

https://doi.org/10.26637/MJM0803/0038

\mathscr{Z} - generalized homeomorphism via double fuzzy topological spaces

Shiventhira devi Sathaananthan¹ and S. Tamilselvan^{2*}

Abstract

We introduce and study $df \mathscr{Z}$ -generalized homeomorphisms and pre $df \mathscr{Z}$ -generalized homeomorphisms in double fuzzy topological spaces. Additionally, a portion of their principal properties are contemplated.

Keywords

df homeomorphisms, $df \mathscr{Z}$ -generalized homeomorphisms and pre $df \mathscr{Z}$ -generalized homeomorphisms.

AMS Subject Classification 54A40, 45D05, 03E72.

¹Department of Mathematics, Eastern University, Vantharumoolai, Chenkalady, Sri Lanka. ²Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608002,India. ***Corresponding author**: ¹ shiventhira@yahoo.com; ^{2,*}tamil_au@yahoo.com;

Article History: Received 19 March 2020; Accepted 09 May 2020

©2020 MJM.

Contents

- 1 Introduction and Preliminaries......955

1. Introduction and Preliminaries

In 1986, Atanassov [1] began "Intuitionistic fuzzy sets" and Coker [2] in 1997, started Intuitionistic fuzzy topological space. The term "double" rather than "intuitionistic" instituted by Garcia and Rodabaugh [5] in 2005. In the past two decades numerous experts achieving more applications on double fuzzy topological spaces.

From 2011, \mathscr{Z} -open sets and maps were presented in topological spaces by El-Maghrabi and Mubarki [3].

X denotes a non-empty set, $I_1 = [0,1)$, $I_0 = (0,1]$, I = [0,1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $\iota \in I_0$ & $\kappa \in I_1$ and always $1 \ge \iota + \kappa$. I^X is a family of all fss on X. In 2002, double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (ι, κ) -fuzzy open (resp. (ι, κ) -fuzzy closed) (briefly (ι, κ) -fo (resp. (ι, κ) -fc)) set were given by Samanta and Mondal [11].

All other undefined notions are from [11, 15, 16, 18] and cited therein.

2. Double fuzzy *2*- generalized homeomorphism

Definition 2.1. A bijective mapping $g: (X, \zeta_1, \zeta_1^*) \to (Y, \zeta_2, \zeta_2^*)$ is called double fuzzy \mathscr{Z} -generalized homeomorphism (resp. double fuzzy homeomorphism) (briefly, DF \mathscr{Z} gHom (resp. DFHom)) if $g \& g^{-1}$ are DF \mathscr{Z} gCts (resp. DFCts).

Definition 2.2. A bijective mapping $g: (X, \zeta_1, \zeta_1^*) \to (Y, \zeta_2, \zeta_2^*)$ is called pre double fuzzy \mathscr{Z} generalized homeomorphism (briefly, pDF \mathscr{Z} gHom) if g and g^{-1} are DF \mathscr{Z} gIrr.

Theorem 2.3. Every DFHom is DF \mathscr{Z} gHom. But not conversely.

Proof. Let $g: X \to Y$ be *DFHom.* Then g and g^{-1} are *DFCts.* Let K be any (ι, κ) -fc set in Y. Then $g^{-1}(K)$ is also (ι, κ) -fcin X as f is *DFCts.* As every (ι, κ) -fc set is (ι, κ) - $f\mathscr{Z}gc$, $g^{-1}(K)$ is also (ι, κ) - $f\mathscr{Z}gc$ in X. Thus g is *DF* $\mathscr{Z}gCts$. Also $g(g^{-1}(K)) = K$ is (ι, κ) -fc in Y implies K is also (ι, κ) $f\mathscr{Z}gc$ in Y. Hence $g(g^{-1}(K))$ is (ι, κ) - $f\mathscr{Z}gc$ in Y. Thus g^{-1} is also *DF* $\mathscr{Z}Cts$. Therefore, g is *DF* $\mathscr{Z}gHom$.

Example 2.4. Let $\gamma \& \delta$ be fuzzy subsets of $X = Y = \{l_1, m_1, n_1\}$ are defined as $\gamma(l_1) = 0.3$, $\gamma(m_1) = 0.4$, $\gamma(n_1) = 0.5$; $\delta(l_1) = 0.4$, $\delta(m_1) = 0.5$, $\delta(n_1) = 0.5$. Consider the dfts's (X, ζ, ζ^*) and (X, η, η^*) with

$$\zeta(\rho) = \begin{cases} 1, & \text{if } \rho = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{2}, & \text{if } \rho = \gamma, \\ 0, & \text{otherwise.} \end{cases} \quad \zeta^*(\rho) = \begin{cases} 0, & \text{if } \rho = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{2}, & \text{if } \rho = \gamma, \\ 1, & \text{otherwise.} \end{cases}$$

$$\eta(\rho) = \begin{cases} 1, & \text{if } \rho = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{2}, & \text{if } \rho = \delta, \\ 0, & o.w. \end{cases} \quad \eta^*(\rho) = \begin{cases} 0, & \text{if } \rho = \underline{0} \text{ or } \underline{1} \\ \frac{1}{2}, & \text{if } \rho = \delta, \\ 1, & o.w. \end{cases}$$

Then the id mapping $g: (X, \zeta, \zeta^*) \to (X, \eta, \eta^*)$ is $df \mathscr{Z}$ -Hom. but not DFHom as the fs δ is (ι, κ) -fo set in Y, but $g^{-1}(\delta) = \delta$ is not (ι, κ) -fo set in Y. Hence $g: Y \to X$ is not DFCts.

Theorem 2.5. Every $pDF \mathscr{Z}gHom$ is $DF \mathscr{Z}gHom$.

Theorem 2.6. Let $g: (X, \zeta_1, \zeta_1^*) \to (Y, \zeta_2, \zeta_2^*)$ be a bijective mapping. Then

- (i) g is $DF \mathscr{Z}gHom$.
- (ii) g is $DF \mathscr{Z}gCts \& DF \mathscr{Z}gO$ map.
- (iii) g is $DF \mathscr{Z}gCts \& DF \mathscr{Z}gC$ map.

are equivalent.

Proof. (*i*) \Rightarrow (*ii*): Let *g* be *DF* \mathscr{Z} *gHom*. Then *g* and *g*⁻¹ are *DF* \mathscr{Z} *gCts*. To prove that *g* is *DF* \mathscr{Z} *gO* map, let ρ be a (ι, κ)-*fo* set in *X*. Since $g^{-1}: Y \to X$ is *DF* \mathscr{Z} *gCts*, $(g^{-1})^{-1}(\rho) = g(\rho)$ is (ι, κ)-*f* \mathscr{Z} *go* in *Y*. Therefore $g(\rho)$ is (ι, κ)-*f* \mathscr{Z} *go* in *Y*. Hence *g* is *DF* \mathscr{Z} *gO* map.

 $(ii) \Rightarrow (iii)$: Let g be $DF \mathscr{Z}gCts$ and $DF \mathscr{Z}gO$ map. To prove that g is $DF \mathscr{Z}gC$ map. Let μ be a (ι, κ) -fc set in X. Then $1 - \mu$ is (ι, κ) -fo set in X. Since g is $DF \mathscr{Z}gO$ map, $g(1-\mu)$ is (ι, κ) -f $\mathscr{Z}go$ set in Y. Now, $g(1-\mu) = 1 - g(\mu)$. Therefore $g(\mu)$ is (ι, κ) -f $\mathscr{Z}gc$ in Y. Hence, g is a $DF \mathscr{Z}gC$ map.

 $(iii) \Rightarrow (i)$: Let g be $DF\mathscr{Z}Cts$ and $DF\mathscr{Z}gC$ map. To prove that g^{-1} is $DF\mathscr{Z}gCts$. Let ρ be a (ι, κ) -fo set in X. Then $1-\rho$ is a fc set in X. Since g is $DF\mathscr{Z}gC$ map, $g(1-\rho)$ is $f\mathscr{Z}gc$ set in Y. Now, $(g^{-1})^{-1}(1-\rho) = g(1-\rho) =$ $1-g(\rho)$. Therefore $g(\rho)$ is $f\mathscr{Z}go$ set in Y. Hence $g^{-1}: Y \to X$ is $DF\mathscr{Z}gCts$. Thus g is $DF\mathscr{Z}gHom$. \Box

Theorem 2.7. Let $f: (X, \zeta, \zeta^*) \to (Y, \sigma, \sigma^*)$. Then

(i) f is $DF \mathscr{Z}gIrr$.

(*ii*) \forall (ι, κ)-*f* \mathscr{Z} gc set ρ in $Y, f^{-1}(\rho)$ is (ι, κ)-*f* \mathscr{Z} gc in X.

- (iii) $\forall fp x_p \text{ of } X \text{ and every } (\iota, \kappa) \text{-} f \mathscr{Z} gnbhd \rho \text{ of } f(x_p), f^{-1}(\rho) \text{ is } a(\iota, \kappa) \text{-} f \mathscr{Z} gnbhd \text{ of } x_p.$
- (iv) $\forall fp x_p \text{ of } X \text{ and every } (\iota, \kappa) \text{-} f \mathscr{Z} gnbhd \rho \text{ of } f(x_p),$ there is a $(\iota, \kappa) \text{-} f \mathscr{Z} gnbhd \mu \text{ of } x_p \ni f(\mu) \leq \rho.$
- (v) $\forall fp x_p \text{ of } X \text{ and } every (\mathbf{1}, \kappa) f \mathscr{Z} go \rho \text{ of } Y \ni f(x_p) \in A, \exists a (\mathbf{1}, \kappa) f \mathscr{Z} go set \ni x_p \in \mu \text{ and } f(\mu) \leq \rho.$
- (vi) $\forall fp \ x_p \text{ of } X \text{ and every } (\iota, \kappa) \text{-} f \mathscr{Z} \text{go set } \rho \text{ of } Y \ni f(x_p)q\rho, \exists a \ (\iota, \kappa) \text{-} f \mathscr{Z} \text{go set } \mu \text{ of } X \ni x_pq\mu \text{ and } f(\mu) \leq \rho.$
- (vii) $\forall fp x_p \text{ of } X \text{ and every } (\iota, \kappa) \text{-} f \mathscr{Z}gq\text{-nbhd } \rho \text{ of } f(xp), f^{-1}(\rho) \text{ is } a(\iota, \kappa) \text{-} f \mathscr{Z}gq\text{-nbhd of } x_p.$

(viii) $\forall fp x_p \text{ of } X \text{ and every } (\iota, \kappa) \text{-} f \mathscr{Z}gq\text{-}nbhd \rho \text{ of } f(xp), \\ \exists a (\iota, \kappa) \text{-} f \mathscr{Z}gq\text{-}nbhd \mu \text{ of } x_p \ni f(\mu) \leq \rho.$

are equivalent.

Proof. (i) \Rightarrow (ii), (i) \Rightarrow (iii), (v) \Rightarrow (i) and (vii) \Rightarrow (viii): Obvious. (ii) \Rightarrow (i): Let ρ be a (ι, κ) -*f* $\mathscr{L}gc$ set in *Y* which implies

 $\frac{1}{2} - \rho \text{ is } (\iota, \kappa) - f \mathscr{Z} \text{ go-open in } Y. f^{-1}(\underline{1} - \rho) = \underline{1} - f^{-1}(\rho)$ is $(\iota, \kappa) - f \mathscr{Z} \text{ go in } X$ implies $f^{-1}(\rho)$ is $(\iota, \kappa) - f \mathscr{Z} \text{ gc in } X$. Hence f is $DF \mathscr{Z} Irr$.

(iii) \Rightarrow (iv): Let x_p be a fp of $X \$ \rho$ be a (ι, κ) - $f \mathscr{Z}$ gnbhd of $f(x_p)$. Taking $\mu = f^{-1}(\rho)$ is a (ι, κ) - $f \mathscr{Z}$ gnbhd of x_p and $f(\mu) = f(f^{-1}(\rho)) \le \rho$.

(iv) \Rightarrow (v): Let x_p be a fp of $X \$ \rho$ be a (ι, κ) - $f \mathscr{Z} go$ set $\exists f(x_p) \in \rho$. Then ρ is a (ι, κ) - $f \mathscr{Z} gnbhd$ of $f(x_p)$. Hence there is (ι, κ) - $f \mathscr{Z} gnbhd \mu$ of $x_p \in X \exists x_p \in \mu$ and $f(\mu) \leq \rho$. Hence there is (ι, κ) - $f \mathscr{Z} go$ set γ in $X \exists x_p \in \gamma \leq \mu$ and $f(\gamma) \leq f(\mu) \leq \rho$.

(i) \Rightarrow (vi): Let x_p be a fp of $X \ p$ be a (ι, κ) - $f \ go$ set in $Y \ni f(x_p)q\rho$. Let $\mu = f^{-1}(\mu)$. μ is a (ι, κ) - $f \ go$ set in X, $\exists x_p q \mu$ and $f(\mu) = f(f^{-1}(\rho)) \le \rho$.

(vi) \Rightarrow (i): Let ρ be a (ι, κ) -fo set in Y and $x_p \in f^{-1}(\rho)$. Clearly $f(x_p) \in \rho$. $(x_p)^c = \underline{1} - x_p(x)$. Then $f(\underline{1} - x_p)q\rho$. Hence \exists a (ι, κ) - $f\mathscr{Z}go$ set μ of $X \ni (1 - x_p)q\mu$ and $f(\mu) \leq A$. Now $(\underline{1} - x_p)q\mu \Rightarrow (\underline{1} - x_p)(x) + \mu(x) = 1 - p + \mu(x) > 1$ $\Rightarrow \mu(x) > p \Rightarrow x_p \in \mu$. Thus $x_p \in \mu \leq f^{-1}(\rho)$. Hence $f^{-1}(\rho)$ is (ι, κ) - $f\mathscr{Z}go$ in X.

(vi) \Rightarrow (vii): Let x_p be a fp of $X \$ \rho$ be (ι, κ) - $f \mathscr{Z}gq$ -nbhd of $f(x_p)$. Then there is (ι, κ) - $f \mathscr{Z}go$ set γ in $Y \ni x_p q\gamma$. By hypothesis there is a (ι, κ) - $f \mathscr{Z}go$ set μ of $X \ni x_p q\mu$ and $f(\mu) \leq \gamma$. Thus $x_p q\mu \leq f^{-1}(\gamma) \leq f^{-1}(\rho)$. Hence $f^{-1}(\rho)$ is a (ι, κ) - $f \mathscr{Z}gq$ -nbhd of x_p .

(viii) \Rightarrow (vi) Let x_p be a fp of $X \$ \rho$ be (ι, κ) - $f \mathscr{Z} go$ in Y $\exists f(x_p)q\rho$. Then ρ is (ι, κ) - $f \mathscr{Z} gq$ -nbhd of $f(x_p)$. So there is a (ι, κ) - $f \mathscr{Z} gq$ -nbhd γ of x_p $\exists f(\gamma) \le \rho$. Since γ is a (ι, κ) $f \mathscr{Z} gq$ -nbhd of x_p $\exists a (\iota, \kappa)$ - $f \mathscr{Z} go$ set μ of X $\exists x_p q \mu \le \gamma$. Hence $x_p q \mu$ and $f(\mu) \le \rho$.

Theorem 2.8. Let $g: (X, \zeta_1, \zeta_1^*) \to (Y, \zeta_2, \zeta_2^*)$ be a bijective function. Then

- (i) g is $pDF \mathscr{Z}gHom$.
- (ii) g is $DF \mathscr{Z}gIrr$ and $pDF \mathscr{Z}gO$ map.
- (iii) g is $DF \mathscr{Z}gIrr$ and $pDF \mathscr{Z}gC$ map.

are equivalent.

Proof. (i) \Rightarrow (ii): Let *g* be *pDF* \mathscr{Z} *gHom*. Then *g* and *g*⁻¹ are *DF* \mathscr{Z} *gIrr*. It is enough to prove that *g* is *pDF* \mathscr{Z} *gO* map, let ρ be (ι, κ) -*f* \mathscr{Z} *go* set in *X*. Since $g^{-1} : Y \to X$ is *DF* \mathscr{Z} *Irr*, $(g^{-1})^{-1}(\rho) = g(\rho)$ is (ι, κ) -*f* \mathscr{Z} *go* set in *Y*. Therefore $g(\rho)$ is (ι, κ) -*f* \mathscr{Z} *go* set in *Y*. Hence *g* is *pDF* \mathscr{Z} *gO* map.

(ii) \Rightarrow (iii): Let g be $DF \mathscr{Z}gIrr$ and $pDF \mathscr{Z}gO$ map. To prove that g is $pDF \mathscr{Z}gC$ map, let μ be a (ι, κ) - $f \mathscr{Z}gc$ set in X. Then $1 - \mu$ is (ι, κ) - $f \mathscr{Z}go$ set in X. Since g is $pDF \mathscr{Z}gO$ map, $g(1 - \mu)$ is (ι, κ) - $f \mathscr{Z}go$ set in Y. Now, $g(1 - \mu) =$ $1 - g(\mu)$ implies $1 - g(\mu)$ is $(\iota, \kappa) - f \mathscr{Z} go$ set in *Y*. Therefore $g(\mu)$ is $(\iota, \kappa) - f \mathscr{Z} gc$ in *Y*. Hence, *g* is a *pDF* $\mathscr{Z} gC$ map.

(iii) \Rightarrow (i): Let g be $DF \mathscr{Z}gIrr$ and $pDF \mathscr{Z}gC$ map. To prove that g is $pDF \mathscr{Z}gHom$, let ρ be (ι, κ) - $f\mathscr{Z}go$ set in X. Then $1 - \rho$ is (ι, κ) - $f\mathscr{Z}gc$ set in X. Since g is $pDF \mathscr{Z}gC$ map, $g(1-\rho)$ is also (ι, κ) - $f\mathscr{Z}gc$ set in Y. Now, $(g^{-1})^{-1}(\underline{1}-\rho) =$ $g(\underline{1}-\rho) = \underline{1}-g(\rho)$ is (ι, κ) - $f\mathscr{Z}gc$ set in Y. Thus $g(\rho)$ is (ι, κ) - $f\mathscr{Z}go$ set in Y. Hence $g^{-1}: Y \to X$ is $DF \mathscr{Z}Cts$. Since g is $DF \mathscr{Z}Irr$ and by Theorem 2.7, every $DF \mathscr{Z}Irr$ map is $DF \mathscr{Z}Cts$. Thus g is $DF \mathscr{Z}Cts$. Hence g is $DF \mathscr{Z}Hom$. \Box

References

- K. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20 (1) (1986), 84–96.
- [2] D. Coker, An introduction to intuitionistic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88 (1997), 81–89.
- [3] A. I. El-Magharabi and A. M. Mubarki, Z-open sets and Z-continuity in topological spaces, *International Journal* of *Mathematical Archive*, 2(10)(2011), 1819–1827.
- [4] Fatimah M. Mohammed, M. S. M. Noorani and A. Ghareeb, Generalized fuzzy b-closed and generalized *-fuzzy b-closed sets in double fuzzy topological spaces, *Egyptian Journal of Basic and Applied Sciences*, 3(2016), 61–67.
- [5] J. G. Garcia, S. E. Rodabaugh, Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued-intuitionistic sets, intuitionistic fss and topologies, Fuzzy Sets and Systems, 156(2005), 445–484.
- [6] E. P. Lee, Y. B. Im, Mated fuzzy topological spaces, *International Journal of Fuzzy Logic and Intelligent Systems*, 11 (2001), 161–165.
- F. M. Mohammed and A. Ghareeb, More on generalized b-closed sets in *df* topological spaces, *Songklanakarin J. Sci. Technol.*, 38 (1)(2016), 99–103.
- [8] F. M. Mohammed, M. S. M. Noorani and A. Ghareeb, New notions from (ι, κ)- generalized fuzzy preopen sets, *GU J. Sci.*, 30 (1) (2017), 311–331.
- [9] P. Periyasamy, V. Chandrasekar, G. Saravanakumar and A. Vadivel, Fuzzy *e*-closed and generalized fuzzy *e*-closed sets in double fuzzy topological spaces, *JETIR*, 6(3) (2019), 34–40.
- [10] A. A. Ramadan, S. E. Abbas and Abd El-Latif, Compactness in intuitionistic fuzzy topological spaces, *International Journal of Mathematics and Mathematical Sciences*, 1 (2005), 19–32.
- [11] S. K. Samanta, T. K. Mondal, On intuitionistic gradation of openness, *Fuzzy Sets and Systems*, 131(2002), 323– 336.
- [12] Shiventhira devi Sathaananthan, A. Vadivel, S. Tamilselvan and G. Saravanakumar, *Fuzzy L closed sets in double fuzzy topological spaces*, submitted.
- ^[13] Shiventhira devi Sathaananthan, A. Vadivel, S. Tamilsel-

van and G. Saravanakumar, *Generalized Fuzzy Z Closed* Sets in Double Fuzzy Topological Spaces, submitted.

- [14] Shiventhira devi Sathaananthan, A. Vadivel, S. Tamilselvan and G. Saravanakumar, *Fuzzy 2^c-continuous mappings in double fuzzy topological spaces*, submitted.
- [15] Shiventhira devi Sathaananthan, A. Vadivel, S. Tamilselvan and G. Saravanakumar, Fuzzy *2*-open mappings in double fuzzy topological spaces, submitted.
- [16] Shiventhira devi Sathaananthan, A. Vadivel, S. Tamilselvan and G. Saravanakumar, *Several mappings via* (ι, κ)-𝔅-𝔅-generalized open sets in double fuzzy topological spaces, submitted.
- [17] L. A. Zadeh, *Fuzzy sets*, Information and Control, 8(1965), 338–353.
- [18] A. M. Zahran, M. A. Abd-Allah and A. Ghareeb, Several types of double fuzzy irresolute functions, *International Journal of Computational Cognition*, 8(2)(2010), 19–23.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******