

https://doi.org/10.26637/MJM0803/0037

V_k-Super vertex magic graceful labeling of graphs

Sivagnanam Mutharasu¹ Mary Bernard ^{2*} and Duraisamy Kumar³

Abstract

Let *G* be a finite and simple (p,q) graph. An one-one onto function $f: V(G) \cup E(G) \rightarrow \{1,2,3,\ldots,p+q\}$ is called *V*-super vertex magic graceful labeling if $f(V(G)) = \{1,2,3,\ldots,p\}$ and for any vertex $v \in V(G)$, $\sum_{u \in N(v)} f(uv) - f(v) = M$,

where *M* is a whole number. For an integer $k \ge 1$, let $E_k(v) = \{e \in E(G) : \text{the distance between } e \text{ from } v \text{ is less than or equal to } k\}$. For $v \in V(G)$, we define $w_k(v) = \sum_{e \in E_k(v)} f(e)$. A V_k -super vertex magic graceful labeling (V_k -SVMGL)

is a one-one function f from $V(G) \cup E(G)$ onto the set $\{1, 2, 3, ..., p+q\}$ such that $f(V(G)) = \{1, 2, 3, ..., p\}$ and for any element $v \in V(G)$, we have $w_k(v) - f(v) = M$, where M is a whole number. In this paper, we study several properties of V_k -SVMGL and we identify an equivalent condition for the E_k -regular graphs which admits V_k -SVMGL. At last we identify some families of graphs which admit V_2 -SVMGL.

Keywords

V-super vertex magic graceful labeling, V_k -super vertex magic graceful labeling, E_k -regular graphs, circulant graphs.

AMS Subject Classification

05C78.

¹ Department of Mathematics, C. B. M. College, Coimbatore-641042, Tamil Nadu, India.

² Department of Mathematics, TDMNS College, T. Kallikulam-627113, Tamil Nadu, India.

³ Department of Science and Humanities, RVS Technical Campus, Coimbatore-641402, Tamil Nadu, India.

*Corresponding author: ² nmarybernard@gmail.com

Article History: Received 24 November 2019; Accepted 14 April 2020

©2020 MJM.

Contents

1	Introduction	950
2	Main Results	951
3	V ₂ -SVMGL of cycles and prisms	952
	References	953

1. Introduction

A graph labeling is a function which has domain as graph elements such as vertices and/or edges with co-domain as a set of numbers. Usually the co-domain has been taken as integers. Many of graph labelings are introduced and discussed by various authors. To know more about graph labeling, refer [1].

In 1967, Rosa [5] introduced a labeling called β -valuation. Golomb [2] called such labeling as graceful. An injection f from the vertices of G to $\{0, 1, 2, ..., q\}$ is called a graceful labeling of G if when we assign each edge uv the label |f(u) - f(v)|, the resulting edge labels are distinct.

In 1966 and 1976, Stewart [12] and Sedlacek [6] introduced magic type labelings. Magic labeling is a one to one map on to the appropriate set of consecutive integers starting from 1, with some kind of 'constant sum' property.

A vertex magic total labeling (VMTL) of *G* is a one-one function *f* from $V(G) \cup E(G)$ onto the set $\{1, 2, 3, ..., p+q\}$ such that for any vertex $v \in V(G)$, the sum $f(v) + \sum_{u \in N(v)} f(uv) = M$, where *M* is a whole number. The whole number *M* is said

M, where M is a whole number. The whole number M is said to be the magic constant [1].

In 2004, the concept 'super vertex-magic total labeling (SVMTL)' in simple graphs has been defined by MacDougall et al.[3]. They name the VMTL as super if $f(V(G)) = \{1,2,3,\ldots,p\}$. For their labeling, the vertices receive the least integers.

In 2003, Swaminathan and Jeyanthi [10] introduced another labeling called super vertex magic labeling (SVML). They call a VMTL is super if $f(E(G)) = \{1, 2, ..., q\}$. Here, the smallest labels are assigned to the edges. To avoid confusion, Marimuthu and Balakrishnan [4] called a VMTL is E-super if $f(E(G)) = \{1, 2, ..., q\}$. A graph *G* is called *E*super vertex magic (*E*-SVM) if it admits an *E*-super vertex magic labeling (*E*-SVML).

An E_k -SVML of G is an one-one function f from $V(G) \cup$

E(G) onto the set $\{1, 2, 3, \dots, p+q\}$ such that $f(E(G)) = \{1, 2, 3, \dots, q\}$ and for any vertex $v \in V(G)$, the sum $f(v) + w_k(v) = M$, where *M* is a whole number.

In 2018, Sivagnanam Mutharasu and Duraisamy Kumar [8] introduced V_k -super vertex magic labeling(V_K -SVML) in graphs. A V_k -SVML of G is a one-one function f from $V(G) \cup$ E(G) onto the set $\{1, 2, 3, ..., p + q\}$ such that f(V(G)) = $\{1, 2, 3, ..., p\}$ and for any vertex $v \in V(G)$, the sum f(v) + $w_k(v) = M$, where M is a whole number.

In this paper, by using the natural meaning of both the concepts 'Graceful' and 'V-SVML', a new labeling is introduced in the name ' V_k -super vertex magic graceful labeling'. Let k be a whole number and $1 \le k \le \text{diam}(G)$. For each edge $e \in E(G)$, let $E_k(e) = \{v \in V(G) : \text{the distance} between <math>e$ from v is less than or equal to $k\}$. If $|E_k(e)| = r$ for some whole number $r \ge 1$ and for each edge $e \in E(G)$, then we call G as E_k -regular. All the connected graphs with at least one edge, are E_1 -regular. Consider the following graph G(V,E), with $V(G) = \{a_1,a_2,a_3,a_4,a_5,a_6,a_7\}$ and $E(G) = \{b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8\}$.

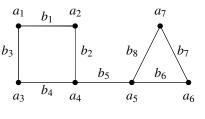


Figure 1. G

The following table give the values of $E_k(a)$ and $E_k(b)$ for k = 2.

P ()	P (1)
$E_2(a)$	$E_2(b)$
$E_2(a_1) = \{b_1, b_2, b_3, b_4\}$	$E_2(b_1) = \{a_1, a_2, a_3, a_4\}$
$E_2(a_2) = \{b_1, b_2, b_3, b_4, b_5\}$	$E_2(b_2) = \{a_1, a_2, a_3, a_4, a_5\}$
$E_2(a_3) = \{b_1, b_2, b_3, b_4, b_5\}$	$E_2(b_3) = \{a_1, a_2, a_3, a_4\}$
$E_2(a_4) = \{b_1, b_2, b_3, b_4, b_5, b_6, b_8\}$	$E_2(b_4) = \{a_1, a_2, a_3, a_4, a_5\}$
$E_2(a_5) = \{b_2, b_4, b_5, b_6, b_7, b_8\}$	$E_2(b_5) = \{a_2, a_3, a_4, a_5, a_6, a_7\}$
$E_2(a_6) = \{b_5, b_6, b_7, b_8\}$	$E_2(b_6) = \{a_4, a_5, a_6, a_7\}$
$E_2(a_7) = \{b_5, b_6, b_7, b_8\}$	$E_2(b_7) = \{a_5, a_6, a_7\},\$
	$E_2(b_8) = \{a_4, a_5, a_6, a_7\}$

A V_k -super vertex magic graceful labeling (V_k -SVMGL) is a one-one function f from $V(G) \cup E(G)$ onto the set {1,2,3, $\dots, p+q$ } such that $f(V(G)) = \{1,2,3,\dots,p\}$ and for any vertex $v \in V(G)$, the difference $w_k(v) - f(v) = M$ for some whole number M. This whole number M is said to be the magic constant of V_k -SVMGL of G.

If a graph admits a V_k -SVMGL, then we say it is a V_k super vertex magic graceful(V_k -SVMG) graph. In this paper, we study several properties of V_k -SVMGL and we identify an equivalent condition for the E_k -regular graphs which admits V_k -SVMGL. At last we identify some families of graphs which admit V_2 -SVMGL.

2. Main Results

Here, we collect some of the basic properties of V_k -SVMGL.

In a connected graph *G* with more than one vertex, if $E_k(u) = E_k(v)$ for some vertices $u, v \in V(G)$ and $u \neq v$, then the differences $w_k(u) - f(u)$ and $w_k(v) - f(v)$ are not equal for any V_k -SVMGL *f* of *G*(because the function *f* is one-one). It means that *G* is not V_k -SVMG and so the next Lemma follows.

Lemma 2.1. For a connected graph G with more than one vertex, if $E_k(u) = E_k(v)$ for two vertices $u, v \in V(G)$ and $u \neq v$, then G is not V_k -SVMG.

If *G* is V_k -SVMG, then the integer *k* must be lies between 1 and diam(*G*) (If not, then for any two vertices $u, v \in V(G)$ and $u \neq v$, we have $E_k(u) = E_k(v)$). Since diam(S_n) = 2 for the star graph S_n , we have the following result.

Corollary 2.2. For each integer $k \ge 2$, the star graph is not V_k -SVMG.

Lemma 2.3. Let G(p,q) be a connected E_k -regular graph. If G admits V_k -SVMGL, then $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2}$, where M is the magic constant and r is the regularity.

Proof. Since *G* is V_k -SVMG, there exists a V_k -SVMGL in *G*, say *f*. Then we must have f(V(G)) is equal to $\{1, 2, 3, ..., p\}$ and f(E(G)) is equal to $\{p+1, p+2, p+3, ..., p+q\}$. Also, the magic constant *M* is equal to $w_k(v) - f(v)$ for any element $v \in V(G)$. Hence, $pM = \sum_{v \in V(G)} w_k(v) - \sum_{v \in V(G)} f(v)$

$$= \sum_{v \in V(G)} \sum_{e \in V_k(v)} f(e) - \sum_{v \in V(G)} f(v)$$

= $r \sum_{e \in E(G)} f(e) - [1 + 2 + ... + p]$ (since each edge is counted
exactly r times in the sum $\sum_{v \in V(G)} \sum_{e \in V_k(v)} f(e)$)

$$= rpq + \frac{rq(q+1)}{2} - \frac{p(p+1)}{2}$$
 and so $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2}$. \Box

For $k \ge 1$, Lemma 2.3 gives the magic constant for E_k -regular graphs which are V_k -SVMG. We found the next result which is the particular case of above statement [9].

Lemma 2.4. [9] If a nontrivial graph G(p, q) is V-SVMG, then the magic number M is given by $M = 2q + \frac{q(q+1)}{p} - \frac{p+1}{2}$.

For any nontrivial graph G, we have r = 2 when k = 1. By taking k = 1 in Lemma 2.3, we can prove Lemma 2.4.

Theorem 2.5. For an E_k -regular connected graph G, we have

(a).
$$M \ge (p-1)(\frac{3r-1}{2}) - 1$$

(b). $M = (p+1)(\frac{3r-1}{2}) - r$ if $q = p$.

Proof. (a) Since *G* is a connected graph, *q* is equal to p - 1. By Lemma 2.3, we have the magice constant $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2} \ge r(p-1) + \frac{r(p-1)(p)}{2p} - \frac{p+1}{2} = (p-1)\frac{3r-1}{2} - 1$. (b) Since q = p, it follows from Lemma 2.3 that $M = rq + \frac{rq(q+1)}{2p} - \frac{p+1}{2} = rp + \frac{rp(p+1)}{2p} - \frac{p+1}{2} = (p+1)\frac{3r-1}{2} - r$. **Remark 1.** In Theorem 2.5(b), we obtained a lower bound for M, where M is the magic constant. In the following example, we prove that the lower bound sharp when k = 2. Consider the V_2 -SVMGL of the graph C_5 as given below.

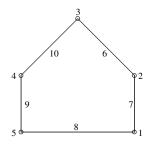


Figure 2: V2-SVMGL of C5

The graph C_5 is E_2 -regular and the regularity is 4. Also the magic constant *M* is equal to 29.

Lemma 2.6. For an integer $k \ge 2$, no tree is E_k -regular and V_k -SVMG.

Proof. Suppose diam $(G) = d \ge 3$ for a tree *G*. Let $P = a_0a_1 \dots a_{d-1}a_d$ be a path of length *d*. In this case, the edges a_0a_1 and $a_{d-1}a_d$ must be pendent. For k = d, we must have $E_k(a_0) = E_k(a_d)$ and so *G* must not be V_k -SVMG. On the other hand, for $k \le d-1$, we must have $E_k(a_1a_2)$ is strictly greater than $E_k(a_0a_1)$ and so the tree *G* is not E_k -regular. Hence, diam(G) must be less than or equal to 2. If diam(G) = 2, then *G* is a star. Thus *G* is not V_k -SVMG(by Corollary 2.2).

Theorem 2.7. Let G(p,q) be a graph and g be an oneone onto function from the edge set E(G) onto the q successive integers $\{p+1, p+2, ..., p+q\}$. Then the function g is extendeble as a V_k -SVMGL of G if and only if the set $\{w_k(u)/u \in V(G)\}$ is a set of p successive integers.

Proof. Suppose $\{w_k(u)/u \in V(G)\}$ is a set of p successive integers. Take t as the least integer in the set $\{w_k(u)/u \in V(G)\}$. Now define a function f from $V(G) \cup E(G)$ onto $\{1, 2, ..., p+q\}$ defined by f(e) = g(e) for $e \in E(G)$ and $f(u) = w_k(u) - t + 1$ for $u \in V(G)$. In this case, the set of edge labelings f(E(G)) is equal to $\{p+1, p+2, ..., p+q\}$ and the set of vertex labelings f(V(G)) is equal to $\{1, 2, ..., p\}$ (since $\{w_k(x) - t : x \in V(G)\}$ contain successive integers). Thus f is V_k -SVMGL and the magic constant M = t - 1.

On the other hand, suppose g is extendeble as a V_k -SVMGL of G, say f. Let M be the magic constant. Note that $w_k(u) - f(u) = M$ for each vertex $u \in V(G)$. Thus $w_k(u) = M + f(u)$ and so $\{w_k(u)/u \in V(G)\}$ must be equal to $\{M + 1, M + 2, ..., M + p\}$, which is a set of p successive integers.

3. V₂-SVMGL of cycles and prisms

This section provides some collection of graphs which are V_2 -SVMG. For any vertex $u \in V(C_3)$, we have $E_2(u) = E(G)$. Thus by Lemma 2.1, the cycle C_3 is not V_2 -SVMG. **Lemma 3.1.** [11] For any integers a and b, we have $gcd(a,b) = gcd(b,a) = gcd(\pm a, \pm b) = gcd(a,b-a) = gcd(a,b+a).$

Theorem 3.2. Let $s(\geq 5)$ be an integer. Then the cycle C_s admits V_2 -SVMGL if and only if s is an odd integer.

Proof. Assume that C_s is V_2 -SVMG and let f be a V_2 -SVMGL of C_s . Note that $|E_2(e)| = r = 4$ for any edge $e \in E(C_s)$. Thus by letting r = 4, p = q = s and k = 2 in Lemma 2.3, we can have $M = \frac{11s+3}{2}$. Thus s must be odd(since M is an integer).

Conversely, suppose *s* is odd. Let $V(C_s) = \{v_i/1 \le i \le s\}$ and $E(C_s) = \{v_iv_{i\oplus_s 1}/1 \le i \le s\}$. Here the operation \oplus_s denotes addition modulo *s*.

Case A: When s = 4t + 1 and $t \ge 1$.

Define $f: V(C_s) \cup E(C_s) \rightarrow \{1, 2, 3, \dots, 2s\}$ as given below: $f(v_i) = s + 4 - i$ when $4 \le i \le s$ and $f(v_i) = 4 - i$ when $1 \le i \le 3$; $f(v_i v_{i \oplus_s 1}) = [(i-1)t \oplus_s 1] + s$, where $(i-1)t \oplus_s 1$ is the positive residue when (i-1)t + 1 divides *s*.

Here we are going to prove that $f(E(C_s)) = \{s+1, s+2, s+3, ..., 2s\}$. Take $a = \ell$ and b = s in Lemma 3.1, then we get gcd(t,s) = gcd(t,4t+1) = gcd(t,3t+1) = gcd(t,2t+1) = gcd(t,t+1) = gcd(t,1) = 1. It means that *t* is a generator of the cyclic group (Z_s, \oplus_s) and so $f(E(C_s)) = \{s+1, s+2, ..., 2s\}$.

Claim 1: $w_2(v_i) = 26t + 12 - i$ for integer *i* with $4 \le i \le s$.

Case i: If i = 4x for some integer $1 \le x \le t$. Now $w_2(v_i) = f(v_{i-2}v_{i-1}) + f(v_{i-1}v_i) + f(v_iv_{i+1}) + f(v_{i+1}v_{i+2})$. Since $f(v_{i-2}v_{i-1}) = [(i-3)\frac{s-1}{4} \oplus_s 1] + s = [sx - x - \frac{3s}{4} + \frac{3}{4} \oplus_s 1] + s = [-x - \frac{3s}{4} + \frac{3}{4} \oplus_s 1] + s = [-x - 3t \oplus_s 1] + s$, by the definition of f, we have $w_2(v_i) = [-x - 3t \oplus_s 1] + [-x - 2t \oplus_s 1]$

 $1] + [-x - t \oplus_{s} 1] + [-x \oplus_{s} 1] + 4s.$

Since $1 \le x \le t$, the first four terms of above equation are not positive. Thus we have $w_2(v_i) = 4s + [s - x - 3t + 1] + [s - x - 2t + 1] + [s - x - t + 1] + [s - x + 1]$. Take s = 4t + 1. Then we get $w_2(v_i) = 26t + 12 - i$.

Case ii: Suppose i = 4x + 1 and $1 \le x \le t$.

Since $f(v_{i-2}v_{i-1}) = [-x - 2t \oplus_s 1] + s$, we have $w_2(v_i) =$ $[-x - 2t \oplus_{s} 1] + [-x - t \oplus_{s} 1] + [-x \oplus_{s} 1] + [-x \oplus_{s} 1] + [-x + t \oplus_{s} 1] + 4s.$ Since $1 \le x \le t$, the first three terms are not positive, we have $w_2(v_i) = [s - x - 2t + 1] + [s - x - t + 1] + [s - x + 1] + [-x + 1]$ t+1] + 4s = 26t + 12 - i. In similar way, we can see that $w_2(v_i) = 26t + 12 - i$ when i = 4x + 2 and i = 4x + 3. **Claim 2:** $w_2(v_i) = (2t+1)11 - i$ for integers *i* with $1 \le i \le 3$. Consider v_1 . The weight $w_2(v_1) = f(v_{s-1}v_s) + f(v_sv_1) + f(v_1v_2)$ + $f(v_2v_3)$. Since $f(v_{s-1}v_s) = [(s-2)\frac{(s-1)}{4} \oplus_s 1)] + s = [(4t - 1)\frac{(s-1)}{4} \oplus_s 1)] + [(3t - 1)\frac{(s-1)}{4} \oplus_s 1)] + [(3t - 1)\frac{(s-1)}{4} \oplus_s 1)] + [(3t - 1)\frac{(s-1)}{4} \oplus_s 1)$ $1)\frac{(s-1)}{4} \oplus_s 1] + s = [-2t \oplus_s 1] + s$, we have $w_2(v_1) = [-2t \oplus_s 1]$ 1 + $[-t \oplus_s 1]$ + 1 + $[t \oplus_s 1]$ + 4s. Here, the first two terms are negative or zero. Thus $w_2(v_1) = [s - 2t + 1] + [s - t + 1] + 1 + 1$ $[t \oplus_s 1] + 4s = (2t+1)11 - 1$. In similar way, we can prove that $w_2(v_2) = (2t+1)11 - 2$ and $w_2(v_3) = (2t+1)11 - 3$. Note that $t = \frac{s-1}{4}$. Then by Claim 1, $w_2(v_i) - f(v_i) = 26t + 1$ $12 - i - (s + 4 - i) = \frac{11s + 3}{2} = M$ for $4 \le i \le s$. Also from Claim 2, we have $w_2(v_i) - f(v_i) = 11(2t+1) - i - (4-i) =$ $\frac{11s+3}{2} = M$ for i = 1, 2, 3.

Case B: If s = 4t + 3 and $t \ge 1$. Define $f: V(C_s) \cup E(C_s) \rightarrow \{1, 2, \dots, 2s\}$ as follows: $f(v_i) = i + 1$ when $1 \le i \le s - 1$ and $f(v_s) = 1$; $f(v_i v_{i \oplus_s 1}) = [(i-1)(t+1) \oplus_s 1] + s$, where $[(i-1)(t+1) \oplus_s 1] + s$ is the positive residue (i-1)(t+1) + 1 divides s. From Lemma 3.1, gcd(t+1,s) = gcd(t+1,4t+3) = gcd(t+1,3t+2) = gcd(t+1,2t+1) = gcd(t+1,t) = gcd(t,t+1) = gcd(t,1) = 1. Hence t+1 is a generator for the cyclic group (Z_s, \oplus_s) and hence $f(E(C_s)) = \{s+1,s+2,\dots,2s\}$. As proved in Case A, we can prove that the above labeling is a V_2 -SVMGL with magic constant $M = \frac{11s+3}{2}$.

Theorem 3.3. Let $s(\geq 5)$ is an integer. The graph $G = \overline{C_s}$, the complement of C_s , is V_2 -SVMG and the magic constant is given by $\frac{s^4-2s^3-s^2-22s-8}{8}$.

Proof. Define $f: V(\overline{C_s}) \cup E(\overline{C_s}) \to \{1, 2, \dots, \frac{s^2-s}{2}\}$ as given below: First the *s* edges $\{a_1a_3, a_2a_4, \dots, a_na_2\}$ are labeled by $f(a_{i\oplus s-1}, a_{i\oplus 1}) = s+i$ for $1 \le i \le s$.

The remaining $\frac{s^2-3s}{2} - s$ edges are randomly labeled onto $\{2s+1, 2s+2, \dots, \frac{s^2-s}{2}\}$. Then we label The vertices by $f(a_i) = s - (i-1)$. Remark that for each vertex a_i , the only edge with label s+i, is not in $E_2(a_i)$. Thus for each a_i with $1 \le i \le s$, we have $w_2(a_i) - f(a_i) = \sum_{e \in E(\overline{C_s})} f(e) - (s+i) - f(a_i) = \frac{s^4-2s^3-s^2-6s}{8} - (s+i) - [s-(i-1)] = \frac{s^4-2s^3-s^2-22s-8}{8}$.

Theorem 3.4. Let $s(\ge 3)$ be an integer. Then the prism graph D_s admits V_2 -SVMGL if and only if s is an even integer.

Proof. Assume that D_s admits V_2 -SVMGL, say f. Let M be the corresponding magic constant. Note that $|E_2(e)| = r = 6$ for any edge $e \in E(D_s)$. By letting k = 2, r = 6, q = 3s and p = 2s in Lemma 2.3, we can have $M = \frac{61s+8}{2}$. Then s must be an even integer(since M is an integer).

Conversely suppose *s* is an even integer. Let $V(D_s) = \{a_i, b_i :$ $1 \le i \le s$ and $E(D_s) = \{a_i b_i, a_i a_{i \oplus s1}, b_i b_{i \oplus s1} / 1 \le i \le s\}.$ Define $f: V(D_s) \cup E(D_s) \rightarrow \{1, 2, \dots, 5s\}$ as follows: $f(a_i) = \frac{i}{2} - 1$ if $i \ge 4$ and *i* is even; The range is given by $\{1, 2, \dots, \frac{s}{2} - 1\},\ f(a_2) = \frac{s}{2}; \{\frac{s}{2}\},\$ $f(a_i) = \frac{\tilde{s}}{2} + \frac{\tilde{i}+1}{2}$ if *i* is odd; $\{\frac{s}{2}+1, \frac{s}{2}+2, \dots, s\},\$ $f(b_2) = s + 1; \{s + 1\},\$ $f(b_i) = s + \frac{s}{2} + 2 - \frac{i}{2}$ if $i \ge 4$ and i is even; $\{s + 2, \dots, s + \frac{s}{2}\}$, $f(b_i) = 2s - \frac{i-1}{2}$ if *i* is odd; $\{s + \frac{s}{2} + 1, s + \frac{s}{2} + 2, \dots, 2s\},\$ $f(a_ib_i) = 2s + \frac{i+1}{2}$ if *i* is odd; $\{2s+1, 2s+2, \dots, 2s+\frac{s}{2}\},\$ $f(a_ib_i) = 2s + \frac{s}{2} + \frac{i}{2}$ if *i* is even; $\{2s + \frac{s}{2} + 1, 2s + \frac{s}{2} + 2, \dots, 3s\},\$ $f(a_i a_{i \oplus_s 1}) = 3\bar{s} + \frac{\bar{s}}{2} - \frac{i-1}{2}$ if *i* is odd; $\{3s+1, 3s+2, \dots, 3s+1\}$ $\frac{s}{2}$ $f(b_i b_{i \oplus s^1}) = 4s - (\frac{i}{2} - 1)$ if *i* is even; $\{3s + \frac{s}{2} + 1, 3s + \frac{s}{2} + 1\}$ $2, \ldots, 4s\},\$ $f(a_i a_{i \oplus_s 1}) = 4s + \frac{i}{2}$ if *i* is even; $\{4s + 1, 4s + 2, \dots, 4s + \frac{s}{2}\},\$ $f(b_i b_{i \oplus s^1}) = 5s - \frac{i-1}{2}$ if *i* is odd; $\{4s + \frac{s}{2} + 1, 4s + \frac{s}{2} + 2, \dots, 5s\}$. It is easily seen that f is a V_2 -SVMGL with the magic constant $M = \frac{61s+8}{2}.$

Let Γ be a group and e be the identity element of Γ . Let X be a generating set of Γ such that $e \notin X$ and $X = X^{-1} = \{x^{-1}/x \in X\}$. A Cayley graph $G = Cay(\Gamma, X)$ is a graph with $V(G) = \Gamma$ and $E(G) = \{(x, xa)/x \in V(G), a \in X\}$. Since X is a generating set of Γ , $Cay(\Gamma, X)$ is a connected regular graph of degree |X|. When $\Gamma = Z_n$, the corresponding Cayley graph is a circulant graph, denoted by Cir(n, A).

Lemma 2.3 give the magic constant for E_k -regular graphs which are V_k -SVM. For $A = \{1, 2, s - 1, s - 2\}$, the corresponding circulant graph Cir(s,A) is not E_2 -regular. In the following result, we obtain the magic constant for this family of graphs.

Theorem 3.5. For an integer $s \ge 7$. $G = Cir(s, \{1, 2, s - 1, s - 2\})$ is V_2 -SVMG with the magic constant M = 26s + 6.

Proof. Let $V(G) = \{a_1, a_2, ..., a_s\}$ and $E(G) = \{a_i a_{i \oplus_s 1}, a_i a_{i \oplus_s 2} : 1 \le i \le s\}.$ Define $f: V(G) \cup$ $E(G) \rightarrow \{1, 2, \dots, 3s\}$ as follows: $f(a_i) = s + 5 - i$ for $5 \le i \le s$; $f(a_i) = 5 - i$ for $1 \le i \le 4$; $f(a_i a_{i \oplus_s 1}) = s + i$ for $1 \le i \le s$ and $f(a_i a_{i \oplus_s 2}) = 3s + 1 - i$ for $1 \leq i \leq s$. Let $v \in V(G)$. If $v = a_i$ for *i* with $5 \le i \le s$. Then $w_2(a_i) - f(a_i) = f(a_{i \oplus_s s - 3} a_{i \oplus_s s - 2}) + f(a_{i \oplus_s s - 2} a_{i \oplus_s s - 1})$ $+ f(a_{i\oplus_s s-1}a_i) + f(a_i a_{i\oplus_s 1}) + f(a_{i\oplus_s 1}a_{i\oplus_s 2}) + f(a_{i\oplus_s 2}a_{i\oplus_s 3}) + f(a_{i\oplus_s 2}a_{i\oplus_s 3}) + f(a_{i\oplus_s 2}a_{i\oplus_s 3}) + f(a_{i\oplus_s 3}a_{i\oplus_s 3}a_{i\oplus_s 3}) + f(a_{i\oplus_s 3}a_{i\oplus_s 3}a_{$ $f(a_{i\oplus_{s}s-4}a_{i\oplus_{s}s-2}) + f(a_{i\oplus_{s}s-3}a_{i\oplus_{s}s-1}) + f(a_{i\oplus_{s}s-2}a_{i}) + f(a_{i\oplus_{s}s-2}a_{i}) + f(a_{i\oplus_{s}s-2}a_{i}) + f(a_{i\oplus_{s}s-3}a_{i\oplus_{s}s-1}) + f(a_{i\oplus_{s}s-1}a_{i\oplus_{s}s-1}) + f(a_{i\oplus_{s}s-1}a_{i\oplus$ $f(a_{i\oplus_{s}s-1}a_{i\oplus_{s}1})+f(a_{i}a_{i\oplus_{s}2})+f(a_{i\oplus_{s}1}a_{i\oplus_{s}3})+f(a_{i\oplus_{s}2}a_{i\oplus_{s}4})$ $f(a_i)$ $= [s + i \oplus_s s - 3] + [s + i \oplus_s s - 2] + [s + i \oplus_s s - 1] + [s + i] + [s$ $i+1]+[s+i+2]+[3s+1-(i\oplus_s s-4)]+[3s+1-(i\oplus_s s-4)]+[3s+1+(i\oplus_s s-2)]+[3s+1+(i\oplus_s s-2$ (3)] + [3s + 1 - $(i \oplus_s s - 2)]$ $+[3s+1-(i\oplus_{s}s-1)]+[3s+1-i]+[3s+1-(i+1)]+[3s+1)]+[3s+1-(i+1)]+[3s+1)]+[3s+1-(i+1)]+[3s+1)$ 1-(i+2)]-[s+5-i]=[s+i-3]+[s+i-2]+[s+i-1]+[s+i] + [s+i+1] + [s+i+2] + [3s+1-(i-4)] + [3s+1-(i-3)] + [3s+1-(i-2)] + [3s+1-(i-1)] + [3s+1-i] + [3s+1-(i+1)]+[3s+1-(i+2)]-[s+5-i]=26s+6=M.Similarly, we can prove that $f(a_i) + w_2(a_i) = 26s + 6$ for i = 1, 2, 3, 4.

References

- ^[1] J.A. Gallian, A Dynamic Survey of Graph Labeling, *Electron. J. Combin.*, (1997) and Edited (2017) #DS6.
- [2] S. W. Golomb, *How to Number a Graph, in Graph Theory and Computing*, R. C. Road, ed., Academic Press, New York, 23-37 (1972).
- [3] J.A. MacDougall, M. Miller and K.A. Sugeng, Super vertex-magic total labelings of graphs, *Proceedings of the* 15th Australian Workshop on Combinatorial Algorithms, (2004), 222–229.
- [4] G. Marimuthu and M. Balakrishnan, E-super vertex magic labeling of graphs, *Discrete Appl. Math.*, 160(2012), 1766–1774.
- [5] A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs, Inter. Nat. Sym. Rome, Italy, (1966).

- [6] J. Sedlacek, On magic graphs, *Math. Slov.*, 26(1976), 329–335.
- [7] Sivagnanam Mutharasu and Duraisamy Kumar, *E_k*-Super vertex magic labeling of graphs, *Int. J. Math. And Appl.*, 6(1-E)(2018), 1005–1012.
- ^[8] Sivagnanam Mutharasu and Duraisamy Kumar, V_k -Super vertex magic labeling of graphs, *Malaya Journal of Matematik*, 6(4)92018), 795–799.
- [9] Sivagnanam Mutharasua and N. Mary Bernard, V -Super Vertex-Magic Graceful Labeling in Graphs, *International Journal of Control Theory and Applications*, 10 (36)(2017), 307–315.
- [10] V. Swaminathan and P. Jeyanthi, Super vertex magic labeling, *Indian J. Pure Appl. Math.*, 34(6)(2003), 935– 939.
- ^[11] W. Stein, *Elementary Number Theory*, 2011.
- ^[12] B.M. Stewart, Magic graphs, *Can. J. Math.*, 18(1966), 1031–1059.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

