in simple graphs has been defined by MacDougall et al. [\[3\]](#page-3-4). They name the VMTL as super if $f(V(G)) =$ $\{1,2,3,\ldots,p\}$. For their labeling, the vertices receive the least integers.

In 2003, Swaminathan and Jeyanthi [\[10\]](#page-4-2) introduced another labeling called super vertex magic labeling (SVML). They call a VMTL is super if $f(E(G)) = \{1, 2, ..., q\}$. Here, the smallest labels are assigned to the edges. To avoid confusion, Marimuthu and Balakrishnan [\[4\]](#page-3-5) called a VMTL is E-super if $f(E(G)) = \{1, 2, ..., q\}$. A graph *G* is called *E*super vertex magic (*E*-SVM) if it admits an *E*-super vertex magic labeling (*E*-SVML).

An E_k -SVML of *G* is an one-one function *f* from $V(G)$ ∪

 $E(G)$ onto the set $\{1,2,3,\ldots,p+q\}$ such that $f(E(G))$ = $\{1,2,3,\ldots,q\}$ and for any vertex $v \in V(G)$, the sum $f(v)$ + $w_k(v) = M$, where *M* is a whole number.

In 2018, Sivagnanam Mutharasu and Duraisamy Kumar [\[8\]](#page-4-4) introduced V_k -super vertex magic labeling(V_K -SVML) in graphs. A V_k -SVML of *G* is a one-one function *f* from $V(G)$ ∪ $E(G)$ onto the set $\{1,2,3,\ldots,p+q\}$ such that $f(V(G))$ = $\{1,2,3,\ldots,p\}$ and for any vertex $v \in V(G)$, the sum $f(v)$ + $w_k(v) = M$, where *M* is a whole number.

In this paper, by using the natural meaning of both the concepts 'Graceful' and '*V*-SVML', a new labeling is introduced in the name $'V_k$ -super vertex magic graceful labeling'. Let *k* be a whole number and $1 \leq k \leq diam(G)$. For each edge $e \in E(G)$, let $E_k(e) = \{v \in V(G) : \text{the distance}\}$ between *e* from *v* is less than or equal to *k*. If $|E_k(e)| = r$ for some whole number $r \geq 1$ and for each edge $e \in E(G)$, then we call *G* as E_k -regular. All the connected graphs with at least one edge, are *E*1-regular. Consider the following graph $G(V, E)$, with $V(G) = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$ and $E(G) =$ ${b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8}.$

Figure 1. *G*

The following table give the values of $E_k(a)$ and $E_k(b)$ for $k = 2$.

$E_2(a)$	$E_2(b)$
$E_2(a_1) = \{b_1, b_2, b_3, b_4\}$	$E_2(b_1) = \{a_1, a_2, a_3, a_4\}$
$E_2(a_2) = \{b_1, b_2, b_3, b_4, b_5\}$	$E_2(b_2) = \{a_1, a_2, a_3, a_4, a_5\}$
$E_2(a_3) = \{b_1, b_2, b_3, b_4, b_5\}$	$E_2(b_3) = \{a_1, a_2, a_3, a_4\}$
$E_2(a_4) = \{b_1, b_2, b_3, b_4, b_5, b_6, b_8\}$	$E_2(b_4) = \{a_1, a_2, a_3, a_4, a_5\}$
$E_2(a_5) = \{b_2, b_4, b_5, b_6, b_7, b_8\}$	$E_2(b_5) = \{a_2, a_3, a_4, a_5, a_6, a_7\}$
$E_2(a_6) = \{b_5, b_6, b_7, b_8\}$	$E_2(b_6) = \{a_4, a_5, a_6, a_7\}$
$E_2(a_7) = \{b_5, b_6, b_7, b_8\}$	$E_2(b_7) = \{a_5, a_6, a_7\},\,$
	$E_2(b_8) = \{a_4, a_5, a_6, a_7\}$

A V_k -super vertex magic graceful labeling (V_k -SVMGL) is a one-one function *f* from $V(G) \cup E(G)$ onto the set $\{1,2,3,$..., $p + q$ such that $f(V(G)) = \{1, 2, 3, ..., p\}$ and for any vertex $v \in V(G)$, the difference $w_k(v) - f(v) = M$ for some whole number *M*. This whole number *M* is said to be the magic constant of *Vk*-SVMGL of *G*.

If a graph admits a V_k -SVMGL, then we say it is a V_k super vertex magic graceful(V_k -SVMG) graph. In this paper, we study several properties of V_k -SVMGL and we identify an equivalent condition for the E_k -regular graphs which admits V_k -SVMGL. At last we identify some families of graphs which admit *V*2-SVMGL.

2. Main Results

Here, we collect some of the basic properties of V_k -SVMGL. In a connected graph *G* with more than one vertex, if $E_k(u) = E_k(v)$ for some vertices $u, v \in V(G)$ and $u \neq v$, then the differences $w_k(u) - f(u)$ and $w_k(v) - f(v)$ are not equal for any V_k -SVMGL f of G (because the function f is oneone). It means that *G* is not *Vk*-SVMG and so the next Lemma follows.

Lemma 2.1. *For a connected graph G with more than one vertex, if* $E_k(u) = E_k(v)$ *for two vertices* $u, v \in V(G)$ *and* $u \neq v$, *then G is not Vk-SVMG.*

If *G* is V_k -SVMG, then the integer *k* must be lies between 1 and diam(*G*) (If not, then for any two vertices $u, v \in V(G)$ and $u \neq v$, we have $E_k(u) = E_k(v)$). Since diam(S_n) = 2 for the star graph S_n , we have the following result.

Corollary 2.2. *For each integer* $k \geq 2$ *, the star graph is not Vk-SVMG.*

Lemma 2.3. Let $G(p,q)$ be a connected E_k -regular graph. *If G* admits V_k -SVMGL, then $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2}$ $\frac{+1}{2}$, where *M is the magic constant and r is the regularity.*

Proof. Since *G* is V_k -SVMG, there exists a V_k -SVMGL in *G*, say *f*. Then we must have $f(V(G))$ is equal to $\{1,2,3,\ldots,p\}$ and $f(E(G))$ is equal to $\{p+1, p+2, p+3,..., p+q\}$. Also, the magic constant *M* is equal to $w_k(v) - f(v)$ for any element $v \in V(G)$. Hence, $pM = \sum_{v \in V(G)} w_k(v) - \sum_{v \in V(G)}$ *f*(*v*)

$$
= \sum_{v \in V(G)} \sum_{e \in V_k(v)} f(e) - \sum_{v \in V(G)} f(v)
$$

= $r \sum_{e \in E(G)} f(e) - [1 + 2 + ... + p]$ (since each edge is counted
exactly *r* times in the sum $\sum_{v \in V(G)} \sum_{e \in V_k(v)} f(e)$)

$$
=rpq+\frac{rq(q+1)}{2}-\frac{p(p+1)}{2}
$$
 and so $M=rq+\frac{rq(q+1)}{2p}-\frac{p+1}{2}$. \square

For $k \geq 1$, Lemma [2.3](#page-1-1) gives the magic constant for E_k regular graphs which are V_k -SVMG. We found the next result which is the particular case of above statement [\[9\]](#page-4-5).

Lemma 2.4. *[\[9\]](#page-4-5) If a nontrivial graph G(p, q) is V-SVMG, then the magic number M is given by* $M = 2q + \frac{q(q+1)}{p} - \frac{p+1}{2}$ $\frac{+1}{2}$.

For any nontrivial graph *G*, we have $r = 2$ when $k = 1$. By taking $k = 1$ in Lemma [2.3,](#page-1-1) we can prove Lemma [2.4.](#page-1-2)

Theorem 2.5. *For an Ek-regular connected graph G, we have*

(a).
$$
M \ge (p-1)\left(\frac{3r-1}{2}\right) - 1
$$

(b). $M = (p+1)\left(\frac{3r-1}{2}\right) - r$ if $q = p$.

Proof. (a) Since *G* is a connected graph, *q* is equal to *p* − 1. By Lemma [2.3,](#page-1-1) we have the magice constant $M = rq +$ $\frac{rq(q+1)}{2p} - \frac{p+1}{2} \ge r(p-1) + \frac{r(p-1)(p)}{2p} - \frac{p+1}{2} = (p-1)\frac{3r-1}{2} - 1.$ (b) Since $q = p$, it follows from Lemma [2.3](#page-1-1) that $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2} = rp + \frac{rp(p+1)}{2p} - \frac{p+1}{2} = (p+1)\frac{3r-1}{2} - r$.

Remark 1. In Theorem [2.5\(](#page-1-3)b), we obtained a lower bound for *M*, where *M* is the magic constant. In the following example, we prove that the lower bound sharp when $k = 2$. Consider the V_2 -SVMGL of the graph C_5 as given below.

Figure 2: V_2 -SVMGL of C_5

The graph C_5 is E_2 -regular and the regularity is 4. Also the magic constant *M* is equal to 29.

Lemma 2.6. *For an integer* $k \geq 2$ *, no tree is* E_k *-regular and Vk-SVMG.*

Proof. Suppose diam(*G*) = $d(> 3)$ for a tree *G*. Let *P* = $a_0a_1 \ldots a_{d-1}a_d$ be a path of length *d*. In this case, the edges *a*₀*a*₁ and *a*_{*d*−1}*a*^{*d*} must be pendent. For *k* = *d*, we must have $E_k(a_0) = E_k(a_d)$ and so *G* must not be V_k -SVMG. On the other hand, for $k \le d - 1$, we must have $E_k(a_1a_2)$ is strictly greater than $E_k(a_0a_1)$ and so the tree G is not E_k -regular. Hence, $diam(G)$ must be less than or equal to 2. If $diam(G) = 2$, then *G* is a star. Thus *G* is not *Vk*-SVMG(by Corollary [2.2\)](#page-1-4). \Box

Theorem 2.7. Let $G(p,q)$ be a graph and g be an one*one onto function from the edge set* $E(G)$ *onto the q successive integers* $\{p+1, p+2, \ldots, p+q\}$ *. Then the function g is extendeble as a Vk-SVMGL of G if and only if the set* ${w_k(u)}/{u \in V(G)}$ *is a set of p successive integers.*

Proof. Suppose $\{w_k(u)/u \in V(G)\}$ is a set of *p* successive integers. Take *t* as the least integer in the set $\{w_k(u) / u \in$ *V*(*G*)}. Now define a function *f* from *V*(*G*) ∪ *E*(*G*) onto $\{1,2,\ldots,p+q\}$ defined by $f(e) = g(e)$ for $e \in E(G)$ and $f(u) = w_k(u) - t + 1$ for $u \in V(G)$. In this case, the set of edge labelings $f(E(G))$ is equal to $\{p+1, p+2,..., p+q\}$ and the set of vertex labelings $f(V(G))$ is equal to $\{1,2,\ldots,p\}$ (since $\{w_k(x) - t : x \in V(G)\}\)$ contain successive integers). Thus *f* is *V_k*-SVMGL and the magic constant $M = t - 1$.

On the other hand, suppose g is extendeble as a V_k -SVMGL of *G*, say *f*. Let *M* be the magic constant. Note that $w_k(u)$ – $f(u) = M$ for each vertex $u \in V(G)$. Thus $w_k(u) = M + f(u)$ and so $\{w_k(u)/u \in V(G)\}\)$ must be equal to $\{M+1, M+\}$ $2, \ldots, M + p$, which is a set of *p* successive integers. \Box

3. *V*2**-SVMGL of cycles and prisms**

This section provides some collection of graphs which are *V*₂-SVMG. For any vertex $u \in V(C_3)$, we have $E_2(u) = E(G)$. Thus by Lemma [2.1,](#page-1-5) the cycle C_3 is not V_2 -SVMG.

Lemma 3.1. *[\[11\]](#page-4-6) For any integers a and b, we have* $gcd(a,b) = gcd(b,a) = gcd(\pm a, \pm b) = gcd(a,b-a) =$ $gcd(a, b + a)$.

Theorem 3.2. Let $s(>5)$ be an integer. Then the cycle C_s *admits V*2*-SVMGL if and only if s is an odd integer.*

Proof. Assume that C_s is V_2 -SVMG and let f be a V_2 -SVMGL of C_s . Note that $|E_2(e)| = r = 4$ for any edge $e \in$ *E*(C_s). Thus by letting $r = 4$, $p = q = s$ and $k = 2$ in Lemma [2.3,](#page-1-1) we can have $M = \frac{11s+3}{2}$. Thus *s* must be odd(since *M* is an integer).

Conversely, suppose *s* is odd. Let $V(C_s) = \{v_i/1 \le i \le s\}$ and $E(C_s) = \{v_i v_{i \oplus s} \mid 1 \le i \le s\}$. Here the operation \oplus_s denotes addition modulo *s*.

Case A: When $s = 4t + 1$ and $t \ge 1$.

Define $f : V(C_s) \cup E(C_s) \rightarrow \{1, 2, 3, \ldots, 2s\}$ as given below: $f(v_i) = s + 4 - i$ when $4 \le i \le s$ and $f(v_i) = 4 - i$ when 1 ≤ *i* ≤ 3; $f(v_iv_{i\oplus s}1) = [(i-1)t \oplus s] + s$, where $(i-1)t \oplus s]$ is the positive residue when $(i-1)t + 1$ divides *s*.

Here we are going to prove that $f(E(C_s)) = \{s+1, s+2, s+1\}$ 3,...,2*s*}. Take $a = l$ and $b = s$ in Lemma [3.1,](#page-2-1) then we get $gcd(t, s) = gcd(t, 4t + 1) = gcd(t, 3t + 1) = gcd(t, 2t +$ $1) = \gcd(t, t+1) = \gcd(t, 1) = 1$. It means that *t* is a generator of the cyclic group (Z_s, \oplus_s) and so $f(E(C_s)) = \{s+1, s+1\}$ 2,...,2*s*}.

Claim 1: $w_2(v_i) = 26t + 12 - i$ for integer *i* with $4 ≤ i ≤ s$. **Case i:** If $i = 4x$ for some integer $1 \le x \le t$. Now $w_2(v_i) =$ $f(v_{i-2}v_{i-1}) + f(v_{i-1}v_i) + f(v_iv_{i+1}) + f(v_{i+1}v_{i+2}).$ Since $f(v_{i-2}v_{i-1}) = [(i-3)\frac{s-1}{4} \oplus s 1] + s = [sx - x - \frac{3s}{4} + \frac{3}{4} \oplus s]$ 1 | + *s* = $[-x - \frac{3s}{4} + \frac{3}{4} \oplus s \ 1] + s = [-x - 3t \oplus s \ 1] + s$, by the definition of *f*, we have $w_2(v_i) = [-x - 3t \oplus_s 1] + [-x - 2t \oplus_s 1]$

1] + $[-x - t \oplus_s 1]$ + $[-x \oplus_s 1]$ + 4*s*.

Since $1 \le x \le t$, the first four terms of above equation are not positive. Thus we have $w_2(v_i) = 4s + [s - x - 3t + 1] + [s$ *x*−2*t* + 1] + [*s*−*x*−*t* + 1] + [*s*−*x* + 1]. Take *s* = 4*t* + 1. Then we get $w_2(v_i) = 26t + 12 - i$.

Case ii: Suppose $i = 4x + 1$ and $1 \le x \le t$.

Since $f(v_{i-2}v_{i-1}) = [-x - 2t \oplus_s 1] + s$, we have $w_2(v_i) =$ $[-x-2t\oplus_s 1]+[-x-t\oplus_s 1]+[-x\oplus_s 1]+[-x+t\oplus_s 1]+4s.$ Since $1 \le x \le t$, the first three terms are not positive, we have $w_2(v_i) = [s - x - 2t + 1] + [s - x - t + 1] + [s - x + 1] + [-x +$ $|t+1|+4s = 26t+12-i$. In similar way, we can see that $w_2(v_i) = 26t + 12 - i$ when $i = 4x + 2$ and $i = 4x + 3$. **Claim 2:** $w_2(v_i) = (2t+1)11 - i$ for integers *i* with $1 \le i \le 3$. Consider *v*₁. The weight *w*₂(*v*₁)= $f(v_{s-1}v_s) + f(v_s v_1) + f(v_1 v_2)$ $+ f(v_2v_3)$. Since $f(v_{s-1}v_s) = [(s-2)\frac{(s-1)}{4} \oplus_s 1)] + s = [(4t-1)\frac{1}{4} \oplus_s 1]$ 1) $\frac{(s-1)}{4}$ ⊕_{*s*} 1] + *s* = [−2*t* ⊕_{*s*} 1] + *s*, we have $w_2(v_1) = [-2t \oplus s]$ $1\vert +[-t \oplus_s 1] +1+[t \oplus_s 1] +4s$. Here, the first two terms are negative or zero. Thus $w_2(v_1) = [s - 2t + 1] + [s - t + 1] + 1 +$ $[t \oplus_s 1] + 4s = (2t + 1)11 - 1$. In similar way, we can prove that $w_2(v_2) = (2t+1)11-2$ and $w_2(v_3) = (2t+1)11-3$. Note that $t = \frac{s-1}{4}$. Then by Claim 1, $w_2(v_i) - f(v_i) = 26t +$ 12 − *i* − (*s* + 4 − *i*) = $\frac{11s+3}{2}$ = *M* for 4 ≤ *i* ≤ *s*. Also from Claim 2, we have $w_2(v_i) - f(v_i) = 11(2t + 1) - i - (4 - i) =$ $\frac{11s+3}{2}$ = *M* for *i* = 1, 2, 3.

Case B: If $s = 4t + 3$ and $t \ge 1$.

Define $f : V(C_s) \cup E(C_s) \rightarrow \{1, 2, ..., 2s\}$ as follows:

 $f(v_i) = i + 1$ when $1 \le i \le s - 1$ and $f(v_s) = 1$; $f(v_i v_{i \oplus s}) = 1$ $[(i-1)(t+1) ⊕_s 1] + s$, where $[(i-1)(t+1) ⊕_s 1] + s$ is the positive residue $(i-1)(t+1)+1$ divides *s*. From Lemma [3.1,](#page-2-1) $gcd(t+1, s) = gcd(t+1, 4t+3) = gcd(t+1, 3t+2) = gcd(t+1)$ $1, 2t + 1$ = gcd($t + 1, t$) = gcd($t, t + 1$) = gcd($t, 1$) = 1. Hence *t* + 1 is a generator for the cyclic group (Z_s, \oplus_S) and hence $f(E(C_s)) = \{s+1, s+2, \ldots, 2s\}$. As proved in Case A, we can prove that the above labeling is a V_2 -SVMGL with magic constant $M = \frac{11s+3}{2}$. \Box

Theorem 3.3. Let $s(\geq 5)$ is an integer. The graph $G = \overline{C_s}$, *the complement of C^s , is V*2*-SVMG and the magic constant is given by* $\frac{s^4 - 2s^3 - s^2 - 22s - 8}{8}$.

Proof. Define $f: V(\overline{C_s}) \cup E(\overline{C_s}) \rightarrow \{1, 2, ..., \frac{s^2 - s}{2}\}$ as given below: First the *s* edges $\{a_1a_3, a_2a_4, \ldots, a_na_2\}$ are labeled by *f*(*a*_{*i*⊕*s*−1,*a*^{*i*⊕1}) = *s* + *i* for 1 ≤ *i* ≤ *s*.</sub>}

The remaining $\frac{s^2-3s}{2} - s$ edges are randomly labeled onto $\{2s+1, 2s+2, \ldots, \frac{s^2-s}{2}\}\.$ Then we label The vertices by $f(a_i) = s - (i-1)$. Remark that for each vertex a_i , the only edge with label $s + i$, is not in $E_2(a_i)$. Thus for each a_i with $1 \leq i \leq s$, we have $w_2(a_i) - f(a_i) = \sum_i$ *f*(*e*) − (*s* + *i*) − $e ∈ E(\overline{C_s})$ $f(a_i) = \frac{s^4 - 2s^3 - s^2 - 6s}{8} - (s+i) - [s - (i-1)] = \frac{s^4 - 2s^3 - s^2 - 22s - 8}{8}.$ \Box

Theorem 3.4. *Let* $s(\geq 3)$ *be an integer. Then the prism graph D^s admits V*2*-SVMGL if and only if s is an even integer.*

Proof. Assume that *D^s* admits *V*2-SVMGL, say *f* . Let *M* be the corresponding magic constant. Note that $|E_2(e)| = r = 6$ for any edge $e \in E(D_s)$. By letting $k = 2$, $r = 6$, $q = 3s$ and $p = 2s$ in Lemma [2.3,](#page-1-1) we can have $M = \frac{61s+8}{2}$. Then *s* must be an even integer(since *M* is an integer).

Conversely suppose *s* is an even integer. Let $V(D_s) = \{a_i, b_i :$ $1 \leq i \leq s$ and $E(D_s) = \{a_i b_i, a_i a_{i \oplus s} 1, b_i b_{i \oplus s} 1 / 1 \leq i \leq s\}.$ Define $f : V(D_s) \cup E(D_s) \rightarrow \{1, 2, ..., 5s\}$ as follows: $f(a_i) = \frac{i}{2} - 1$ if $i \ge 4$ and *i* is even; The range is given by $\{1, 2, \ldots, \frac{s}{2} - 1\},\$ $f(a_2) = \frac{s}{2}$; { $\frac{s}{2}$ }, $f(a_i) = \frac{s}{2} + \frac{i+1}{2}$ if *i* is odd; $\{\frac{s}{2} + 1, \frac{s}{2} + 2, ..., s\},\$ $f(b_2) = s + 1$; { $s + 1$ }, $f(b_i) = s + \frac{s}{2} + 2 - \frac{i}{2}$ if $i \ge 4$ and *i* is even; $\{s+2, \ldots, s+\frac{s}{2}\},$ $f(b_i) = 2s - \frac{i-1}{2}$ if *i* is odd; $\{s + \frac{s}{2} + 1, s + \frac{s}{2} + 2, \ldots, 2s\},$ $f(a_i b_i) = 2s + \frac{i+1}{2}$ if *i* is odd; $\{2s + 1, 2s + 2, ..., 2s + \frac{s}{2}\},\$ $f(a_i b_i) = 2s + \frac{s}{2} + \frac{i}{2}$ if *i* is even; $\{2s + \frac{s}{2} + 1, 2s + \frac{s}{2} + 2, \dots, 3s\},\$ $f(a_i a_{i \oplus s}1) = 3s + \frac{s}{2} - \frac{i-1}{2}$ if *i* is odd; {3*s* + 1,3*s* + 2,...,3*s* + $\frac{s}{2}$, $f(b_i b_{i \oplus s1}) = 4s - (\frac{i}{2} - 1)$ if *i* is even; $\{3s + \frac{s}{2} + 1, 3s + \frac{s}{2} + \$ 2,...,4*s*}, $f(a_i a_{i \oplus s}1) = 4s + \frac{i}{2}$ if *i* is even; $\{4s + 1, 4s + 2, ..., 4s + \frac{s}{2}\},\$ $f(b_i b_{i \oplus s1}) = 5s - \frac{i-1}{2}$ if *i* is odd; $\{4s + \frac{s}{2} + 1, 4s + \frac{s}{2} + 2, ..., 5s\}.$ It is easily seen that f is a V_2 -SVMGL with the magic constant $M = \frac{61s+8}{2}$.

Let Γ be a group and *e* be the identity element of Γ. Let *X* be a generating set of Γ such that $e \notin X$ and $X = X^{-1}$ ${x^{-1}}/x \in X$. A Cayley graph $G = Cay(\Gamma, X)$ is a graph with $V(G) = \Gamma$ and $E(G) = \{(x, xa) / x \in V(G), a \in X\}$. Since *X* is a generating set of Γ , $Cay(\Gamma,X)$ is a connected regular graph of degree |*X*|. When $\Gamma = Z_n$, the corresponding Cayley graph is a circulant graph, denoted by $Cir(n,A)$.

Lemma [2.3](#page-1-1) give the magic constant for E_k -regular graphs which are V_k -SVM. For $A = \{1, 2, s - 1, s - 2\}$, the corresponding circulant graph $Cir(s, A)$ is not E_2 -regular. In the following result, we obtain the magic constant for this family of graphs.

Theorem 3.5. *For an integer* $s > 7$. $G = Cir(s, \{1, 2, s (1, s-2)$ *is V*₂-SVMG with the magic constant $M = 26s + 6$.

Proof. Let $V(G) = \{a_1, a_2, ..., a_s\}$ and *E*(*G*) = { $a_i a_{i \oplus s1}, a_i a_{i \oplus s2} : 1 \le i \le s$ }. Define $f : V(G) \cup$ $E(G) \rightarrow \{1, 2, \ldots, 3s\}$ as follows: *f*(*a*_{*i*}) = *s* + 5 − *i* for 5 ≤ *i* ≤ *s*; *f*(*a*_{*i*}) = 5 − *i* for 1 ≤ *i* ≤ 4; $f(a_i a_{i \oplus s_1}) = s + i$ for $1 \le i \le s$ and $f(a_i a_{i \oplus s_2}) = 3s + 1 - i$ for $1 \leq i \leq s$. Let $v \in V(G)$. If $v = a_i$ for *i* with $5 \le i \le s$. Then $w_2(a_i) - f(a_i) = f(a_{i \oplus_s s - 3} a_{i \oplus_s s - 2}) + f(a_{i \oplus_s s - 2} a_{i \oplus_s s - 1})$ $+f(a_{i\oplus_{s} s-1} a_i)+f(a_i a_{i\oplus_{s} 1})+f(a_{i\oplus_{s} 1} a_{i\oplus_{s} 2})+f(a_{i\oplus_{s} 2} a_{i\oplus_{s} 3})+$ $f(a_{i\oplus_{s} s-4} a_{i\oplus_{s} s-2}) + f(a_{i\oplus_{s} s-3} a_{i\oplus_{s} s-1}) + f(a_{i\oplus_{s} s-2} a_{i}) +$ $f(a_{i\oplus_{s} s-1} a_{i\oplus_{s} 1})+f(a_{i} a_{i\oplus_{s} 2})+f(a_{i\oplus_{s} 1} a_{i\oplus_{s} 3})+f(a_{i\oplus_{s} 2} a_{i\oplus_{s} 4})$ $f(a_i)$ = [*s*+*i*⊕*ss*−3]+[*s*+*i*⊕*ss*−2]+[*s*+*i*⊕*ss*−1]+[*s*+*i*]+[*s*+ *i*+1]+[*s*+*i*+2]+[3*s*+1−(*i*⊕*^s s*−4)]+[3*s*+1−(*i*⊕*^s s*− 3] + $[3s + 1 - (i \oplus_s s - 2)]$ +[3*s*+1−(*i*⊕*^s s*−1)]+[3*s*+1−*i*]+[3*s*+1−(*i*+1)]+[3*s*+ 1−(*i*+2)]−[*s*+5−*i*] = [*s*+*i*−3]+[*s*+*i*−2]+[*s*+*i*−1]+ [*s*+*i*] +[*s*+*i*+1] +[*s*+*i*+2] +[3*s*+1−(*i*−4)] +[3*s*+1− $(i-3)$] + [3*s* + 1 − (*i* − 2)] + [3*s* + 1 − (*i* − 1)] + [3*s* + 1 − *i*] + $[3s+1-(i+1)]+[3s+1-(i+2)]-[s+5-i]=26s+6=M.$ Similarly, we can prove that $f(a_i) + w_2(a_i) = 26s + 6$ for $i = 1, 2, 3, 4.$ □

References

- [1] J.A. Gallian, A Dynamic Survey of Graph Labeling, *Electron. J. Combin.*, (1997) and Edited (2017) #DS6.
- [2] S. W. Golomb, *How to Number a Graph, in Graph Theory and Computing*, R. C. Road, ed., Academic Press, New York, 23-37 (1972).
- [3] J.A. MacDougall, M. Miller and K.A. Sugeng, Super vertex-magic total labelings of graphs, *Proceedings of the 15th Australian Workshop on Combinatorial Algorithms*, (2004), 222–229.
- [4] G. Marimuthu and M. Balakrishnan, *E*-super vertex magic labeling of graphs, *Discrete Appl. Math.*, 160(2012), 1766–1774.
- [5] A. Rosa, *On Certain Valuations of the Vertices of a Graph, Theory of Graphs*, Inter. Nat. Sym. Rome, Italy, (1966).

 \Box

- [6] J. Sedlacek, On magic graphs, *Math. Slov.,* 26(1976), 329–335.
- [7] Sivagnanam Mutharasu and Duraisamy Kumar, *Ek*-Super vertex magic labeling of graphs, *Int. J. Math. And Appl.*, 6(1-E)(2018), 1005–1012.
- [8] Sivagnanam Mutharasu and Duraisamy Kumar, *Vk*-Super vertex magic labeling of graphs, *Malaya Journal of Matematik*, 6(4)92018), 795–799.
- [9] Sivagnanam Mutharasua and N. Mary Bernard, *V* - Super Vertex-Magic Graceful Labeling in Graphs, *International Journal of Control Theory and Applications*, 10 (36)(2017), 307–315.
- [10] V. Swaminathan and P. Jeyanthi, Super vertex - magic labeling, *Indian J. Pure Appl. Math.*, 34(6)(2003), 935– 939.
- [11] W. Stein, *Elementary Number Theory*, 2011.
- [12] B.M. Stewart, Magic graphs, *Can. J. Math.,* 18(1966), 1031–1059.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

